Evidence Synthesis Number 189

Screening for Cognitive Impairment in Older Adults: An Evidence Update for the U.S. Preventive Services Task Force

Prepared for:

Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov

Contract No. HHSA-290-2015-00007-I-EPC5, Task Order No. 3

Prepared by:

Kaiser Permanente Research Affiliates Evidence-based Practice Center Kaiser Permanente Center for Health Research Portland, OR

Investigators:

Carrie D. Patnode, PhD, MPH Leslie A. Perdue, MPH Rebecca C. Rossom, MD, MSCR Megan C. Rushkin, MPH Nadia Redmond, MSPH Rachel G. Thomas, MPH Jennifer S. Lin, MD, MCR

AHRQ Publication No. 19-05257-EF-1 February 2020 This report is based on research conducted by the Kaiser Permanente Research Affiliates Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. HHSA-290-2015-000017-I-EPC5, Task Order No. 3). The findings and conclusions in this document are those of the authors, who are responsible for its contents, and do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services.

The information in this report is intended to help health care decision makers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services. This report is not intended to be a substitute for the application of clinical judgment. Anyone who makes decisions concerning the provision of clinical care should consider this report in the same way as any medical reference and in conjunction with all other pertinent information (i.e., in the context of available resources and circumstances presented by individual patients).

This report may be used, in whole or in part, as the basis for development of clinical practice guidelines and other quality enhancement tools, or as a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied.

Acknowledgments

The authors gratefully acknowledge the following individuals for their contributions to this project: Howard Tracer, MD, at AHRQ; current and former members of the U.S. Preventive Services Task Force who contributed to topic deliberations; Elizabeth Eckstrom, MD, MPH, at Oregon Health & Science University and Mary Ganguli, MD, at the University of Pittsburgh for their content expertise and review of the draft report; Amy Sanders, MD, Deborah Barnes, PhD, Joseph Gaugler, PhD, and Parminder Raina, PhD, who provided expert review of the draft report; Marcel E. Salive, MD, Molly Wagster, PhD, and Nina Silverberg, PhD, at the National Institute on Aging and Jovier E. Evans, PhD, at the National Institute of Mental Health for providing federal review of our draft report; and Smyth Lai, MLS, Shannon Robalino, MLS, Elizabeth O'Connor, PhD, Denis Nyongesa, MS, and Katherine Essick, BS, at the Kaiser Permanente Center for Health Research for technical and editorial assistance.

Suggested Citation

Patnode CD, Perdue LA, Rossom RC, Rushkin MC, Redmond N, Thomas RG, Lin JS. Screening for Cognitive Impairment in Older Adults: An Evidence Update for the U.S. Preventive Services Task Force. Evidence Synthesis No. 189. Rockville, MD: Agency for Healthcare Research and Quality; 2020.

Structured Abstract

Objective: We conducted this systematic review to support the U.S. Preventive Services Task Force in updating its 2014 recommendation on screening for cognitive impairment in older adults. Our review addressed the direct evidence on the benefits and harms of screening for cognitive impairment versus no screening, the test accuracy of screening instruments to detect mild cognitive impairment (MCI) and dementia, and the benefits and harms of treatment for MCI and mild to moderate dementia among community-dwelling older adults age 65 years and older.

Data Sources: We performed an updated search of MEDLINE, PubMed Publisher-Supplied, PsycINFO, and the Cochrane Central Register of Controlled Trials for studies published through January 2019. We supplemented searches by examining reference lists from related articles and expert recommendations and searched federal and international trial registries for ongoing trials.

Study Selection: Two researchers reviewed 11,644 titles and abstracts and 966 full-text articles against prespecified inclusion criteria. We included test accuracy studies that included screening instruments that could be delivered in primary care in 10 minutes or less by a clinician or self-administered in 20 minutes or less compared with a reference standard. We included trials of major pharmacologic and nonpharmacologic interventions in persons with MCI or mild to moderate dementia and large, observational studies examining adverse effects of these interventions. We conducted dual, independent critical appraisal of all provisionally included studies and abstracted all important study details and results from all studies rated fair or good quality. Data were abstracted by one reviewer and confirmed by another.

Data Analysis: We synthesized data separately for each key question and within subcategories of screening instruments and treatments. For diagnostic accuracy studies, we focused on sensitivity and specificity of instruments that were evaluated in more than one study. We conducted a qualitative synthesis of results using summary tables and figures to capture key study characteristics, sources of clinical heterogeneity, and overall results of each study. Quantitative synthesis was limited to test performance of the Mini Mental State Examination (MMSE) (due to insufficient number of homogeneous studies for other instruments) and U.S. Food and Drug Administration (FDA)-approved medications to treat Alzheimer's Disease on global cognitive outcomes, global function, and harms; nonpharmacologic interventions aimed at the patient on global cognitive outcomes; and caregiver and caregiver-patient dyad interventions on caregiver burden and depression outcomes. We ran random-effects meta-analyses using the DerSimonian and Laird method and sensitivity analyses using a Restricted Likelihood Estimation Model with the Knapp-Hartung correction to calculate the pooled differences in mean changes (for continuous data) and pooled risk ratio (for binary data). We used meta-regression to explore potential effect modification by various study, population, and intervention characteristics in cases where 10 or more studies were pooled. We generated funnel plots and conducted tests for small-study effects for all pooled analyses. Using established methods, we assessed the strength of evidence for each question.

Results: *Screening (Key Questions 1–3):* Only one trial was identified that examined the direct effect of screening for cognitive impairment on important patient outcomes, including potential harms. In that trial, at 12 months, there was no difference in health-related quality of life between

those who were screened vs. not screened. Symptoms of depression and anxiety were also similar between groups at 1, 6, and 12 months as was health care utilization and advance care planning. We identified 59 studies that addressed the diagnostic accuracy of 49 screening instruments to detect cognitive impairment. Most instruments were only studied in a handful of well-designed diagnostic accuracy studies in primary care-relevant populations. The MMSE, a brief test taking 7 to 10 minutes to complete, remains the most thoroughly studied instrument. The pooled estimate across 15 studies (n=12,796) resulted in 89 percent sensitivity (95% CI, 0.85 to 0.92) and 89 percent specificity (95% CI, 0.85 to 0.93) to detect dementia at a cutoff of 23 or less or 24 or less. Other screening instruments evaluated in more than one study included the very brief instruments (≤5 minutes) of the CDT, MIS, MSQ, Mini-Cog, Lawton IADL, VF, AD8, and FAQ and the brief instruments (6 to 10 minutes) of the 7MS, AMT, MoCA, SLUMS, and TICS with sensitivity to detect dementia usually at 0.75 or higher and specificity at 0.80 or higher for all instruments. For self-administered, longer tests (>10 minutes), only the IQCODE was assessed in more than one study, with sensitivity to detect dementia ranging from 0.80 to 0.88 and specificity ranging from 0.51 to 0.91. Across all instruments, test performance was generally higher in the detection of dementia vs. mild cognitive impairment, although confidence intervals overlapped. No studies directly addressed the adverse psychological effects of screening or adverse effects from false-positive or false-negative testing.

Treatment (Key Questions 4 and 5): We identified 224 trials and 3 observational studies representing more than 240,000 patients and/or caregivers that addressed the treatment or management of MCI or mild to moderate dementia. None of the treatment trials were linked with a screening program; in all cases, trial participants were persons with known MCI or dementia.

Pharmacologic Interventions: Based on 45 trials (n=22,431) and three observational studies (n=190,076) that evaluated acetylcholinesterase inhibitors (AChEIs) (i.e., donepezil, galantamine, rivastigmine) and memantine, these medications may improve measures of global cognitive function in the short term, but the magnitude of change is small. In meta-analyses, the differences in changes between those on AChEIs or memantine compared with those on placebo ranged from approximately 1 to 2.5 points on the ADAS-Cog-11 and 0.5 to 1 point on the MMSE over 3 months to 3 years of followup. AChEIs and memantine appeared to increase the likelihood of improving or maintaining patients' global function by 15 percent (for memantine) to 50 percent (for rivastigmine) in the short term (pooled 95% confidence interval range, 0.49 to 2.69). Other outcome measures were inconsistently reported. Total adverse events and discontinuation due to adverse events were more common with AChEIs, but not memantine, compared with placebo. Rates of serious adverse events overall were not higher among those taking medications vs. placebo, but individual studies noted increased rates of serious adverse events. Trials evaluating other medications or dietary supplements (k=29; n=6,489), including discontinuing antihypertensives, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors (atorvastatin and simvastatin), nonsteroidal anti-inflammatory drugs (ibuprofen, naproxen, indomethacin, and celecoxib), gonadal steroids (estrogen [plus or minus progesterone] and testosterone), and dietary supplements and vitamins (multivitamins, B vitamins, vitamin E, and omega-3 fatty acids) showed no benefit on global cognitive or physical function in persons with mild to moderate dementia or MCI.

Nonpharmacologic Interventions: We identified 61 trials (n=7,847) that evaluated nonpharmacologic patient-level interventions, including cognitive-focused, exercise, and multicomponent and other interventions. Among all interventions, there was no clear benefit on global or domain-specific measures of cognitive function compared with control conditions at 3 months to 2 years followup. Effect estimates generally favored the intervention groups over control groups, but the magnitude of effect was inconsistent across trials and represented very wide confidence intervals (ranging from no effect to a large effect). Physical function outcomes, including change in activities of daily living and independent activities of daily living, as well as quality of life and mental and neuropsychiatric symptoms, were inconsistently reported. There was, however, a pattern of effect for exercise interventions, with small improvements seen in measures of physical function and symptoms for intervention groups, whereas control groups reported worsening function. Caregiver and caregiver-patient dyad interventions including psychoeducation for the caregiver and care and case management interventions, reported in 88 trials (n=14,880), resulted in a consistent benefit on caregiver burden and depression outcomes. Effect sizes were mostly small, however, and were of unclear clinical significance. Little harm was evident in the few nonpharmacologic intervention trials that reported harms.

Limitations: There is a lack of evidence around how screening for and treating MCI and earlystage dementia affects decision making outcomes. Furthermore, there has been little reproducibility in testing specific screening instruments in primary care populations. The treatment literature is limited by a lack of consistency in the specific outcomes reported and short followup duration. It is difficult to interpret the clinical importance of the small average effects seen among treatment trials, and many measures likely have limited responsiveness for patients with less pronounced cognitive impairment. Consistent and standardized reporting of results according to meaningful thresholds of clinical significance would be helpful in interpreting the small average effects on continuous outcome measures. Other important measures such as quality of life, physical function, and institutionalization, were inconsistently reported.

Conclusions: Several brief screening instruments can adequately detect cognitive impairment, especially in populations with a higher prevalence of underlying dementia. There is no empiric evidence, however, that screening for cognitive impairment or early diagnosis of cognitive impairment improves patient, caregiver, family, or clinician decision making or other important outcomes nor causes harm. In general, there is support that AChEIs and memantine and interventions that support caregivers, including those that help coordinate care for patients and caregivers, can result in small improvements in the short term. Unfortunately, the average effects of these benefits are quite small and likely not of clinical significance. Any benefits are further limited by the commonly experienced side effects of medications and the limited availability of complex caregiver interventions. Cognitive stimulation and training, exercise interventions, and other medications and supplements showed some favorable effects on patients' cognitive and physical function, but trial evidence lacked consistency and the estimates of benefit were imprecise. There is less evidence related to screening for and treating MCI. The test performance of the few instruments evaluated to detect MCI was lower than the sensitivity and specificity to detect dementia and there is little evidence for any pharmacologic or nonpharmacologic interventions to preserve or improve patient functioning in persons with MCI.

Table of Contents

Chapter 1. Introduction	1
Purpose	1
Condition Definition	1
Prevalence and Burden	2
Natural History	3
Risk and Protective Factors	5
Prevention of Cognitive Impairment	5
Rationale for Screening	6
Screening and Diagnostic Workup for Cognitive Impairment	6
Interventions and Treatment for Cognitive Impairment	
Current Clinical Practice in the United States and Recommendations of Other Groups	8
Previous USPSTF Recommendation	9
Chapter 2. Methods	. 10
Review Scope	. 10
Analytic Framework and Key Questions	. 10
Screening KQs (KQs 1–3)	. 10
Treatment/Management KQs (KQs 4 and 5)	. 10
Data Sources and Searches	. 10
Study Selection	. 11
Population	. 11
Screening Instruments	
Interventions and Comparators	
Outcomes	. 12
Study Design	
Quality Assessment	
Data Abstraction	
Data Synthesis and Analysis	
Grading the Strength of the Body of Evidence	
Expert Review and Public Comment	. 18
USPSTF Involvement	. 18
Chapter 3. Results	
KQs 1–3: Overall Summary of Results for Screening for Cognitive Impairment	
KQs 4 and 5: Overall Summary of Results for Treatment and Management of Cognitive	
Impairment	
Chapter 4. Discussion	
Summary of Evidence	
Screening	
Treatment	
Comparison With Other Existing Systematic Reviews	
Implementation of Screening	. 65
Routine Screening vs. Case Finding	
Age at Which to Start (and Stop) Screening	
Screening Interval	. 66

Limitations of Our Approach	67
Limitations of the Studies and Future Research Needs	
Conclusions	69
References	71

Figures

Figure 1. Analytic Framework

Figure 2. Test Accuracy of Very Brief Screening Tests Reported in More Than One Study (KQ 2)

Figure 3. Test Accuracy of Very Brief Screening Tests Reported in One Study (KQ 2)

Figure 4. Test Accuracy of Brief Screening Tests Reported in More Than One Study (KQ 2)

Figure 5. Test Accuracy of Brief Screening Tests Reported in One Study (KQ 2)

Figure 6. Bivariate Pooled Analysis of Test Accuracy of the MMSE to Detect Dementia at a Cut-Off of \geq 23 or \geq 24 (KQ 2)

Figure 7. Test Accuracy of the MMSE at Other Cut-Offs (KQ 2)

Figure 8. Test Accuracy of Longer, Self-Administered Tests (KQ 2)

Figure 9. Pooled Analysis of Change in Global Cognitive Function (Measured by ADAS-Cog-

11) (KQ 4), AChEIs and Memantine Compared With Placebo, by Medication Type

Figure 10. Pooled Analysis of Change in Global Cognitive Function (Measured by MMSE) (KQ 4), AChEIs and Memantine Compared With Placebo, by Medication Type

Figure 11. Pooled Analysis of Risk of Improvement or Maintenance in Global Function (KQ 4), AChEIs and Memantine Compared With Placebo, by Medication Type

Figure 12. Pooled Analysis of Change in Global Function (Standardized Mean Difference) (KQ 4), AChEIs and Memantine Compared With Placebo, by Medication Type

Figure 13. Pooled Analysis of Risk of Serious Adverse Events (KQ 5), AChEIs and Memantine Compared With Placebo, by Medication Type

Figure 14. Pooled Analysis of Risk of Withdrawals Due to Adverse Events (KQ 5), AChEIs and Memantine Compared With Placebo, by Medication Type

Figure 15. Pooled Analysis of Change in Global Cognitive Function (Measured by MMSE) (KQ 4), Patient-Level Nonpharmalogic Interventions Compared With Controls, by Intervention Type Figure 16. Pooled Analysis of Change in Global Cognitive Function (Measured by ADAS-Cog-11) (KQ 4), Patient-Level Nonpharmalogic Interventions Compared With Controls, by Intervention Type

Figure 17. Pooled Analysis of Change in Caregiver Burden (Standardized Mean Difference) (KQ 4), Caregiver and Caregiver-Patient Dyad Interventions Compared With Controls, by Intervention Type

Figure 18. Pooled Analysis of Change in Caregiver Depression (Standardized Mean Difference) (KQ 4), Caregiver and Caregiver-Patient Dyad Interventions Compared With Controls, by Intervention Type

Tables

Table 1. Recommendations From Other Organizations

Table 2. Study and Population Characteristics of Included Diagnostic Accuracy Studies (KQ 2)

Table 3. Screening Test Characteristics, by Category of Test (KQ 2)

Table 4. Test Performance of Very Brief Screening Instruments, by Instrument and Target Condition (KQ 2)

Table 5. Test Performance of Brief Screening Instruments, by Instrument and Target Condition (KQ 2)

Table 6. Test Performance of Longer, Self-Administered Screening Instruments, by Instrument and Target Condition (KQ 2)

Table 7. Trial and Population Characteristics: Summary Across All Intervention Types (KQs 4 and 5)

Table 8. Intervention Characteristics: Summary Across All Intervention Types (KQs 4 and 5)

Table 9. Meta-Analyses Results: Summary Across All Intervention Types (KQs 4 and 5)

Table 10. AChEIs and Memantine: Study Characteristics, by Medication Type (KQs 4 and 5)

Table 11. AChEIs and Memantine: Interventions Characteristics, by Medication Type (KQs 4 and 5)

 Table 12. AChEIs and Memantine: Summary of Results, by Medication Type (KQs 4 and 5)

Table 13. Other Medications and Supplements: Study Characteristics, by Agent (KQs 4 and 5) Table 14. Other Medications and Supplements: Intervention Characteristics, by Agent (KQs 4 and 5)

Table 15. Other Medications and Supplements: Summary of Results, by Agent (KQs 4 and 5) Table 16. Patient-Level Nonpharmacologic Interventions: Study Characteristics, by Intervention (KQs 4 and 5)

Table 17. Patient-Level Nonpharmacologic Interventions: Intervention Characteristics, by Intervention (KQs 4 and 5)

Table 18. Patient-Level Nonpharmacologic Interventions: Summary of Results, by Intervention (KQs 4 and 5)

Table 19. Caregiver and Caregiver-Patient Dyad Interventions: Study Characteristics, by Intervention (KQs 4 and 5)

Table 20. Caregiver and Caregiver-Patient Dyad Interventions: Intervention Characteristics, by Intervention (KQs 4 and 5)

Table 21. Caregiver and Caregiver-Patient Dyad Interventions: Summary of Results, by Intervention (KQs 4 and 5)

Table 22. Summary of Evidence

Table 23. Positive and Negative Predictive Values for Various Sensitivity and Specificity Values, by Age Group

Appendixes

Appendix A. Detailed Methods

Appendix B. Literature Flow Diagram

Appendix C. Included Studies

Appendix D. Excluded Studies

Appendix E. Detailed Trial Results for Trials of AChEIs and Memantine

Appendix F. Detailed Trial Results for Trials of Other Medications and Supplements

Appendix G. Detailed Trial Results for Trials of Patient-Level Nonpharmacologic Interventions

Appendix H. Detailed Trial Results for Trials of Caregiver and Caregiver-Patient Dyad Interventions

Chapter 1. Introduction

Purpose

This report will be used by the U.S. Preventive Services Task Force (USPSTF) to update its 2014 recommendation on screening for cognitive impairment in older adults.¹

Condition Definition

Clinical definitions of cognitive disorders have evolved over time. In the *Diagnostic and Statistical Manual of Mental Disorders* (Fourth Edition) (DSM-IV), published in 1994, dementia is defined as a decline in two or more cognitive domains (memory, attention, language, or visuospatial or executive functioning) that affects social or occupational functioning.² In the DSM-5, published in 2013, dementia is subsumed under the broader category of "major neurocognitive disorder" and is defined as a decline in one or more cognitive domains (learning and memory, language, executive function, complex attention, perceptual-motor [visuospatial], or social cognition) that interferes with independence in everyday activities.³ In the updated nomenclature, any domain could be impaired to meet the definition of dementia, whereas in DSM-IV, a decline in memory is required. Furthermore, in the DSM-5, a sixth cognitive domain, social cognition, was added. In both cases, these deficits do not occur exclusively during delirium, and are not better explained by another mental disorder, such as schizophrenia.

The dementia syndrome is further classified according to the symptoms and course of the impairment and the suspected underlying pathology. The major causes of dementia syndrome are: Alzheimer's disease (AD), vascular dementia (VaD), frontotemporal dementia (FTD), Lewy body dementia (LBD), Parkinson's disease with dementia (PDD), and dementia of mixed etiology (most commonly AD and VaD or mixed etiology with VaD).⁴ With AD, FTD, LBD, and PDD, abnormal protein deposits that accumulate in the brain are believed to contribute to deterioration of brain function and dementia (amyloid plaques, neurofibrillary tangles, Lewy bodies).⁵ Other neuropathological changes associated with dementia can include cortical atrophy, hemorrhage, small-vessel ischemic disease, and neuronal and white matter loss.⁶ The exact etiological mechanisms for many types of dementia (e.g., AD, FTD, LBD, and PDD), however, have not been clearly defined.⁷ For example, amyloid plaques found during brain autopsies are associated with AD and LBD, but these pathological findings are not always consistent with premorbid clinical diagnoses.⁸ Other established causes of dementia include depression, alcohol and other substance abuse, medications (e.g., antihistamines), metabolic disorders (e.g., thyroid disorders and diabetes), intracranial tumors, normal pressure hydrocephalus, subdural hematomas, infections (e.g., HIV, prion disease), traumatic brain or anoxic injury, and rare neurodegenerative disorders (e.g., Huntington's disease, progressive supranuclear palsy).9, 10

Mild cognitive impairment (MCI) is distinguished from dementia as cognitive impairment that is not severe enough to interfere with independence in daily functioning. The nomenclature for MCI is varied and includes cognitive impairment without functional impairment, cognitive impairment no dementia (CIND), mild neurocognitive disorder, and mild cognitive disorder, all of which have varied definitions and criteria.¹¹ In the DSM-5, MCI is classified under the broad category of "mild neurocognitive disorder." DSM-5 criteria for MCI include concerns of cognitive impairment by the patient, informant, or clinician; findings of modest cognitive deficits; and absence of interference with daily functioning (even though greater effort or compensatory strategies may be needed).³ This definition is consistent with that used by the International Working Group on Mild Cognitive Impairment.¹² The DSM-5 definition contrasts somewhat with earlier working definitions of MCI, including one of the most commonly used definitions of MCI published by Petersen and colleagues in 1999. The Petersen definition focuses on amnestic MCI, defined as complaints of memory impairment corroborated by an informant, memory impairment on objective testing, normal performance in nonmemory cognitive domains, preserved activities of daily living (ADLs), and no dementia.^{13, 14} Some research in MCI distinguishes between amnestic and non-amnestic MCI, and between single- or multidomain MCI.¹⁵⁻¹⁷ Regardless of the nomenclature, MCI is an intermediate but not necessarily transitional cognitive state between normal cognition and dementia.

Prevalence and Burden

Dementia

Dementia is a common condition, affecting an estimated 2.4 to 5.5 million Americans.^{4, 6, 18} The prevalence of dementia is likely underestimated given the challenges of diagnosis, particularly in primary care settings.^{19, 20} By 2050, it is projected that AD will affect 13.8 million Americans, largely due to the increase in size of the elderly population.²¹ The estimated total health, long-term, and hospice care costs for dementia in the United States were \$290 billion in 2019. Medicare and Medicaid pay approximately 70 percent of those costs. These cost estimates do not include the \$34 billion in uncompensated care that informal caregivers are estimated to provide annually.²²

The prevalence of dementia was estimated at 8.8 percent in 2012 among adults age 65 years and older in the United States, a significant decrease from the estimated prevalence of 11.6 percent in 2000.²³ The proportion of dementia caused by different etiologies varies widely between studies because of differences in diagnostic criteria, study setting, and age of participants. A 2017 study that used administrative enrollment and claims data from Medicare beneficiaries age 68 years and older during the years 2011–2013 found that the most commonly defined dementia subtype was AD (accounting for 43.5% of dementia claims), followed by VaD (14.5%), LBD (5.4%), and FTD (1.0%).²⁴ Similarly, one systematic review found that AD accounted for 56.3 percent of cases, followed by VaD (20.3%) and mixed etiologies (6.2%).²⁵ Other causes, such as PDD and alcohol abuse, were much less common.²⁵ Only 4 percent of dementia cases were due to potentially reversible causes, although only 0.6 percent of dementia cases actually reversed to normal cognition in studies that reported followup.²⁵

The prevalence of dementia increases with age. In 2012, the estimated prevalence of dementia in the United States was 3.2 percent in adults ages 65 to 74 years, rising to 9.9 percent for those ages 75 to 84 years, and 29.3 percent for those age 85 years and older.²³ Dementia incidence also increases exponentially with age between the ages of 65 and 90 years and doubles approximately

every 5 years.^{26, 27} One study among older adults age 90 years and older without dementia found the overall incidence rate was 18.2 percent per year, with rates increasing markedly with age from 12.7% per year in the 90- to 94-year-old age group, to 21.2% per year in the 95- to 99-year-old group, to 40.7% per year in the 100+-year-old group.²⁷

Dementia prevalence varies by race and ethnicity. A population-based study found the prevalence of dementia in adults age 71 years and older was 21.3 percent for black adults compared with 11.2 percent for white adults.²⁸ Another study found that the prevalence of AD in older black adults is roughly double (10.5% vs. 5.4%) the prevalence in non-Hispanic white adults,²⁹ while several studies have found the prevalence of AD in Hispanics to be approximately 1.5 times that observed in the white population.^{28, 30, 31} Epidemiological data suggests that certain risk factors are more common in blacks and Hispanics than whites, such as hypertension, coronary artery disease, and stroke, which may account for some of the racial disparities observed in AD.³⁰ There is little consensus, however, on the cause for observed disparities in prevalence.

Dementia prevalence also varies by gender, affecting more women than men. One study estimated that in adults age 71 years and older, approximately 16 percent of women had dementia compared with 11 percent of men.³² While previous research suggested that higher rates of dementia prevalence in women were related largely to women's longer life expectancy,³² newer research suggests that differences in genetic factors³³ and education³⁴ levels may contribute to disparate prevalence rates by gender as well.

MCI

The prevalence of MCI is even more difficult to ascertain than the prevalence of dementia because of even greater between-study differences in sampling, methods of clinical assessment, and the criteria used to define MCI.²⁹ Estimates of MCI prevalence range widely, from 3 to 42 percent in adults age 65 years and older.^{35, 36} One systematic review of 35 population-based studies found the median prevalence to be 4.9 percent (range, 0.5% to 31.9%) for amnestic MCI, 26.4 percent (range, 3% to 42%) for MCI, and 20.6 percent (range, 5.1% to 35.9%) for CIND across a broad age range of older adults.³⁶ While the prevalence of MCI and CIND appeared to increase with age, these studies did not identify a consistent relationship with age across different definitions.^{35, 36} Likewise, these studies found no consistent relationship between MCI and gender, race/ethnicity, or education.^{35, 36}

Natural History

Dementia

The most common types of dementia are irreversible and usually progressive, including AD, VaD, LBD, and FTD. Early stages of dementia generally affect instrumental activities of daily living (IADLs), such as money and medication management, shopping, or cooking, along with the ability to learn and retain new information. As the dementia progresses, patients become

unable to carry out basic self-care ADLs, such as dressing, toileting, or grooming.^{37, 38} The onset and progression of dementia are highly variable and depend in part on the etiology or type. The median survival time from diagnosis of dementia is estimated to range from 4.5 to 6.7 years, although this varies by how onset of disease is defined, age at diagnosis, degree of impairment, and the etiological type of dementia.^{39, 40} For example, median survival time for AD is thought to be longer than for FTD, and some patients with AD can live as long as 20 years after diagnosis.^{32, 41-43} The rate of progression of cognitive decline also varies with the type of dementia. Patients with AD, for example, can experience a decline of 2 points or less per year on the Mini Mental State Examination (MMSE), whereas the decline in those with other types of dementia can be more rapid.⁴⁴ The rate of decline can also depend on the stage of disease, as patients may experience an accelerated rate of decline as their disease progresses.^{45, 46} In addition to cognitive decline, neuropsychiatric symptoms such as depression, anxiety, apathy, agitation, aggression, personality changes, and psychosis (e.g., delusions, paranoia, hallucinations) can occur.⁶ Neuropsychiatric symptoms can occur with any type of dementia but tend to be more common with specific types. FTD, for example, is commonly associated with euphoria or disinhibition, whereas PDD and LBD are commonly associated with visual hallucinations. AD is associated with apathy, anxiety, and depression in early stages and agitation and delusions in later stages.47-50

MCI

The rates of stability, progression, and regression of MCI vary markedly between studies. This variation likely reflects the complex underlying pathology as well as differences in diagnostic criteria, population settings, and participants. Variations in diagnostic criteria have implications for understanding the natural history of MCI. For example, the 1999 Petersen criteria defined MCI essentially as amnestic MCI, while broader criteria used by others include categories for amnestic and nonamnestic MCI, and for single-domain and multidomain MCI. Each category of MCI has different predicted rates of conversion from MCI to dementia. Amnestic MCI and multidomain MCI are more likely to progress to dementia than others.⁵¹ Additionally, single-domain MCI is often a precursor of multidomain MCI; therefore, single-domain impairment may be the earliest detectable stage of a progressive condition, but may also be more likely than other MCI subtypes to revert to normal cognition.⁵¹⁻⁵³

Overall, there is strong evidence that persons with MCI have a much greater risk of progressing to dementia than persons with normal cognition. A 2013 systematic review found that an average of 32 percent of persons with MCI go on to develop dementia over 5 years.⁵⁴ This is consistent with a 2009 meta-analysis that found that on average, 38 percent of persons with MCI went on to develop dementia when followed for at least 5 years.¹⁵ In a subset of five studies included in the 2009 meta-analysis, the annual conversion rate to dementia over a mean followup of 6.0 years was 3.6 percent for persons with MCI compared with 0.43 percent for healthy subjects (relative risk [RR], 13.8 [95% confidence interval (CI), 8.44 to 22.6]). Overall, the annual rate of progression from MCI to dementia (adjusted for sample size and dementia type) was 4.9 percent (95% CI, 1.6 to 9.9). The adjusted rate of progression from MCI to VaD.¹⁵ Other studies using different definitions of MCI found cumulative rates of progression to dementia of 22 to 40

percent over mean study times of 5 to 10 years. MCI may also regress to normal cognition over time in 10 to 40 percent of persons with MCI.^{51, 55, 56} Although several population-based studies have noted an increased risk of mortality in persons with MCI compared with those with normal cognition,⁵⁷⁻⁶¹ other studies have found no associated increase in mortality.^{62, 63}

Risk and Protective Factors

Increasing age is the strongest known risk factor for cognitive decline in general and for AD specifically.¹⁸ Other proposed risk factors for cognitive decline have varying levels of evidence to support an association. The ɛ4 allele of the lipoprotein E gene has good observational evidence in white and Asian adults as a risk factor for AD.⁶⁴ Other risk factors with lower-quality observational evidence include family history, depression, physical frailty, and low social support.⁶⁴⁻⁶⁸

In contrast, more years of formal education have been associated with a reduced risk of dementia, likely through multiple causal pathways, including a direct effect on brain development and function and the association between higher levels of education and positive health behaviors and better access to health care.^{4, 23, 69} Likewise, better control of cardiovascular risk factors over the past decade has been associated with declining dementia risk.^{23, 70, 71} Obesity has also been found to be associated with a decreased risk of dementia with the hypothesis that while obesity in midlife may increase risk for later-life cognitive decline and dementia, obesity at older ages may be associated with cognitive and other health advantages.⁷² In addition, several dietary and lifestyle factors have been associated with a decreased risk of dementia, including adequate folic acid intake, low saturated fat and longer-chain omega-3 fatty acid intake, high fruit and vegetable intake, adherence to Mediterranean diet, moderate alcohol intake, cognitive engagement, social engagement, and higher physical activity level.⁷³⁻⁷⁶

Prevention of Cognitive Impairment

There is a robust evidence base exploring the effectiveness of interventions targeting modifiable risk factors that are potentially associated with age-related cognitive decline. In 2017, a comprehensive systematic review was published by Kane and colleagues⁷⁷ on the effectiveness and harms of pharmacological and nonpharmacological interventions to prevent age-related cognitive decline, MCI, and dementia. The review, which was also subsequently published in individual manuscripts,⁷⁸⁻⁸⁰ included 263 studies addressing 13 classes of interventions: cognitive training, physical activity, nutraceuticals, diet, multimodal interventions, hormone therapy, vitamins, antihypertensive treatment, lipid-lowering treatment, nonsteroidal anti-inflammatory drugs (NSAIDs), antidementia drugs, diabetes treatment, and "other interventions."

Of the 13 classes of interventions examined, none of the interventions had high strength of evidence to suggest that they delayed or prevented age-related cognitive decline, MCI, or dementia. There were a few interventions types, however, that showed more potential than others in benefiting cognitive performance. For instance, the review found that some forms of cognitive

training improved certain domain-specific measures of cognitive function that were targeted by the intervention (i.e., reasoning, executive function, attention, processing speed, and memory) for adults with normal cognition, but there was little evidence to support the transfer of benefits to other cognitive areas or to reduced dementia incidence. Additionally, the benefit for any form of cognitive training beyond 2 years was uncertain. Although the evidence was less compelling, physical activity and vitamin B12 plus folic acid also showed potential benefit on brief cognitive tests and memory. A few specific interventions reached moderate strength of evidence for no benefit in cognitive performance, including vitamin E in women, angiotensin-converting enzymes and thiazide, and angiotensin receptor blockers.⁷⁷

The absence of strong and consistent evidence in support of preventive interventions to delay or reduce onset of MCI and dementia in older adults with normal cognition may largely result from limitations inherent in the included evidence. Most published trials were of limited duration and followup, ranging between 6 months and 4 years. Even at 4 years, this period is substantially shorter than the expected latency period to reach MCI and dementia, which is thought to initiate years before participants begin to experience any symptoms. Furthermore, most randomized trials were underpowered to detect changes in the incidence of MCI and dementia due to small sample sizes.⁷⁷

Rationale for Screening

It is estimated that 29 to 76 percent of patients with dementia or probable dementia are not diagnosed by primary care clinicians.⁸¹⁻⁸³ That may be because primary care clinicians fail to recognize cognitive impairment during clinic checks that rely on routine history and physical examination.⁸⁴ Moreover, the sensitivity of a clinician's diagnosis appears to be strongly related to dementia severity, with few practitioners recognizing mild dementia.⁸⁵ Early identification of cognitive impairment, through screening, would ideally allow patients and their families to receive care at an earlier stage in the disease process, potentially facilitating discussions regarding decision making (e.g., health care, financial, legal) while the patient still retains decision making capacity. Clinical experts and researchers have suggested that the health, psychological, and social benefits from early recognition of dementia include: early education of patients and caregivers on the disease process; early coaching of caregivers in how to manage the patient; advanced planning (e.g., establishing a will, health care proxy, power of attorney, and advance directives; timely discussion of care transitions and appropriate placement options); reduced patient and family anxiety and stress, as well as reduced caregiver burden, blame, and denial; patient safety (e.g., monitoring driving, medication compliance, cooking); and promotion of advocacy for research and treatment development.^{86, 87}

Screening and Diagnostic Workup for Cognitive Impairment

Many different brief cognitive screening instruments are available to clinicians in primary care. These cognitive tests alone, however, are not diagnostic of dementia or MCI. A positive screening test triggers subsequent diagnostic testing that assesses the level and possible etiology of cognitive impairment. When dementia is suspected, the practitioner should complete a detailed and focused clinical history and physical examination. Family members or other persons close to the patient who could provide an accurate history should ideally be present or contacted. This diagnostic workup may also include more comprehensive cognitive and functional assessments (e.g., neuropsychological testing or clinical evaluation by a trained clinician).

A diagnosis of dementia requires that the patient has developed requisite cognitive deficits (impairments in learning and memory, language, executive function, complex attention, perceptual-motor, or social cognition), which can be established with specific tests and interpreted relative to appropriate norms. Practitioners also can order laboratory tests to rule out potentially reversible causes of dementia (e.g., hypothyroidism, vitamin B12 deficiency). Since depression is common and treatable and often presents as cognitive impairment, it is necessary to rule it out in patients with suspected dementia. The American Academy of Neurology currently recommends structural neuroimaging with noncontrast head computed tomography or magnetic resonance imaging in the initial evaluation of dementia patients,⁸⁸ although the need for neuroimaging in routine cognitive workups is controversial and may be more useful for those with acute onset or rapid progression or among those with other symptoms.⁸⁹ Genetic testing for the *APOE-ɛ4* allele (which increases the risk of developing AD) is not currently recommended, nor is genetic testing for other potential causes of dementia (e.g., specific mutations) unless there is a specific characteristic family history obtained.^{88, 90}

Interventions and Treatment for Cognitive Impairment

The goals of treatment for cognitive impairment are to maintain quality of life (QOL) and maximize functional performance by addressing cognitive, mood, and behavioral impairments, as well as to treat any modifiable or reversible causes of impairment. Treatment options for those with MCI and dementia are numerous and include both pharmacologic and nonpharmacologic interventions. Pharmacologic treatments approved by the U.S. Food and Drug Administration (FDA) include acetylcholinesterase inhibitors (AChEIs) (i.e., donepezil, galantamine, and rivastigmine), memantine, and combination donepezil and memantine (Namzaric®). Donepezil (Aricept®) is approved for the treatment of all stages of AD, whereas galantamine (Razadyne®) and rivastigmine (Exelon®) are indicated for the treatment of mild to moderate AD and mild to moderate dementia associated with PDD (rivastigmine only). Memantine (Namenda®), on the other hand, is indicated for the treatment of moderate to severe AD. None of these medications is specifically FDA-indicated or recommended for the treatment of MCI, although they are used off-label.⁹¹ Other medications, including antiplatelet medications, antihypertension medications, and 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors (statins), are often prescribed for cardiovascular risk reduction, primarily for the treatment of VaD or mixed dementias. Additional therapies have been tested or suggested for preventing or treating cognitive decline or the symptoms related to cognitive decline such as NSAIDS, gonadal steroids, antipsychotics, antidiabetes drugs, and dietary supplements. Experimental drug therapies include various immunotherapies targeting beta-amyloid (solanezumab), beta-secretase (verubecestat), and tau protein (AADvac1 vaccine); medications targeting inflammation in the brain (CSP-1103), intravenous immunoglobulin (IVIG), and growth hormone-releasing hormone (GHRH).⁹² None of these experimental drug therapies are currently FDA-approved for use in the general population; access to these agents is restricted to individuals taking part in a clinical trial.

Nonpharmacologic interventions include those targeting the patient, caregiver, or patientcaregiver dyad, and comprise multidisciplinary or multicomponent approaches, cognitive training, cognitive rehabilitation, cognitive stimulation interventions, exercise, peer support, caregiver counseling and psychoeducation, and case management.

Current Clinical Practice in the United States and Recommendations of Other Groups

Although no professional organizations explicitly recommend routine screening for dementia in asymptomatic adults (**Table 1**), many groups—including the USPSTF, Alzheimer's Association, American Academy of Neurology, American Geriatrics Society, Gerontological Society of America, U.S. Department of Veterans Affairs, Canadian Task Force on Preventive Health Care, European Federation of Neurological Societies, Royal Australian College of Practitioners, and International Association of Gerontology and Geriatrics—advise that clinicians assess the cognitive abilities of older adults who present with cognitive or cognitive-related functional complaints.^{1, 88, 93-99} The Veteran's Health Administration explicitly recommends against screening in asymptomatic adults, regardless of age, given the lack of evidence to support a benefit of identification of early cognitive impairment and adequate evidence of harms from drug therapy.⁹⁷

In 2011, Medicare began covering "detection of cognitive impairment" as part of the new Annual Wellness Visit (AWV) benefit, which is mandated by the Affordable Care Act.¹⁰⁰ The AWV requires an assessment of the patient's cognitive function by direct observation with consideration of information obtained via patient reports and concerns raised by informants.¹⁰⁰ The cognitive assessment is intended to result in the development of a personalized prevention plan in which the provider offers feedback and educates the patient about risks, including risks for cognitive impairment, when indicated.¹⁰¹ The AWV is mandated by the Affordable Care Act; however, only 20 percent of the 35 million Medicare Part B enrollees had an AWV in 2016.¹⁰² In 2013, the Alzheimer's Association published recommendations for operationalizing the detection of cognitive impairment during the AWV. It recommended the use of a brief structured assessment (i.e., the General Practitioner assessment of Cognition [GPCOG], Mini-Cog, Memory Impairment Screen [MIS], AD8, or short Informant Questionnaire on Cognitive Decline in the Elderly [IQCODE]) if a health risk assessment reveals signs or symptoms of cognitive impairment, through clinical observation, or via concerns raised by the patient or informant.¹⁰³ Likewise, both the National Institute on Aging (NIA) (2014)⁸⁷ and Gerontological Society of America (2016)¹⁰⁴ developed reference guides for primary care providers that describe the benefits of early screening, when to screen, how providers and staff can find time for screening, and how to screen for cognitive impairment. The NIA guide emphasizes and provides access to instruments that require 10 minutes or less to administer, including the AD8, Mini-Cog, and IQCODE,⁸⁷ whereas the Gerontological Society of America workgroup specifically endorses the Mini-Cog, GPCOG, and MIS.¹⁰⁴

Previous USPSTF Recommendation

In 2014, the USPSTF concluded that current evidence was insufficient to assess the balance of benefits and harms of screening for cognitive impairment (**I statement**).¹ At that time, the USPSTF found adequate evidence that some screening tools had sufficiently high sensitivity and specificity to be clinically useful in identifying dementia, but there was inadequate direct evidence on the benefits of screening for cognitive impairment. Additionally, while the evidence showed that several drug therapies and nonpharmacologic therapies, including those targeting caregivers, had a small effect on cognitive function and caregiver burden measures in the short term, the magnitude of the clinically relevant benefits was uncertain.

Chapter 2. Methods

Review Scope

This review is an update of the 2013 review^{105, 106} that supported the 2014 USPSTF recommendation. Our update includes studies published since the previous review and studies from the previous review that met updated inclusion criteria. We did not make any substantive changes to the scope of the review for this update other than to exclude the medication tacrine from the list of included interventions as it is no longer available in the United States.

Analytic Framework and Key Questions

With input from the USPSTF, we developed an Analytic Framework (**Figure 1**) and five Key Questions (KQs) to guide the search and selection of studies, data abstraction, and data synthesis.

Screening KQs (KQs 1–3)

- 1. Does screening for cognitive impairment in community-dwelling older adults in primary care–relevant settings improve decision making, patient, family/caregiver, or societal outcomes?
- 2. What is the accuracy of screening instruments to detect cognitive impairment in community-dwelling older adults?
- 3. What are the harms of screening for cognitive impairment in community-dwelling older adults?

Treatment/Management KQs (KQs 4, 5)

- 4. Do interventions for mild to moderate dementia or MCI in community-dwelling older adults improve decision making, patient, family/caregiver, or societal outcomes?
- 5. What are the harms of interventions for mild to moderate dementia or MCI in communitydwelling older adults?

Data Sources and Searches

First, we reviewed all included studies in the previous review,^{105, 106} including those that were part of a systematic review that was previously used in its entirety.¹⁰⁷ Next, we searched the following databases to identify English-language literature published between January 2012 and January 2019: Ovid MEDLINE, PubMED (for publisher-supplied records only), PsycInfo, and the Cochrane Central Register of Controlled Trials. A research librarian developed and executed the search, which was peer reviewed by a second research librarian (**Appendix A**). We supplemented our searches by examining the reference lists of other previously published

reviews, meta-analyses, and primary studies and from suggestions from experts. We also searched ClinicalTrials.gov for ongoing trials related to KQ 1 and have conducted ongoing surveillance for relevant literature for all bodies of evidence through September 21, 2019. We imported the literature from these sources directly into EndNote® X9 (Thomson Reuters, New York, NY).

Study Selection

We developed specific criteria to guide our study selection (Appendix A Table 1).

Population

For all KQs, we included studies that were relevant to community-dwelling, noninstitutionalized adults age 65 years and older being seen in primary care in the United States. For screening studies, we excluded studies conducted among patients in hospitals or nursing homes (i.e., skilled nursing facilities, rehabilitation facilities, and intermediate care facilities) or in which patients were selected from referred settings (e.g., memory, neurology, psychogeriatric, AD Research Centers). We included only treatment studies conducted among community-dwelling older adults with MCI or mild to moderate dementia. We excluded treatment studies that focused on patients with severe dementia, as most severe cases would likely be clinically identified rather than screen detected. We also excluded primary prevention trials in which treatment was aimed at preventing or delaying the onset of cognitive impairment in older adults without known cognitive impairment.

Screening Instruments

For KQs addressing screening, we included studies that evaluated any brief screening instrument that could be delivered in primary care in 10 minutes or less by a clinician or self-administered in 20 minutes or less. Screening instruments could be administered to the patient or an informant (family member or caregiver), and take place in person, by telephone, or online. We excluded screening done by diagnostic imaging or biomarker testing.

Interventions and Comparators

For KQs addressing the treatment of cognitive impairment, we focused on major pharmacologic and nonpharmacologic interventions intended for use during the early and mild stages of cognitive impairment and aimed at improving patient cognition, physical function, or QOL; to improve caregiver burden or well-being; or a combination of these. We excluded interventions with a primary aim of improving patient behavioral and psychological symptoms of dementia, improving physical performance, or reducing falls. A full list of included and excluded interventions is included in **Appendix A Table 1**.

Comparator interventions included no treatment or waitlist, placebo, usual care, or attention controls. Attention controls included minimal support and "sham" cognitive activities (e.g., working on puzzles, reading the newspaper) or exercise interventions (e.g., light stretching). Usual or standard treatment refers to what would normally be provided in the study setting to participants with dementia, and might include medication, clinic consultations, contact with a community mental health team, or support from voluntary organizations. We excluded studies comparing two active interventions with no true control group, as the focus of this review was not on the comparative effectiveness of various interventions.

Outcomes

We included studies examining the benefits or harms of screening or treatment that reported outcomes on decision making for patients and families or clinicians (e.g., health care planning, including advance directives; screening and diagnostic decisions; safety planning; legal and financial planning); patient health outcomes (i.e., mortality, health care utilization, institutionalization, global function, cognitive function, physical function, QOL, and neuropsychiatric symptoms including depression and anxiety, QOL); or societal outcomes (i.e., automobile accidents). We excluded studies if they included only patient satisfaction or cost outcomes. For harms, we included studies reporting total adverse events (AEs), withdrawals due to AEs, and serious adverse events (SAEs) that resulted in unexpected medical care, morbidity, or mortality.

Study Design

For KQs 1 and 3, we included randomized and nonrandomized controlled trials that compared individuals who received screening with those who received no screening or usual care. For studies of test accuracy of screening tests (KQ 2), we included studies that reported the sensitivity and specificity (or data that would allow us to calculate the sensitivity and specificity) of a screening test compared with a diagnostic reference standard (i.e., clinical assessment or neuropsychological testing, with explicit diagnostic criteria with or without expert consensus/conference). Studies designed to develop a screening instrument (rather than validate a screening instrument) were excluded unless they had a separate study sample to validate the instrument. We excluded case-control studies and studies that selectively recruited patients with known or clinically suspected dementia or MCI (or cognitively normal controls) due to the high risk of bias in patient selection for these studies. We did, however, include studies among patients with subjective memory complaints (not clinically suspected) because subjective memory complaints are relatively common among older adults.¹⁰⁸

Treatment effectiveness studies (KQ 4) were limited to randomized clinical trials (RCTs) or nonrandomized clinical trials. For harms (KQ 5), we included all trials that were included for the effectiveness question (KQ 4), and cohort or case-control studies with 1,000 or more persons. We excluded open-label extension data because there was not a comparison group.

Because of the large volume of search results, we used a single-screen process (i.e., one reviewer screened for exclusion) for records with terms clearly outside of the scope of the review in the title or abstract (e.g., "mice," "HIV," "brain injury"). Two independent reviewers then screened the titles and abstracts, using the inclusion and exclusion criteria as a guide, of all other records and those not flagged for exclusion during single screening. Subsequently, at least two reviewers assessed the full text of potentially relevant studies using a standard form that outlined the eligibility criteria. Disagreements were resolved through discussion and consensus. Title and abstract and full-text review were conducted in DistillerSR (Evidence Partners, Ottawa, Canada). We kept detailed records of all included and excluded studies (and the reason for their exclusion) during full-text review.

Quality Assessment

At least two reviewers critically appraised all newly identified eligible studies in DistillerSR. We assigned each study a quality rating of "good," "fair," or "poor" according to the USPSTF's study design–specific criteria.¹⁰⁹ We supplemented these criteria with items from the Newcastle-Ottawa Scale for cohort studies¹¹⁰ and the Quality Assessment of Diagnostic Accuracy Studies I and II for studies of diagnostic accuracy^{111, 112} (**Appendix A Table 2**). Disagreements were resolved by consensus and, if needed, consultation with a third independent reviewer. Because this review was an update of our own work, we did not repeat critical appraisal of the original studies through full dual-quality rating; rather, we confirmed the quality rating during data abstraction. Likewise, we did not systematically critically appraise all of the studies that were previously identified and included from a related systematic review.¹⁰⁷ In that review, the methodological quality of the included studies was assessed using a modified Jadad scale and included only studies with a minimum score of 3. We critically appraised only studies that scored a 3 out of 5 on the Jadad scale to examine whether they were at high risk of bias.

Good-quality studies were those that met nearly all specified quality criteria. For studies of test accuracy, we assigned a good-quality rating if they recruited patients consecutively or randomly, administered the index test blinded to, or at least prior to, the reference standard, used a reference standard that could accurately classify the target condition, interpreted the reference standard independently from the screening test, and administered the screening test and reference standard on the same day to all participants. For treatment studies, we rated them as good quality if comparable groups were assembled initially and maintained throughout the study, reliable and valid measurement instruments were used and applied equally to the groups, procedures for maintaining fidelity to the intervention were in place, followup was adequate (i.e., $\geq 80\%$ retention overall) and not differential between groups, data were complete, and there was no evidence of selective reporting. Fair-quality studies did not meet these criteria but did not have serious threats to their internal validity related to the design, execution, or reporting of the study.

Studies rated as poor quality had several important limitations or one critical flaw and were excluded from this review. The most common potential risk of bias for diagnostic studies that warranted a poor-quality rating was application of the reference standard to only those patients who screened positive. In these kinds of cases, when missing data are not random, analysis will generate biased estimates of diagnostic accuracy,¹¹³⁻¹¹⁶ and verification of only screen-positive

patients will generally lead to an overestimation of both sensitivity and specificity. Potential risk of bias for treatment trials resulting in poor-quality ratings included very high attrition (>40%) or differential attrition (>15% between groups), no information on the number of participants with complete data or reasons for missing data, and unclear randomization procedures coupled with imbalances in baseline characteristics between groups.

Data Abstraction

For screening studies (KQ 2), we extracted details about each study's screening instrument(s) (e.g., administration time, language, cut-point); recruitment and inclusion criteria; number of participants approached and analyzed; patient characteristics (i.e., age, sex, race/ethnicity, socioeconomic status [SES]); prevalence of dementia, MCI, or both; reference standard details; and diagnostic outcomes for given cut-points (i.e., contingency table, sensitivity, specificity, positive and negative predictive values, area under the curve). When more than one cutoff was reported for a screening instrument, only the optimal cutoff (as indicated by the author or as assessed by the reviewer as the best balance of sensitivity and specificity) was abstracted. For the MMSE, cutoffs of 23, 24, 23/24, or 24/25 were always abstracted.

For treatment trials (KQs 4, 5), we extracted details about each study's design (e.g., recruitment and inclusion criteria, number of participants recruited and analyzed); patient characteristics (e.g., proportion with MCI or specific dementia syndromes, age, sex, race/ethnicity, SES); and intervention characteristics (e.g., intervention components, dose/intensity, frequency and duration, interventionists) and control groups. For all outcomes, if a study reported results at more than one followup time point, we abstracted data for all time points at 3 months' followup or longer. Results related to the following outcomes were abstracted: any decision making outcome (on behalf of the clinician, caregiver, or patient); any societal outcome; patient mortality; institutionalization; health care utilization including hospitalizations and emergency department visits; global function (e.g., Clinical Dementia Rating [CDR], Clinician's Interview-Based Impression of Change–Plus [CIBIC+]); global cognitive function and domain-specific cognitive function; physical function (i.e., ADLs and IADLs); patient and caregiver QOL, psychological morbidity, depressive symptoms, and anxiety symptoms; neuropsychiatric symptoms; measures of caregiver burden; and adverse events. A table of the most commonly reported instruments for each outcome, including a description, is provided in Appendix A Table 3. Given the already complex nature of this review, we did not abstract caregiver outcomes related to caregiving self-efficacy, caregiving competence or mastery, time spent caregiving, and other measures of perceived needs, mood, or satisfaction with caregiving.

For measures of global cognitive function, we abstracted the Alzheimer's Disease Assessment Scale (ADAS-Cog) as the primary measure and used the MMSE when the ADAS-Cog was not available. In the rare instance in which neither of these two measures was used, we accepted other measures of global cognitive functioning (e.g., Mattis Dementia Rating Scale, Telephone Interview for Cognitive Status [TICS]). We abstracted results for domain-specific cognitive function measures (i.e., executive function, memory, attention, and language) qualitatively for each measure to compare these results to measures of global cognitive function. For QOL outcomes, we included measures of general QOL (e.g., Short-Form 12- and 36-Item Health

Survey [SF-12 and SF-36], EuroQol 5-Dimensions [EQ-5D]) and dementia-related QOL (e.g., Dementia Quality of Life [DQOL], Dementia Quality of Life [DEMQOL], Quality of Life in Alzheimer's Disease [QOL-AD]). We only abstracted results for neuropsychiatric symptoms for depression, anxiety, overall psychological morbidity, and composite behavioral and symptoms (e.g., total scores on the Neuropsychiatric Inventory [NPI], frequency scores on the Revised Memory and Behavior Problems Checklist [RMBPC]). Given the focus of the review and overall volume of results, we did not abstract results for other specific neuropsychiatric symptoms such as agitation, hallucinations, and insomnia.

We abstracted data from each included study into detailed abstraction forms using DistillerSR. One reviewer completed primary data abstraction, and a secondary reviewer checked all data for accuracy and completeness. We contacted authors when data reporting was incomplete or data points required clarification. In cases where data was only presented in graphical format, we used WebPlotDigitizer© Version 3.10 to extract data and provide estimates of the within-group means and variance at followup. Such data was not abstracted if only group means (and not measures of dispersion or between-group differences) were displayed.

Data Synthesis and Analysis

For test accuracy studies (KQ 2), our primary outcomes of interest were sensitivity and specificity. We synthesized results in summary tables and figures organized by instrument type (according to length of administration) and separated by screening for dementia, MCI and dementia, or MCI only. We categorized these instruments as very brief (administered in ≤ 5 minutes), brief (administered in 6 to 10 minutes), or longer, self-administration times reported in the individual studies.

We reported the sensitivity and specificity for the most commonly accepted or reported cutoffs. While we also extracted positive and negative predictive values, we did not focus on these measures because the prevalence of cognitive impairment varied widely across studies. Test performance was either directly extracted from individual study results, calculated using study presented contingency tables, or calculated using the prevalence of cognitive impairment and the reported sensitivity and specificity. We summarized ranges of sensitivity and specificity for each instrument and used figures to visually display the data, as we were unable to quantitatively pool most data given the limited number of studies per instrument by condition, heterogeneity in population or diagnostic criteria, or lack of reporting about cutoffs (and scoring). We conducted quantitative synthesis for only one instrument—the MMSE at a cutoff of 23 or 24 to detect dementia. We ran a bivariate model, which modeled sensitivity and specificity simultaneously, thus accounting for the correlation between these variables.

For treatment trials, we grouped the interventions into four broad categories: 1) FDA-approved medications to treat AD (i.e., AChEIs and memantine); 2) other medications or dietary supplements (e.g., NSAIDs, gonadal steroids, and vitamins); 3) nonpharmacologic interventions aimed primarily at the patient, including: cognitive training, stimulation, and/or rehabilitation; exercise interventions; and multicomponent and other interventions; and 4) nonpharmacologic

interventions aimed primarily at the caregiver or caregiver-patient dyad, including psychoeducation, care and case management, and other caregiver-focused interventions. Given that there is no agreed-upon classification system for grouping or describing nonpharmacologic interventions,¹¹⁷ we classified interventions based on the content of the intervention and intended audience, using available taxonomies and definitions where available. We categorized interventions based on how they were described in each study in relation to our working definitions rather than how they were named or classified in the study. We acknowledge that our categorization scheme represents broad definitions, that there may be some overlap between categories, and that our assignments may not be precise. Nonetheless, given the volume and heterogeneity of evidence, such categorization helped to adequately synthesize and interpret results.

For each body of literature, we conducted qualitative syntheses for each of the commonly reported outcomes, which varied by intervention type. While we also address less commonly reported outcomes, we primarily focus on the commonly reported outcomes due to the bias from selective reporting. We created summary tables to capture the key study characteristics and sources of clinical heterogeneity as well as intervention characteristics for each body of evidence. Additionally, we created tables for each body of evidence that display a summary of results for each primary outcome within that body of evidence. In these summary tables, we focus on the longest duration of followup for each trial.

We conducted meta-analyses on the most commonly reported outcomes for each body of evidence. As a result, pooled analyses were conducted for FDA-approved medications on global cognitive function outcomes, global function outcomes, and harms; for nonpharmacologic patient-level interventions for global cognitive function outcomes; and for caregiver and caregiver-patient dyad interventions for caregiver burden and caregiver depression measures. For consistency across the body of evidence, in quantitative analyses we focused on 6- to 12-month outcomes and included only shorter- or longer-term results when 6- or 12-month outcomes were not available. When more than one treatment group was included in a study, we selected the group that provided the treatment most like that described in other studies for the meta-analyses.

We ran random-effects models using the DerSimonian and Laird method.¹¹⁸ For analyses with fewer than 10 trials, we also ran a sensitivity analysis using a more conservative restricted maximum likelihood (REML) analysis with the Knapp-Hartung correction for small samples.¹¹⁹ Our summary table reflects the results of these more conservative analyses, including the standard deviation of the effect size, Tau. In cases where continuous outcomes were measured using a variety of different instruments with differing scales (e.g., caregiver burden), we analyzed a standardized effect size (Hedge's g) based on the differences in change between groups from baseline to followup. A pooled risk ratio (for binary data) was used to analyze harms outcomes and improvement or maintenance in global function for AChEIs and memantine interventions. When trials only reported results separately for subgroups (e.g., patients with dementia and patients with MCI), we included entries for both subgroups in the meta-analysis.

We examined the association between key study characteristics and effect sizes when possible. This included study quality (i.e., good vs. fair), population characteristics (i.e., age, dementia vs. MCI, and baseline MMSE scores), setting (United States vs. other country), intervention characteristics (i.e., duration of intervention, group- vs. non-group–based cognitive-focused activities), and control conditions (no intervention or usual care vs. sham or minimal interventions). In quantitative analyses with at least 10 trials, we used meta-regressions to explore heterogeneity in effect sizes. For analyses with fewer trials or no quantitative analysis, we visually inspected the results for any patterns of effects. We assessed the presence of statistical heterogeneity among the studies using standard chi-square tests and estimated the magnitude of heterogeneity using the I^2 statistic. Finally, for outcomes with 10 or more trials in the meta-analysis, we generated funnel plots and ran an Egger's test to evaluate small study effects and potential publication bias.^{120, 121}

We used Stata version 15.1 (StataCorp LP, College Station, TX) for all analyses. All significance testing was two-sided, and results were considered statistically significant if the p-value was 0.05 or less.

Grading the Strength of the Body of Evidence

We graded the strength of the overall body of evidence for each KQ. We adapted the Evidencebased Practice Center (EPC) approach,¹²² which is based on a system developed by the Grading of Recommendations Assessment, Development and Evaluation Working Group.¹²³ Our method explicitly addresses four of the five EPC-required domains: consistency (similarity of effect direction and size), precision (degree of certainty around an estimate), reporting bias (potential for bias related to publication, selective outcome reporting, or selective analysis reporting), and study quality (i.e., study limitations). We did not address the fifth required domain—directness as it is implied in the structure of the KQs (i.e., pertains to whether the evidence links the interventions directly to a health outcome).

Consistency was rated as reasonably consistent, inconsistent, or not applicable (e.g., single study). Precision was rated as reasonably precise, imprecise, or not applicable (e.g., no evidence). The limitations in the body of evidence reflects potential reporting bias, study quality, and other important restrictions in answering the overall KQ (e.g., lack of replication of interventions, nonreporting of outcomes important to patients).

We graded the overall strength of evidence as high, moderate, or low. "High" indicates high confidence that the evidence reflects the true effect and that further research is very unlikely to change our confidence in the estimate of effects. "Moderate" indicates moderate confidence that the evidence reflects the true effect and that further research may change our confidence in the estimate of effect and may change the estimate. "Low" indicates low confidence that the evidence reflects the true effect and that further research is likely to change our confidence in the estimate of effect and is likely to change the estimate. A grade of "insufficient" indicates that evidence is either unavailable or does not permit estimate of an effect. We developed our overall strength of evidence grade based on consensus discussion involving at least two reviewers.

Expert Review and Public Comment

A draft Research Plan was posted on the USPSTF Web site for public comment from June 29 to July 26, 2017. In response to public comment, the USPSTF provided a definition for MCI, clarified the specific etiologies of dementia that would be included, and clarified that studies conducted exclusively among persons with potential reversible causes of dementia would be excluded. A final research plan was posted on the USPSTF Web site on October 19, 2017. We made no deviations from the final research plan in the conduct of this review.

A draft version of this report was reviewed by content experts, representatives of Federal partners, USPSTF members, and AHRQ Medical Officers. Reviewer comments were presented to the USPSTF during its deliberations and subsequently addressed in revisions of this report. Additionally, a draft of the full report was posted on the USPSTF Web site from September 10 through October 7, 2019. A few comments were received during this public comment period. All comments were read and considered; minor editorial changes were made to the report based on these comments but no changes were made to the evidence or to our conclusions.

USPSTF Involvement

We worked with four USPSTF members at key points throughout this review, particularly when determining the scope and methods and developing the Analytic Framework and KQs. The USPSTF members approved the final Analytic Framework, KQs, and inclusion and exclusion criteria after revisions reflecting the public comment period. AHRQ funded this review under a contract to support the work of the USPSTF. An AHRQ Medical Officer provided project oversight, reviewed the draft report, and assisted in the external review of the report.

Chapter 3. Results

We reviewed 11,645 abstracts and 967 articles for all KQs (**Appendix B Figure 1**). Overall, we included 287 studies representing more than 280,000 older adults. Ninety-two studies were newly identified in this update and 195 were carried forward from the preview review. Only one trial was identified that addressed the benefits and harms of screening (KQs 1 and 3). We included 59 studies (8 of which were new) that addressed the test accuracy of screening instruments (KQ 2) and another 224 trials (82 new) and 3 observational studies (1 new) that addressed the benefits and harms of treatment (KQs 4 and 5).

The lists of included studies and excluded studies (with reasons for exclusion) are available in **Appendix C** and **Appendix D**, respectively. Across all KQs, eight studies included in the previous review were excluded for poor quality upon rereview and an additional 36 new studies were excluded for poor quality due to several methodological issues (**Appendix D**).

KQs 1–3: Overall Summary of Results for Screening for Cognitive Impairment

We included one trial—IU CHOICE—that examined the direct effect of screening for cognitive impairment on patient outcomes, including potential harms.^{124, 125} This trial was specifically designed and funded to address the lack of empirical data included in the previous USPSTF review.^{124, 125} Primary care patients age 65 years and older were randomized to screening for AD and related dementia (n=2,008) or no screening (n=1997). Patients in the screening arm were screened using the MIS or the Mini-Cog and were referred for a voluntary diagnostic assessment if they screened positive on either or both tests. At 1, 6, and 12 months, measures of health-related QOL (via the Health Utilities Index [HUI]) were similar between the screening and no screening groups, with no statistically significant difference. Likewise, no differences in symptoms of depression or anxiety were seen at 1, 6, or 12 months or in health care utilization or advance care planning at 12 months. The effect of screening (vs. not) on caregiver or other decision making outcomes were not measured.

We identified 59 studies that address the test accuracy of screening for MCI or dementia. Most of these studies were included in the prior USPSTF review; only eight studies were new. To be included in our review, the study had to assess the performance of an instrument that could be administered in less than 10 minutes or self-administered in less than 20 minutes. To facilitate discussion of results, we categorized these instruments as very brief (administered in ≤ 5 minutes), brief (within 6 to 10 minutes), or longer, self-administered tests (>10 minutes). We included 25 very brief instruments, 20 brief instruments, and 4 longer, self-administered instruments. All these instruments can be administered and scored with minimal training.

Despite a very large body of evidence examining cognitive screening instruments, most instruments have only been tested in a few well-designed studies in populations generalizable to primary care. The tests most relevant to screening in primary care are very brief instruments, with an administration time of 5 minutes or less. Eight very brief instruments were examined in

more than one study (CDT, Lawton IADL, MIS, MSQ, Mini-Cog, VF, AD8, and FAQ), with sensitivity to detect dementia usually at 0.75 or higher (range, 0.43 to 1.0) and specificity at 0.80 or higher (range, 0.54 to 1.0). The MMSE, a brief test taking 7 to 10 minutes to complete, remains the most studied instrument (k=32), but the administration time is longer than ideal for a first step of screening for cognitive impairment in primary care. For the MMSE, the most commonly reported cut-points to detect dementia were 23 or lower and 24 or lower, although higher and lower cut-points were evaluated in various studies. Pooled estimates across 15 studies (n=12,796) resulted in a sensitivity of 0.89 (95% CI, 0.85 to 0.92) and a specificity of 0.89 (95% CI, 0.85 to 0.93) at a cut-point of 23 or lower or 24 or lower for the MMSE. The range of sensitivity contributing to the pooled analysis was 0.77 to 1.0, and the range of specificity was 0.71 to 0.99. Even at cutoffs not pooled, the sensitivity remained at 0.75 or higher for all but one study and the specificity was 0.70 or higher for all but one study. The test accuracy of the MMSE to detect MCI was based on a much smaller body of literature (k=13) with a variety of cutoffs, and resulted in less consistent estimates for test accuracy, with a range in sensitivity from 0.20 to 0.93 and range in specificity from 0.48 to 0.93. The test accuracy of five additional brief tests (7MS, AMT, MoCA, SLUMS, and TICS) was reported in more than one study, with sensitivity to detect dementia ranging from 0.74 to 1.0 and specificity ranging from 0.65 to 0.96. For selfadministered, longer tests, only one instrument (the IQCODE) was assessed in more than one study, with sensitivity to detect dementia ranging from 0.80 to 0.88 and specificity ranging from 0.51 to 0.91. Across all instruments, test performance was generally higher in the detection of dementia vs. MCI, although confidence intervals overlapped. Brief instruments appear to have slightly better test performance in detecting MCI and dementia than very brief instruments, although this difference is likely not statistically significantly different.

No studies directly addressed the adverse psychological effects of screening or adverse effects from false-positive or false-negative testing, although again, we expect the recently completed CHOICE study to contribute answers to this question.

KQ 1. Does Screening for Cognitive Impairment in Community-Dwelling Older Adults in Primary Care–Relevant Settings Improve Decision Making, Patient-Family/Caregiver, or Societal Outcomes?

We identified one recently completed fair-quality U.S.-based large trial—Indiana University Cognitive Health Outcomes Investigation of the Comparative Effectiveness of Dementia Screening (IU CHOICE)—that contributes evidence to answer this question.^{124, 125} The trial was funded by the NIA to provide empiric evidence to address a gap in the literature regarding the potential benefits and harms of screening for cognitive impairment, as identified in the previous USPSTF review and recommendation. Within this trial, 4,005 individuals age 65 years and older without a diagnosis of dementia, cognitive impairment, or serious mental illness receiving care at primary care practices within two cities in Indiana were randomized to either screening for dementia using very brief screening tools (MIS or Mini-Cog) or no screening for dementia. Adults who screened positive for dementia were referred for further diagnostic testing. If subsequently found through diagnostic assessment to have dementia, they were referred to the local Aging Brain Care program, which delivers an evidence-based collaborative care model for dementia and depression and is modeled after one of the care management trials included in our review. Participants in the no screening arm continued to receive their usual primary care, including a referral to a local memory care practice if their provider suspected the presence of cognitive impairment at any point throughout the study. Primary outcomes, measured at 1, 6, and 12 months, included patients' health-related QOL, mood, and anxiety. Measures of health care utilization (i.e., emergency department visits and hospital admissions) and advance care planning information (e.g., having power of attorney for health care and/or financial affairs, having a living will, and having life and additional insurance policies) were also captured.

Measures of health-related QOL using HUI scores (ranging from 0.36 to 1.00, where 0 = dead and 1.00 = no impairment) were similar between groups and across time. Among those in the screening arm, HUI scores were 0.67 (95% CI, 0.65 to 0.68), 0.71 (95% CI, 0.69 to 0.72), 0.69 (95% CI, 0.67 to 0.71), and 0.68 (95% CI, 0.66 to 0.69) at baseline, 1 month, 6 months, and 12 months, respectively. For those in the no screening arm, HUI scores were nearly identical to the screening arm at all four time points: 0.67 (95% CI, 0.66 to 0.69), 0.69 (95% CI, 0.68 to 0.71), 0.70 (95% CI, 0.68 to 0.72), and 0.68 (95% CI, 0.66 to 0.70) at baseline, 1 month, 6 months, and 12 months, respectively. Furthermore, mixed effects models showed no statistical differences between groups at any time point. Scores for depressive and anxiety symptoms were also similar between the groups at all time points (further discussed for KQ 3). Finally, no difference in health care utilization, advance care planning, and dementia recognition by clinicians were detected at 12 months. No measures to examine the effect of screening vs. no screening on caregiver outcomes were included.

There are some limitations to this trial that should be noted, given the lack of other studies contributing direct evidence on screening. IU CHOICE was missing 42 percent of observations at 12 months for the QOL measure due to attrition as well as considerable data quality issues. There was no evidence of substantial differences between groups for observations retained and lost, and multiple robust analyses accounting for the missing data found similar results as the complete case analysis. Thus, it is unlikely that more complete followup data would have led to a different result despite having lower power than anticipated. Additionally, 38 percent of those assessed for eligibility into the trial refused to participate, perhaps compromising the generalizability of the sample. Furthermore, 66 percent of the participants who screened positive in the screening arm refused diagnostic assessment and further followup care. No additional data were provided comparing screen-positives who agreed to or who declined further evaluation.

KQ 2. What Is the Accuracy of Screening Instruments to Detect Cognitive Impairment in Community-Dwelling Older Adults?

We identified 59 studies (n=38,531) that addressed the accuracy of cognitive impairment screening instruments (**Appendix C**);¹²⁶⁻¹⁸² eight of these studies were newly identified and the other 51 were included in the previous review (**Table 2**).

Study and Population Characteristics

Approximately half of the studies (k=25) were conducted in the United States. The remainder were conducted in Germany (k=6), Australia (k=4), the United Kingdom (k=4), Spain (k=3),

France (k=3), South Korea (k=3), Finland (k=2), Ireland (k=2), Taiwan (k=2), and Canada, the Netherlands, Hong Kong, Singapore, and Sweden (1 each). The number of participants screened ranged from 46 to 8,805. Thirty-four studies recruited fully or partially from the community and 23 recruited partially or fully from primary care. The remaining two studies recruited patients from either an insurance list¹⁶⁴ or ex-servicemen who were prisoners of war in Japan during World War II.¹⁵³ Forty-seven of the 59 studies reported the test accuracy to detect dementia and 35 reported the test accuracy to detect cognitive impairment (inclusive of MCI as well as MCI and dementia combined). Among the 59 studies, the prevalence of cognitive impairment varied widely; dementia ranged from 1 to 47 percent (k=51), MCI (k=29) ranged from 10 to 52 percent, and the prevalence of cognitive impairment (inclusive of MCI and dementia, k=22) ranged from 17 to 90 percent. Mean age ranged from 68 to 95 years. Percent female ranged from 0 to 100. Race/ethnicity was only reported in 21 studies; six were predominantly or entirely Asian, 11 were predominantly or entirely white, three were predominantly or entirely black, and one was fairly evenly distributed between white, black, and Hispanic populations. Education was reported in 22 studies with a wide range of education levels; mean years of education ranged from 5 to 16 and those with more than a high school education ranged from 4 to 73 percent.

Instrument and Reference Standard Characteristics

We categorized the screening tests by administration time: very brief (≤5 minutes), brief (6 to 10 minutes), and longer (>10 minutes, self-administered) (Table 3). Of the 59 included studies, 49 screening tests were evaluated. Very few were evaluated in more than one study. Full names that correspond to instrument abbreviations are provided in Table 3. Most of the tests (25) fall into the very brief (\leq 5 minutes) category. The very brief tests are: 3-Word, 6-Item Screener, AD8, CDT, CoDEx, Dubois 5-Word, FAQ, GPCOG, HVLT, single-item informant memory report, Katz ADL, Lawton IADL, M@T subtests, MF-2, Mini-Cog, MIS/MIS-T, MSQ/SPMSQ, OMC, self-reported subjective memory impairment, STMS, Sweet 16, TMT, TYM subtests, VAT, and VF. The brief tests (20 tests) are: 7MS, AMT, FCR, FOME-abbreviated, Immediate recall, Kendrick, Labyrinth, M@T, MMblind, MMSE, MoCA, OT, SBT, SLUMS, SMMSE, Storandt, TICS/TICS-M, TYM, Word List Learning, and Word List Recognition. The longer tests (4 tests) are: CAMCI, CAST, CIDS/SCIDS, and IQCODE/Short IQCODE. The tests were typically administered by clinical staff; in a few cases, they were self-administered. Most of the screening instruments directly assessed the cognitive function of the patient (with a few also evaluating physical function), but five queried only the informant (IQCODE, CIDS, FAQ, AD8, and singleitem informant memory report), and one collected information from the patient and informant (GPCOG). The cognitive domains assessed varied, but most of the tests addressed memory.

The reference standard used to diagnose dementia or MCI usually consisted of a neuropsychological battery of tests and often was supplemented by a clinical examination, laboratory testing, imaging, assessment of depression and physical function, and/or an informant interview. The reference standard was administered by research staff, neurologists, psychiatrists, psychologists, psychometricians, physicians, and/or nurses, and the diagnosis was usually made by consensus. DSM-IV, DSM-III-R, or DSM-III criteria were most often used to diagnose dementia, sometimes in conjunction with NINCDS-ADRDA¹⁸³ (for AD) and NINDS-AIREN¹⁸⁴ (for VaD) criteria. No studies used DSM-5 criteria. MCI was more variably diagnosed, with criteria including that from the International Working Group on MCI,¹² performance of 1 or

more or 1.5 or more standard deviations (SDs) below normal, performance in less than the 10th percentile in at least one cognitive test, a CDR rating of 0.5, reported impairment that did not meet the criteria for dementia, criteria developed by Petersen,¹⁸⁵ criteria developed by a specific AD Research Center, or NINCDS-ADRDA (for amnestic MCI).

We rated 10 studies as good quality and 49 studies as fair quality. Studies that were rated fair quality had a higher risk of bias due to patient selection (volunteers or limited information on how patients were recruited), partial verification (only a subset of participants who screened negative received the full reference standard), incorporation (the screening test was one of the tests included in the reference standard or not independently administered), or disease progression (a lag between the administration of the reference standard and the screening test).

Below we report the test accuracy results grouped by category of screening instrument based on test administration time. Results for all instruments, including those only evaluated in one study, are presented in **Tables 4–6**. Narrative results are only provided for instruments that were evaluated in more than one study.

Very Brief Instruments (5 Minutes or Less)

The accuracy of 25 very brief screening tests to identify dementia or cognitive impairment was evaluated in 31 studies (n=22,359) (**Table 4**). Only eight very brief tests were reported in more than one study (**Figure 2**). Very brief tests evaluated in only one study are shown in **Figure 3**; these tests had wide variation in sensitivity and specificity and are not discussed in detail. The eight tests evaluated in at least two studies included six tests administered to patients: the CDT (k=9), MIS/MIS-T (k=5), MSQ/SPMSQ (k=4), Mini-Cog (k=4), verbal fluency (k=6), Lawton IADL (k=2), and two that were informant-based, the AD8 (k=3) and FAQ (k=2). Among all very brief screening tests, sensitivity was generally higher in the detection of dementia diagnoses), although the confidence intervals often overlapped, and the cutoffs were not always adjusted to identify a lower level of impairment. Sensitivity and specificity to detect dementia were above 0.75 (range, 0.43 to 1.0) and 0.80 (range, 0.54 to 1.0) (respectively) for most studies, while sensitivity and specificity to detect cognitive impairment (MCI alone or MCI and dementia diagnoses) were less consistent.

For the CDT, the sensitivity to detect dementia ranged from 0.75 to 0.98 (95% CI range, 0.61 to 1.0) and specificity ranged from 0.81 to 0.94 (95% CI range, 0.76 to 0.97) (k=4). To detect cognitive impairment, sensitivity ranged from 0.41 to 0.85 (95% CI range, 0.34 to 0.97) and the specificity ranged from 0.44 to 0.83 (95% CI range, 0.33 to 0.87) (k=4). For the Mini-Cog (the CDT plus 3-item word recall), sensitivity ranged from 0.76 to 1.0 (95% CI range, 0.54 to 1.0) to detect dementia (k=4) and from 0.39 to 0.84 (95% CI range, 0.34 to 0.88) to detect cognitive impairment (k=3). Specificity ranged from 0.54 to 0.85 (95% CI range, 0.43 to 0.88) to detect dementia (k=4) and from 0.73 to 0.88 (95% CI range, 0.45 to 0.92) to detect cognitive impairment (k=3). Two studies evaluated the Lawton IADL at various cutoffs (\leq 4 and 6.5); sensitivity ranged from 0.89 to 0.91 (95% CI range, 0.81 to 0.96) and specificity ranged from 0.81 to 0.86 (95% CI range, 0.80 to 0.89). For the MIS/MIS-T at a cutoff of \leq 4, sensitivity to detect dementia ranged from 0.43 to 0.86 (95% CI range, 0.24 to 0.94) and specificity ranged

from 0.85 to 0.97 (95% CI range, 0.82 to 0.99) (k=5). Test accuracy did not differ by version (MIS vs. MIS-T), but the study with the lowest prevalence of dementia had the poorest performance. Only one study evaluated the MIS (4-item free and cued recall) to detect cognitive impairment, with sensitivity of 0.17 (95% CI, 0.13 to 0.22) and specificity of 0.98 (95% CI, 0.96 to 0.99) using the same cutoff of \leq 4. The MSQ and the SPMSQ (a shorter version derived from the MSQ) were only evaluated to detect dementia with a range in sensitivity of 0.92 to 1.0 (95% CI range, 0.44 to 1.0) and range in specificity of 0.83 to 1.0 (95% CI range, 0.76 to 1.0) (k=4). Test performance did not differ by the version (MSQ vs. SPMSQ). For verbal fluency tests (category or names), sensitivity to detect dementia ranged from 0.68 to 0.98 (95% CI range, 0.48 to 1.0) and specificity ranged from 0.81 to 0.89 (95% CI range, 0.76 to 0.92) (k=5). These studies did not examine the test accuracy to detect cognitive impairment using verbal fluency tests.

Two very brief instruments queried the informant—the AD8 and the FAQ. The AD8 was evaluated in three studies and the FAQ in two. The sensitivity of the AD8 to detect dementia ranged from 0.88 to 0.91 (95% CI range, 0.79 to 0.96) and the specificity ranged from 0.84 to 0.91 (95% CI range, 0.83 to 0.94) (k=2). To detect cognitive impairment, the sensitivity ranged from 0.74 to 0.85 (95% CI range, 0.62 to 0.90)—the lower value corresponding to the assessment of MCI without dementia and the upper value corresponding to cognitive impairment inclusive of MCI and dementia—and the specificity was the same for both at 0.86 (95% CI range, 0.62 to 0.91). The sensitivity of the FAQ to detect dementia ranged from 0.87 to 0.94 (95% CI range, 0.62 to 0.98) and the specificity ranged from 0.82 to 0.84 (95% CI, 0.75 to 0.88). To detect cognitive impairment, the sensitivity was 0.73 (95% CI, 0.63 to 0.81) and the specificity was 0.73 (95% CI, 0.61 to 0.82).

Brief Instruments (6–10 Minutes)

The accuracy of 20 brief screening tests to identify dementia or cognitive impairment was evaluated in 48 studies (n=29,950) (**Table 5**). Only six brief tests were evaluated in two or more studies (**Figure 4**). The other 14 brief tests evaluated in only one study are shown in **Figure 5**. All six tests that were evaluated in at least two studies were administered to patients and include the MMSE (k=32), 7MS (k=2), AMT (k=5), MoCA (k=5), SLUMS (k=2), and TICS/TICS-M (k=4).

The instrument most widely evaluated in the included studies was the MMSE (k=32; n=25,209). The bivariate pooled analysis for the MMSE at a cutoff of 23 or less or 24 or less to identify dementia (≤ 23 is the recommended cutoff) resulted in a sensitivity of 0.89 (95% CI, 0.85 to 0.92; I^2 =73.8%) and a specificity of 0.89 (95% CI, 0.85 to 0.93; I^2 =97.7%) (k=15, n=12,796) (**Figure 6**). At cutoffs that were not pooled (≤ 18 to ≤ 29.5), the sensitivity of the MMSE to detect dementia ranged from 0.38 to 1.0 (95% CI range, 0.18 to 0.99) and the specificity ranged from 0.67 to 0.96 (95% CI range, 0.53 to 0.99) (**Figure 7**). To detect cognitive impairment, and at a variety of cutoffs (≤ 20 to ≤ 29.5), the sensitivity ranged from 0.20 to 0.93 (95% CI range, 0.06 to 1.0) and specificity ranged from 0.48 to 0.93 (95% CI range, 0.42 to 0.97). Use of a higher cutoff (i.e., higher than the recommended ≤ 23) does not appear to increase the ability to detect cognitive impairment. The study with the poorest test performance (sensitivity of 0.48 and specificity of 0.48) used a very high cutoff (≤ 29.5 out of a score of 30).

Five additional brief tests were evaluated in more than one study (Figure 4). The sensitivity of the 7MS (n=553) to detect dementia was 1.0 in two studies (95% CI range, 0.77 to 1.0) and specificity ranged from 0.95 to 0.96 (95% CI range, 0.91 to 0.98). For the AMT, sensitivity to detect dementia ranged from 0.92 to 1.0 (95% CI range, 0.16 to 1.0) and the specificity ranged from 0.83 to 0.95 (95% CI range, 0.68 to 0.99) (k=2). For the MoCA, sensitivity to detect dementia ranged from 0.78 to 1.0 (95% CI range, 0.51 to 1.0) and specificity ranged from 0.65 to 0.94 (95% CI range, 0.55 to 0.96) (k=4). To detect cognitive impairment, sensitivity ranged from 0.72 to 0.94 (95% CI range, 0.58 to 0.97) and specificity ranged from 0.75 to 0.84 (95% CI range, 0.61 to 0.90) (k=3). For the SLUMS, to detect dementia, sensitivity for two education subgroups (with different cutoffs selected for each group) ranged from 0.98 to 1.0 (95% CI range, 0.88 to 1.0) and specificity ranged from 0.65 to 0.69 (95% CI range, 0.61 to 0.75). To detect cognitive impairment, sensitivity ranged from 0.74 to 0.95 (95% CI range, 0.61 to 0.98) and specificity ranged from 0.65 to 0.87 (95% CI range, 0.51 to 0.91) (k=2). For the TICS/TICS-M, sensitivity to detect dementia ranged from 0.74 to 0.88 (95% CI range, 0.55 to 0.95) and specificity ranged from 0.87 to 0.93 (95% CI range, 0.83 to 0.95) (k=2). To detect cognitive impairment, sensitivity ranged from 0.71 to 0.82 (95% CI range, 0.53 to 0.94) and specificity ranged from 0.77 to 0.87 (95% CI range, 0.71 to 0.94) (k=3).

Longer, Self-Administered Instruments (>10 minutes)

The test accuracy of four longer, self-administered tests was reported in eight studies (n=2,271) (**Table 6; Figure 8**). The tests were the CAMCI (k=1), CAST (k=1), CIDS/SCIDS (k=1), and IQCODE/IQCODE-Short (k=5).

The most common instruments evaluated were the full 26-item IQCODE and the 12-item IQCODE-Short. To screen for dementia, sensitivity ranged from 0.80 to 0.83 (95% CI range, 0.55 to 0.97) and specificity ranged from 0.51 to 0.91 (95% CI range, 0.46 to 0.94) (k=4). For detection of cognitive impairment, sensitivity ranged from 0.71 to 0.82 (95% CI range, 0.54 to 0.87) and specificity ranged from 0.69 to 0.92 (95% CI range, 0.63 to 0.95) (k=3). The other three tests were reported in only one study each and reported sensitivity of 0.83 or higher and specificity of 0.87 or higher to detect dementia or cognitive impairment.

KQ 3. What Are the Harms of Screening for Cognitive Impairment in Community-Dwelling Older Adults?

The IU CHOICE trial compared symptoms of depression and anxiety among those randomized to screening for dementia vs. those randomized to no screening.^{124, 125} At 1-month postscreening, depressive symptoms (as measured by the PHQ-9) and anxiety symptoms (as measured by the GAD-7) were equivalent between groups after adjusting for baseline values. A similar pattern was evident at 6 and 12 months as well, suggesting no differences in feelings of depression or anxiety following screening for dementia. No data were provided, however, on the proportion of those with screen-detected dementia (7.7%) whom went on for further diagnostic assessment were diagnosed and referred for treatment, a sequalae of events that could presumably influence participants' moods. Furthermore, within the screening arm, among those who screened positive on either the MIS or the Mini-Cog, 66 percent refused a followup diagnostic assessment.

We found no additional studies that directly addressed potential adverse psychological effects from screening, adverse effects from unnecessary diagnostic testing (workup for false-positives), adverse effects from labeling or treating someone with dementia without diagnostic testing (false-positives without appropriate followup), or adverse effects from missed or delayed diagnosis (false-negatives). Based on the test accuracy studies included for KQ 2, where most very brief tests had a sensitivity of 75 percent or higher and a specificity of 80 percent or higher, very brief tests could result in up to 20 percent false-positives and 25 percent false-negatives among older adults screened for dementia. The brief tests performed somewhat better and would likely yield fewer false-positives and false-negatives; for example, the pooled MMSE resulted in 89 percent sensitivity and 90 percent specificity, which yields approximately 10 percent for both false-positives and false-negatives.

KQs 4 and 5: Overall Summary of Results for Treatment and Management of Cognitive Impairment

We identified 224 trials representing more than 50,000 patients and/or caregivers and three cohort studies with more than 190,000 patients that addressed the treatment or management of MCI or mild to moderate dementia (**Table 7; Appendix C**). Forty-eight trials plus three observational studies addressed the benefits and harms of AChEIs and memantine, 29 trials addressed other medications and supplements, 61 trials addressed nonpharmacologic patient-level interventions, and 88 trials addressed caregiver and caregiver-patient dyad interventions (**Table 8**). Just more than one-third of this evidence (82/224 studies) was newly identified, with most new evidence related to nonpharmacologic patient-level interventions and caregiver interventions. We discuss the benefits and harms of each type of intervention separately due to the broad range of interventions we examined.

Overall, based on 48 trials (n=22,431) that evaluated AChEIs (i.e., donepezil [k=18; n=6,209], galantamine [k=10; n=7,464], rivastigmine [k=8; n=4,569]), and **memantine** (k=12; n=4,189), these medications may improve measures of global cognitive function in the short term, but the magnitude of change is small. In meta-analyses, the differences in changes between those on AChEIs or memantine compared with those on placebo ranged from approximately 1 to 2.5 points on the ADAS-Cog-11 (scale range, 0 to 70) and 0.5 to 1 points on the MMSE (scale range, 0 to 30) over 3 months to 3 years of followup (Table 9). There was no clear pattern of effects across outcomes that suggested greater benefit of one medication over another. AChEIs and memantine appeared to increase the likelihood of improving or maintaining patients' global function by 15 percent (for memantine) to 50 percent (for rivastigmine) in the short term (pooled 95% CI range, 0.49 to 2.69); change at longer followup was not reported. Outcome measures of physical function were only reported in about half the trials and showed mixed results. Other important measures such as neuropsychiatric symptoms and rates of institutionalization were rarely reported; no medication trials included measures of QOL. Only eight trials of medications examined outcomes beyond 6 months, and generally found persistent effects that were consistent with outcomes from shorter timeframes.

Most of the available evidence on the effectiveness of FDA-approved medications came from trials involving persons with dementia, particularly among those with moderate vs. mild forms of

dementia, mostly commonly AD. Four trials (n=1,919) tested these medications in persons with MCI; these trials, testing donepezil and memantine, showed no benefit on global cognitive function. The mean age of participants across medication trials was 74 years. Only one trial reported an outcome of progression of MCI to AD, finding no differences in the rate of conversion between those on donepezil vs. placebo at 3 years.

Overall, side effects from these medications were quite common. AEs were reported in all 48 trials (n=22,431) in addition to 3 large observational studies (n=190,076). Discontinuation was more common with AChEIs than placebo (13% withdrew for donepezil and rivastigmine, 14% for galantamine, and 8% for placebo) (**Table 9**). Total AEs were also statistically significantly higher for all three types of AChEIs vs. placebo. In trials that tested various doses of medications, there was some evidence of slightly higher total AEs and withdrawals among arms receiving the higher doses than among those with a lower dose (i.e., 10 mg vs. 5 mg donepezil, 32 mg vs. 24 mg galantamine, and 6–12 mg vs. 1–4 mg rivastigmine), although no formal tests of differences between these groups were reported. Memantine appeared to be better tolerated (8% withdrew), with no difference in discontinuation rates or total AEs compared with placebo. Overall, there did not appear to be a difference in total SAEs for these medications across trials with limited duration of followup. However, individual studies, including observational evidence, reported increased rates of bradycardia, and relatedly, of syncope, falls, and need for pacemaker placement among those exposed vs. unexposed to AChEIs.

Twenty-nine trials (n=6,489) evaluated **other medications or supplements**, including antihypertensives, HMG-CoA reductase inhibitors (atorvastatin and simvastatin), NSAIDs (ibuprofen, naproxen, indomethacin, and celecoxib), gonadal steroids (estrogen [plus or minus progesterone] and testosterone), and dietary supplements and vitamins (multivitamins, B vitamins, vitamin E, and omega-3 fatty acids). None of these had any benefit on global cognition or physical function in persons with mild to moderate dementia or MCI (mean age, 75 years). Twenty-one of the trials (n=5,688) reported on harms, with harms not clearly significantly increased in intervention groups compared with control groups.

We identified 61 trials (n=7,847) that evaluated **nonpharmacologic patient-level interventions**, including cognitive-focused, exercise, and multicomponent and other interventions. In general, these trials were quite small and of limited duration. The body of evidence represented both persons with dementia and those with MCI, with a mean age of 76 years across trials. Among all interventions, there was no clear benefit on global or domain-specific measures of cognitive function compared with control conditions at 3 months to 2 years followup among persons with MCI or dementia (Table 9). Effect estimates generally favored the intervention groups over control groups, but the magnitude of effect was inconsistent across trials and represented very wide confidence intervals (ranging from no effect to a large effect). While a pooled analysis of cognitive training, stimulation, and rehabilitation intervention trials found a small, statistically significant mean difference of 1.33 points on MMSE scores (95% CI, 0.29 to 2.37; k=15) favoring cognitive-focused interventions compared with control conditions at 3 to 12 months followup, there was substantial clinical and statistical heterogeneity given these inconsistencies. Furthermore, combining eight trials that reported change in ADAS-Cog scores found a slightly greater improvement of 0.66 points (scale range, 0 to 70, where higher scores indicate greater cognitive impairment) among intervention vs. control group participants, but this difference was

not statistically significant (mean difference [MD], -0.66 [05% CI, -1.60 to 0.29]). There was no evidence that the effect of the interventions was modified based on study, population, or intervention characteristics and no evidence of longer-term effects (up to 2 years) on cognitive function. Physical function outcomes, including change in ADLs and IADLs, as well as QOL and mental and neuropsychiatric symptoms, were inconsistently reported. Cognitive training, stimulation, and rehabilitation interventions consistently resulted in very little change over time in both intervention and control groups or small and relatively equal decline in these measures from baseline to 3 months to 2 years, and few trials reported any statistically significant benefit. For trials of exercise interventions, pooled, conservative estimates of differences in measures of global cognitive function show no to small effects based on the MMSE (MD, 1.17 [95% CI, 0.45 to 1.90]; k=10; n=1,168) and ADAS-Cog (MD, -1.05 [95% CI, -1.60 to 0.29]; k=8; n=1,071) at 3 to 12 months followup. There was, however, a pattern of effect for exercise interventions, with small improvements seen in measures of physical function and symptoms for intervention groups, whereas control groups reported worsening function. The clinical meaningfulness of these differences, however, and the possibility of selective reporting limit this finding. There was no consistent benefit of multicomponent and other patient-level interventions across outcomes. Little harm was evident in the few (k=12; n=2,370) trials that reported harms.

Finally, we included 88 trials (n=14,880) that evaluated the effect of multiple types of **caregiver or caregiver-patient dyad interventions**. Most of the caregiver and caregiver-patient dyad trials randomized more than 100 participants or dyads, and almost half of the trials took place in the United States (40/88). These trials followed participants for slightly longer durations than the patient-focused intervention trials, with just about half of the trials following participants for 1 year or longer. More than half of the trials targeted caregivers only, while the remaining targeted both the patient and caregiver or the entire family. Almost all included evidence pertaining to patients (or their caregivers) with dementia; very few had evidence pertaining to patients with MCI. Also, most trials represented patients with moderate as opposed to mild dementia, with a mean age across trials of 78 years.

Overall, there was a consistent benefit of psychoeducation and care and case management interventions on caregiver burden and depression outcomes (Table 9). Effect sizes were mostly small, however, and were of unclear clinical significance. Psychoeducation interventions resulted in a small but statistically significant benefit on caregiver burden at 3 to 12 months (standardized mean difference [SMD], -0.24 [95% CI, -0.36 to -0.13]; k=27; n=2,776; I²=50.2%) and a medium effect on caregiver burden was seen for care and case management interventions (SMD, -0.54 [95% CI, -0.85 to -0.22]; k=8; n=1,215; I^2 =82.9%). The clinical importance of these changes in self-reported caregiver burden scores is unclear, however, with these standardized effects translating to a between-group difference of approximately 2 to 4 points on the Zarit-22 (scale range, 0 to 88), the equivalent of changing from being bothered "always" to "sometimes" or "almost never" on one or two of the 22 items. Similarly, small effect sizes were seen for caregiver depression outcomes. Across both outcomes and across trials, the 95% confidence intervals of the study-level between-group differences were often wide, suggesting a range in benefit (or lack thereof) across participants. There was no evidence in our meta-regressions that one type of intervention (psychoeducation vs. care or case management vs. other caregiver or caregiver-patient dyad interventions) was more effective than the others on measures of caregiver burden or caregiver depression. Likewise, there were no study, population, or

intervention characteristics that consistently and robustly predicted larger effects on caregiver burden or depression outcomes.

Other outcomes such as caregiver or patient QOL, rates or time to institutionalization, patient mental health and neuropsychiatric symptoms, and patient functional ability were sparsely reported across the trials with no consistent evidence of a benefit. Decision making and preparation for meeting dementia-related needs were only reported by one trial each, with neither finding statistically significant benefit of the interventions vs. control conditions on overall scores for these measures. Only four trials (n=486) reported monitoring harms related to the intervention, and no harms were evident.

KQ 4. Do Interventions for Mild to Moderate Dementia or MCI in Community-Dwelling Older Adults Improve Decision Making, Patient, Family/Caregiver, or Societal Outcomes? KQ 5. What Are the Harms of Interventions for Mild to Moderate Dementia or MCI in Community-Dwelling Older Adults?

Pharmacological Interventions

AChEIs and Memantine

In all, 48 fair- to good-quality RCTs (n=22,431) evaluated the effectiveness and harms of AChEIs or memantine for cognitive impairment. We identified 18 donepezil trials (n=6,209),¹⁸⁶⁻²⁰³ 10 galantamine trials (n=7,464),²⁰⁴⁻²¹³ eight rivastigmine trials (n=4,569),²¹⁴⁻²²¹ and 12 memantine trials (n=4,189).²²²⁻²³³ Six trials are new, including one on donepezil,¹⁹¹ one on galantamine,²⁰⁷ and four on memantine.^{223, 224, 226, 229} Three additional, large observational studies (n=190,076), including one new study, evaluated harms related to AChEIs.²³⁴⁻²³⁶

The primary effectiveness outcomes for trials of pharmacologic interventions were measures of global cognitive function and global function (often referred to as overall dementia severity). The ADAS-Cog-11 and MMSE were the most commonly used instruments for assessing global cognitive function. The ADAS-Cog-11 consists of 11 parts, including a word recall task, naming objects and fingers, following commands, constructional praxis, ideational praxis, orientation, word recognition task, remembering test directions, spoken language, comprehension, and wordfinding difficulty. The total score ranges from 0 to 70 and captures the errors for each task; the greater the cognitive impairment, the greater the score. The MMSE combines scores from the five cognitive domains of orientation (10 points), memory (3 points for registration and 3 points for recall), attention/calculation (5 points), language (8 points), and visuospatial abilities (1 point) for a total score ranging from 0 to 30, where lower scores indicate greater cognitive impairment. Global function was almost exclusively reported as a measure of the clinician's impression of change, typically assessed with the CIBIC+. The CIBIC+ is a comprehensive global measure of detectable change in cognition, function, and behavior based on separate interviews with the patient and an informant. Clinicians assess any change in the patients' condition from baseline with a score ranging from 1 to 7, where 1 is very much improved, 4 is no

change, and 7 is very much worse. Other measures of global function such as the Global Deterioration Scale (a clinician's rating based on cognitive change only) were less commonly used. Less than half of the trials of pharmacotherapy reported the effects of the medications on patients' physical function and mental or neuropsychiatric symptoms and no studies reported the effects on QOL. Harms-related outcomes were reported by all the included trials.

Study, population, and intervention characteristics of all included studies are presented in **Table 10** and **Table 11**. A summary of results is provided in **Table 12** and detailed results for each outcome are provided in **Appendix E**.

Donepezil

Study and population characteristics. Eighteen fair- to good-quality trials involving 6,209 participants evaluated the effectiveness of donepezil for cognitive impairment. Eleven studies (61%) recruited patients partially or fully from the United States. Studies lasted a median of 6 months, with a range of 3 to 36 months. Fifteen studies evaluated donepezil for dementia, while three evaluated donepezil for MCI. The mean baseline MMSE for participants was 22.0, and 52 percent of study participants were women. Most donepezil trials enrolled participants with AD (k=11; n=2,827), but two trials enrolled participants with VaD (n=1,219),^{186, 202} two trials enrolled participants with LBD (n=282),^{191, 195} and three trials enrolled participants with MCI (n=1,881).^{188, 196, 199} Only one donepezil study was published since the last review—a study of 142 participants with LBD.¹⁹¹ Only seven studies reported on race, and these described overwhelmingly white samples: 87 percent in one study and 92 to 100 percent in the others. Only two studies reported on education, with one study reporting a mean of 15 years of education for the sample,¹⁹⁹ and the other study reporting that 53 percent of the sample had 8 to 15 years of education and 47 percent had more than 15 years of education.¹⁸⁸

Intervention characteristics. The daily dosage of donepezil ranged from 1 to 10 mg, with all trials using 5 to 10 mg per day in at least one trial arm. Most studies started participants on doses of 5 mg per day, increasing to 10 mg per day after 2 to 6 weeks. All control participants were given placebo.

Results.

Cognitive function. Differences in global cognitive function favoring donepezil were statistically significant but generally small and of unclear clinical significance. Fourteen of the 18 studies had sufficient data to meta-analyze cognitive function results using the ADAS-Cog or the MMSE. For ADAS-Cog scores, the pooled between-group mean difference in change was 2.13 points in favor of the intervention group (95% CI, -3.32 to -0.94; k=6; n=1,981; I^2 =64.4%) (**Figure 9**), usually from an improvement in the intervention group of 1 to 4 points and no change or a decline in the placebo group of up to 4 points. Most studies reported differences at 6 months. Only one study followed participants for more than 12 months;¹⁹⁶ the difference in ADAS-Cog scores for the group treated with donepezil and the group on placebo gradually decreased in magnitude between 6 and 36 months, but the difference was not statistically significant at any time. Consistent with the findings from the meta-analysis, two studies reported a higher percentage of patients treated with donepezil compared to the placebo group improving

by 4 points or more on the ADAS-Cog 13 (37% vs. 16% $[p=0.02]^{200}$ and 50% vs. 32% [p-value not reported]¹⁹⁹). For MMSE scores, the pooled between-group mean difference in change over 3 to 36 months was 1.24 points (95% CI, 0.81 to 1.67; k=12; n=3,192; I^2 =65.3%) (**Figure 10**), usually from no change or an improvement of up to 2 points in the donepezil group and no change or a decline of up to 3 points in the placebo group. In the one study that reported longer followup, the MMSE score of both the group treated with donepezil and the group on placebo declined over time, and the magnitude and direction of the difference between the two groups remained consistent and not statistically significant.¹⁹⁶ The Egger's test of bias was statistically significant (p=0.015) for results for the MMSE, indicating a small studies effect, which is a marker of potential publication bias. Due to this potential bias, the pooled estimate may overestimate the true effect.

Findings were similar for all types of cognitive impairment, including AD, LBD, VaD, and MCI. Six donepezil studies reported outcomes on at least one specific cognitive domain. There was no evidence of significant differences in language or memory between participants exposed to donepezil and those exposed to placebo, while results were mixed regarding differences in attention or executive functioning between groups.

Global function. Thirteen of the 18 donepezil trials reported global function using measures such as the CIBIC+ or the Clinical Dementia Rating Scale Sum of Boxes. Most trials reported a benefit of donepezil compared with placebo. In a pooled analysis, participants taking donepezil had a 31 percent higher likelihood of improving or maintaining their global function at 3 to 12 months compared with those on placebo (relative risk [RR], 1.31 [95% CI, 1.12 to 1.53]; k=9; n=2,440; I^2 =77.4%) (**Figure 11**). Likewise, when looking at continuous measures of global function, there was a small, statistically significant association between donepezil and higher global function at 3 to 11 months (SMD, -0.24 [95% CI, -0.39 to -0.09]; k=8; n=3,302; I^2 =70.7%) (**Figure 12**).

Physical function. Only 7 of 18 donepezil trials reported a measure of physical function. Studies used a wide variety of instruments to measure ADLs or IADLs or a combination of these; only two studies used the same instrument (ADFACS). Four of these trials reported a statistically significant difference in favor of those randomized to donepezil. While the remaining three trials did not report a statistically significant difference, their results favored the intervention in that they declined less than those on placebo or improved at followup. However, these changes were very small (e.g., an improvement of 1 to 2 points on a scale from 0 to 100).

Neuropsychiatric symptoms. Six donepezil studies evaluated behavioral and neuropsychiatric symptoms in their trials using the 10- or 12-item NPI, with mixed findings. Three studies found significant differences in behavioral and neuropsychiatric symptoms between donepezil and placebo groups at 3 to 6 months,^{189, 190, 195} whereas the other three studies did not find such differences over 3 to 11 months.^{188, 191, 201} Of note, in one study of 140 patients with LBD, differences in the NPI that favored the intervention were seen in those exposed to 5 and to 10 mg of donepezil per day but not those exposed to 3 mg per day.¹⁹⁵

Other outcomes. A 3-year study of 769 persons with MCI that investigated both donepezil and vitamin E reported progression to AD.¹⁹⁶ While donepezil was associated with a

lower rate of progression from MCI to AD at the end of years 1 (hazard ratio [HR], 0.42 [95% CI, 0.24 to 0.76]) and 2 (HR, 0.64 [95% CI, 0.44 to 0.95]), the rate of progression from MCI to AD at 3 years was not different between donepezil and placebo groups (HR, 0.80 [95% CI, 0.57 to 1.13]). Three studies showed a decrease in caregiver burden (two as measured by the Zarit-22).^{190, 191, 195} This decrease, however, was not always statistically significant and often small (change from baseline ranging from an improvement of 5 points to a decline of 1 point for the caregivers in the group treated with donepezil and from no improvement to a decline of 4 points for caregivers in the control group). Other outcomes, including QOL and rates of institutionalization, were not reported in trials of donepezil. While many of these studies reported mortality as part of their patient tracking throughout the trial, these studies were not designed or powered to detect mortality differences between groups.

Harms. All 18 trials and one observational study reported potential harms of donepezil. Total AEs were statistically significantly higher in the group receiving donepezil (84%) vs. the control group (76%), with a pooled RR of 1.10 (95% CI, 1.06 to 1.13; k=12; n=3,212; I^2 =0%) (figure not shown). The most commonly reported adverse events with donepezil were diarrhea and nausea. SAEs were not statistically significantly different between intervention (12%) and control groups (10%) in our meta-analysis (RR, 1.18, [95% CI, 0.99 to 1.40]; k=12; n=4,045; I^2 =0%) (**Figure 13**), although results of individual trials were mixed, with some suggesting up to a 70 percent greater risk of SAEs in control participants and others reporting up to an 80 percent greater risk among those on donepezil. Furthermore, individual studies reported increased rates of bradycardia, and, relatedly, of syncope, falls, and need for pacemaker placement.^{234, 235} Study withdrawals due to adverse events were statistically significantly higher in patients receiving donepezil (13%) than in patients receiving placebo (8%) (RR, 1.88 [95% CI, 1.54 to 2.29]; k=13; n=4,124; I^2 =8.8%) (**Figure 14**).

Galantamine

Study and population characteristics. Ten fair- to good-quality trials enrolling 7,464 participants assessed the effectiveness of galantamine for cognitive impairment. Only one galantamine study—of 2,045 participants with AD—was published after the last review.²⁰⁷ Five studies (50%) recruited patients in part or fully from the United States. Trials were conducted for 3 to 12 months, with a median of 6 months. All galantamine studies recruited patients with dementia; most studies (k=8; n=6,084) enrolled patients with AD, while one study enrolled patients with VaD (n=788)²⁰⁴ and one study enrolled patients with AD (48%), VaD (43%), or other dementias (9%) (n=592).²⁰⁶ None of the trials of galantamine included patients with MCI. The mean baseline MMSE score was 19.1, and 59 percent of participants were women. Six studies reported race, with white participants accounting for 91 to 100 percent of the sample. Only one galantamine study characterized the education level of the sample; it reported a mean education of 11 years.²⁰⁹

Intervention characteristics. The daily dosage of galantamine ranged from 8 to 36 mg, with most trials giving 16 to 24 mg per day. Studies generally titrated doses weekly to monthly until the target dose was reached. All control participants were given placebo.

Results.

Cognitive function. All 10 studies of galantamine reported the effect of the medication on global cognitive function, using the ADAS-Cog or the MMSE. The pooled between-group mean differences in change in the ADAS-Cog score was 2.13 points in favor of those randomized to receive galantamine (MD, -2.13 [95% CI, -2.94 to -1.32]; k=9; n=3,786; I^2 =65.9%) over 3 to 6 months (**Figure 9**). Four studies^{206, 210-212} reported a higher percentage of patients treated with galantamine compared to the placebo group improving by 4 points or more on the ADAS-Cog 11 (difference in proportion improving between groups ranging from 12% to 17%, with three studies reporting statistically significant differences). Only one study of 1,765 patients with AD reported MMSE findings,²⁰⁷ with a mean between-group difference of 0.58 points (95% CI, 0.26 to 0.90) over 12 months (**Figure 10**). There was no apparent difference in the effectiveness of galantamine among those with AD vs. VaD.

Global function. Nine of the 10 galantamine studies reported a global function outcome. Eight of these reported global function outcomes using the CIBIC+ dichotomized according to the number of patients whose global function was maintained or improved vs. those whose global function declined over time. The relative risk indicated a 21 percent higher likelihood of improvement or maintenance in global functioning among those on galantamine vs. placebo at 3 to 6 months (RR, 1.21 [95% CI, 1.11 to 1.31]; k=8; n=3,486; I^2 =56.2%) (**Figure 11**). Five studies reported global function using the CIBIC+ on a continuous scale. In all studies, those on galantamine had higher global function scores (5.3) vs. those on placebo (5.1), and two of these trials found that difference to be statistically significantly different.^{209, 212}

Physical function. All but one trial of galantamine reported a measure of ADLs or IADLs. Six of the trials demonstrated a benefit in physical function for at least some subgroups taking galantamine at doses of 16 to 32 mg per day compared with those taking placebo. Various instruments and scales were used, so the magnitude of the differences is hard to compare. In most cases, the differences between groups were small, ranging from about 1 to 4 points.

Neuropsychiatric symptoms. Four trials of galantamine evaluated behavioral and neuropsychiatric symptoms using the 10- or 12-item NPI. Findings were mixed. Two studies reported significant differences favoring galantamine in behavioral and neuropsychiatric symptoms for those taking 14 to 24 mg of galantamine per day compared with those taking placebo at 5 or 6 months.^{206, 211} In contrast, there were no such differences in two studies of 8 to 32 mg of galantamine per day at 3 to 6 months.^{205, 210} Of note, one study of 978 patients with AD found differences in the NPI-10 at 5 months that favored galantamine at doses of 16 to 24 mg per day, but not at doses of 8 mg per day.²¹¹

Other outcomes. None of the trials of galantamine reported QOL measures or rates of institutionalization. One study examined caregiver burden using the NPI-10 and found no difference between groups. Only one trial carefully ascertained mortality and was intended to determine whether there was mortality benefit from galantamine treatment.²⁰⁷ This study reported an HR of 0.58 (95% CI, 0.37 to 0.89; p=0.011), indicating that patients treated with galantamine had a higher survival rate than those treated with placebo. The remaining studies

reported mortality as part of their patient tracking and were not designed or powered to detect mortality differences between groups.

Harms. All 10 trials of galantamine reported harms. Total AEs were statistically significantly higher for those receiving galantamine treatment (73%) compared with the control group (63%) (RR, 1.14 [95% CI, 1.06 to 1.22]; k=9; n=6,004; I^2 =57.7%) (figure not shown). Eight of nine trials and one observational study reported SAEs with galantamine. Rates of SAEs were similar in those treated with galantamine (12%) vs. those taking placebo (11%) (RR, 1.06 [95% CI, 0.91 to 1.24]; k=7; n=4,987; I^2 =97.8%) (**Figure 13**). However, study withdrawals due to adverse events were statistically significantly higher in patients taking galantamine (14%) than in those taking placebo (7%) (RR, 1.98 [95% CI, 1.52 to 2.57]; k=10; n=6,147; I^2 =51.1%) (**Figure 14**).

Rivastigmine

Study and population characteristics. Eight fair- to good-quality trials involving 4,569 participants evaluated the effectiveness of rivastigmine for cognitive impairment, none published since the previous review. Four studies (50%) recruited patients partially or fully from the United States. Trials ran for a median of 6 months, with a range from 3 to 6 months. All studies evaluated rivastigmine for dementia, and none enrolled participants with MCI. Five studies enrolled participants with AD (n=3,699),^{214, 216, 217, 220, 221} two studies enrolled participants with VaD (n=750),^{215, 219} and one study enrolled participants with LBD (n=120).²¹⁸ Four studies reported on race; white participants ranged from 75 to 97 percent. Three studies reported mean years of education of 3.3, 9.3, and 9.9 years.^{215, 219, 221}

Intervention characteristics. The daily dosage of rivastigmine ranged from 1 to 17 mg, with considerable variability in daily dosage. Timing of dose escalation also varied between studies, with dose changes usually occurring weekly or monthly. All eight trials delivered rivastigmine orally; one of these trials also included two groups randomized to a rivastigmine patch (9.5 mg or 17.4 mg per day).²²¹ All control participants in all studies of rivastigmine were given placebo.

Results.

Cognitive function. Differences in cognitive function favored rivastigmine over placebo at 3 to 6 months, although most differences were small. The pooled between-group mean difference in change in ADAS-Cog score favored rivastigmine by 2.43 points (MD, -2.43 [95% CI, -0.75 to -4.10]; k=5; n=2,618; I^2 =81.9%) over 3 to 6 months (**Figure 9**). Two studies^{217, 220} reported a higher percentage of patients treated with rivastigmine compared to the placebo group improving by 4 points or more on the ADAS-Cog 11 (difference of 9% or 10% between groups, p<0.05 for both studies). The pooled between-group mean difference in change in MMSE score favoring rivastigmine was 0.88 points (95% CI, 0.28 to 1.49; k=6; n=2,415; I^2 =44.9%) (**Figure 10**). These findings held across dementia diagnoses, including AD and VaD.

Global function. Seven of eight rivastigmine studies reported global function and had sufficient data for a meta-analysis. In the five studies that presented dichotomous measures of global functioning (i.e., improved or maintained vs. declined), the relative risk indicated a 50

percent higher likelihood of improvement or maintenance in global functioning for those on rivastigmine compared with those on placebo at 3 to 6 months (RR, 1.50 [95% CI, 1.22 to 1.85]; k=5; n=1,934; I^2 =61.4%) (**Figure 11**). In the six studies that presented continuous measures of global function, meta-analysis of the SMD did not find an association between rivastigmine and global function at 6 months (SMD, -0.14 [95% CI, -0.36 to 0.08]; k=6; n=2,535; I^2 =85.7%) (**Figure 12**). All studies using the CIBIC+, however, demonstrated an improvement or less of a decline in global function (three out of four were statistically significantly different).

Physical function. Seven of eight rivastigmine trials reported physical function outcomes. Four trials found a benefit of rivastigmine at doses of 6 to 17.4 mg per day over 3 to 6 months, with between-group mean differences in change ranging from 1.80 to 3.40 points.^{216, 217, 220, 221} Two studies also examined a dichotomous version of the Progressive Deterioration Scale and found a statistically significant difference in groups in favor of the group taking rivastigmine.^{216, 220} Two studies found that doses of 1 to 4 mg per day of rivastigmine were not associated with differences in physical function outcomes, while doses of 6 to 12 mg per day were.^{216, 220}

Neuropsychiatric symptoms. Four of eight rivastigmine studies evaluated behavioral and neuropsychiatric symptoms in their trials using the 10- and 12-item versions of the NPI, with mixed results. One study found differences in behavioral and neuropsychiatric symptoms that favored rivastigmine at a dose of 12 mg per day compared with placebo at 5 months.²¹⁸ However, the other three studies that reported such outcomes did not find differences between participants taking 3 to 17.4 mg of rivastigmine per day over 6 months compared with those taking placebo.^{215, 219, 221} One study examined the effect of rivastigmine on anxiety symptoms and found no statistically significant difference between the group taking rivastigmine and the group given placebo.²¹⁹

Other outcomes. No rivastigmine studies reported on QOL measures or rates of institutionalization. While many of the studies reported mortality as part of their patient tracking throughout the trial, they were not designed or powered to detect mortality differences between groups.

Harms. All eight trials of rivastigmine plus one observational study reported AEs. Total AEs were statistically significantly higher among patients treated with rivastigmine (90%) vs. those on placebo (73%) (RR, 1.23 [95% CI, 1.12 to 1.35]; k=4; n=1,090; I^2 =0%) (figure not shown). While SAE rates were not significantly different between those receiving rivastigmine (14%) and those receiving placebo (12%) (RR, 1.15 [95% CI, 0.92 to 1.43]; k=6; n=2,619; I^2 =10.4%) (**Figure 13**), the results for individual studies were mixed, ranging from a 300 percent greater risk from rivastigmine to a 20 percent greater risk from placebo. Nevertheless, study withdrawals due to AEs were higher in those taking rivastigmine (13%) compared with those taking placebo (6%) (RR, 2.21 [95% CI, 1.54 to 3.17]; k=8; n=3,131; I^2 =57.0%) (**Figure 14**).

Memantine

Study and population characteristics. Twelve trials of fair- to good-quality, including four new trials, involving 4,189 participants examined memantine for cognitive impairment. Four studies (33%) recruited patients partially or fully from the United States. Trials were conducted for a

median of 6 months and a range of 3 to 48 months. Eleven studies recruited persons with dementia, with nine studies recruiting persons with AD $(n=3,229)^{222-224, 226, 228-231, 233}$ and two studies recruiting persons with VaD $(n=900)^{.227, 232}$ One study recruited persons with MCI $(n=60)^{.225}$ The mean baseline MMSE score was 17.8, a bit lower than in the trials of AChEIs, which is to be expected of a medication that has an FDA indication for moderate to severe AD. Women comprised 49 percent of memantine trial samples. Four studies were published after the last review, all of which recruited participants with AD $(n=1,380)^{.223, 224, 226, 229}$ Seven studies reported race and one reported ethnicity data; white participants comprised 86 to 100 percent of samples, while Hispanic ethnicity comprised 11 percent of one sample. Two memantine trials reported education, with one study reporting that 78 percent of participants had at least a high school education²²⁴ and another reporting a mean education of 11.5 years for participants.²³¹

Intervention characteristics. All trials of memantine used an oral daily dosage of 20 mg, most often achieved by titrating from a starting dose of 5 mg per day and increasing the dose weekly by 5 mg per day. Two studies required all participants (those in intervention and control groups) to be on the rivastigmine patch at 9.5 mg per day²²³ or galantamine at 24 mg per day.²²⁹ All trials were placebo-controlled, with the exception of one open-label study in which intervention participants received both memantine and rivastigmine and control participants received rivastigmine only (and no placebo).²²³

Results.

Cognitive function. Differences in cognitive function with memantine were generally statistically significant for participants with cognitive impairment. Nine of 12 memantine trials had sufficient data to meta-analyze cognitive function results using the ADAS-Cog or the MMSE. The pooled between-group mean difference in change in ADAS-Cog score was small, but statistically significantly different (MD, -0.88 [95% CI, -0.11 to -1.65]; k=8; n=2,609; I^2 =78.1%) (**Figure 9**), whereas the pooled between-group mean difference in change in MMSE score was not (MD, 0.36 [95% CI, -0.31 to 1.04]; k=5; n=1,217; I^2 =33.2%) (**Figure 10**). One study had longer-term followup (4 years) and found no difference between the group given memantine and the group given placebo for cognitive function.²²⁴ Findings were clinically marginal regardless of type of cognitive impairment, including AD, VaD, and MCI.

Global function. A smaller proportion of memantine trials reported global function outcomes compared with trials of AChEIs. While the pooled analysis of five trials (n=1,396) reporting results for the CIBIC+ using the random-effects model resulted in a small association between memantine and global function favoring memantine (SMD in change, -0.14 [95% CI, -0.27 to -0.01]; k=5; n=1,396; l^2 =32.9%), this result was sensitive to the use of a REML model correcting for small samples, resulting in a more conservative and no longer statistically significant association (MD in change, -0.14 [95% CI, -0.33 to 0.05]; l^2 =32.9%) (**Figure 12**). Consistent with the continuous results, two studies reported a dichotomous measure of global function in favor of those on memantine, but this association was not statically significant after using the more conservative REML model (RR, 1.15 [95% CI, 0.49 to 2.69]; k=2; n=545) (**Figure 11**).

Physical function. Six of 12 memantine trials reported physical function outcomes. Only one study found statistically significant differences in physical function at 4 and 6 months (but not at 12 months) favoring memantine, but these differences were small in magnitude (between-group mean difference in change at 4 months, 0.48 [95% CI, 0.19 to 0.77] and at 6 months, 0.85 [95% CI, 0.51 to 1.19]).²²⁹ The other five trials found no differences in physical function in those exposed and unexposed to memantine. Additionally, only one study had longer-term followup (4 years) and found no difference between the group given memantine and the group given placebo for physical function.²²⁴

Neuropsychiatric outcomes. Eight memantine trials reported on behavioral and neuropsychiatric symptoms using the NPI-12. Findings were mixed, with some trials showing improved scores among those taking memantine and worse scores among those on placebo, whereas others reported the opposite (improvement among those on placebo, and not memantine), and only one trial reported a statistically significant benefit of memantine at 3 and 6 months.²²⁸ The one trial reporting longer-term outcomes found no difference at 4 years.²²⁴

Other outcomes. One study reported on institutionalization and found a lower rate of nursing home placement in those taking memantine (2/182) compared with those taking placebo (9/187) at 6 months.²²⁶ None of the trials reported measures of QOL. One study conducted a survival analysis and found no statistically significant difference in mortality between memantine and placebo groups over 4 years (HR, 1.06 [95% CI, 0.91 to 1.24]).²²⁴

Harms. All 12 trials of memantine reported on harms. Total AE rates were similar between those taking memantine (65%) and those taking placebo (62%) (RR, 1.04 [95% CI, 0.99 to 1.09]; k=11; n=3,414; l^2 =0%). Rates of SAEs for individual trials were mixed, with some suggesting as much as a 71 percent greater risk of SAEs in control participants and others reporting up to a 68 percent greater risk among those on memantine. Across studies, however, rates of SAEs were not different between intervention and control groups (RR, 0.88 [95% CI, 0.77 to 1.01]; k=10; n=3,350; l^2 =0%) (**Figure 13**). Likewise, and in contrast to the AChEIs, withdrawals due to AEs were not significantly different between patients receiving memantine (8%) and those receiving placebo (7%) (RR, 1.26 [95% CI, 0.98 to 1.62]; k=9; n=3,288; l^2 =0%) (**Figure 14**).

Other Medications and Supplements

We included 29 trials (n=6,489) that examined the benefits and/or harms of using other medications or supplements for cognitive impairment. Twenty-four of these studies were included in the previous review, while five were newly identified for this update. A variety of different medications and supplements were evaluated, including antihypertensives (k=1; n=385),²³⁷ HMG-CoA reductase inhibitors (also known as statins; k=4; n=1,153),²³⁸⁻²⁴¹ NSAIDS (k=4; n=837),²⁴²⁻²⁴⁵ gonadal steroids (k=6; n=337),²⁴⁶⁻²⁵¹ and dietary supplements such as vitamins or omega-3 fatty acids (k=14; n=3,777).^{196, 224, 252-263}

In general, the primary effectiveness outcomes for these trials were measures of global cognitive function, most often the ADAS-Cog-11 or MMSE. In some trials, however, global cognitive function was a secondary outcome, whereas measures of physical function or domain-specific

cognitive function, for example, were primary outcomes. Fewer than half of the studies reported a measure of global function. Of those that did, most (9 out of 12 studies) used the CIBIC+; the remaining studies used the CDR-SB and CDR alone or in addition to the CIBIC+. Patient mental and neuropsychiatric symptoms were measured in two-thirds of the trials, typically depression symptoms with a variety of instruments or composite neuropsychiatric symptoms with the NPI-12. A little more than half of the studies reported the effect of medications or supplements on physical function and few trials reported a measure of QOL. Harms-related outcomes were reported by 20 of the 29 the included trials.

Study, population, and intervention characteristics of all 29 trials are presented in **Table 13** and **Table 14**. A summary of results for all included trials is provided in **Table 15**, while detailed results related to global function, global cognitive function, physical function, neuropsychiatric symptoms, and harms are presented in **Appendix F**.

Antihypertensives

We identified one new study on the effects of discontinuing antihypertensives among participants with cognitive impairment.²³⁷ For 385 participants with MCI who were randomized to discontinue or continue their antihypertensive medication, there were no differences between groups in global cognitive function, executive function, memory, physical function, depressive symptoms, or QOL at 4 months. Similarly, no differences in rates of SAEs, including death, hospitalizations, or vascular events, were seen between those continuing (7.0%) or discontinuing (6.5%) their antihypertensives (p-value not reported).

HMG-CoA Reductase Inhibitors

In the four studies (n=1,153) that examined the effects of statins (atorvastatin [k=2] and simvastin [k=2]) for patients with AD dementia, none found differences between intervention and control groups on reported outcomes of global function, global cognitive function, or physical function at 6 to 18 months.²³⁸⁻²⁴¹ One trial (n=63) out of three examining neuropsychiatric symptoms found a difference in depression symptoms that favored the intervention of atorvastatin at 80 mg per day at 12 months,²⁴¹ while the other two found no difference.^{238, 239} None of these three studies found a difference in total neuropsychiatric symptom scores between intervention and control groups.

Two HMG-CoA studies reported harms, with no significant differences in total or serious AEs between the intervention and control groups. While neither study found a difference in mortality rates between groups, they were neither designed nor powered to detect a difference in mortality between the intervention and control.

NSAIDs

None of the four studies of NSAIDs (n=837) (celecoxib 40 mg, ibuprofen 800 mg, indomethacin 100 mg, or naproxen 220 mg daily) found differences between intervention and control groups on reported outcomes of global function, global cognitive function, physical function,

neuropsychiatric symptoms, QOL, institutionalization, or caregiver burden at 6 to 12 months in participants with AD dementia.^{243-245, 252}

All four studies of NSAIDs reported on harms. One trial reporting total AEs found that 229/285 participants (80%) in the intervention and 105/140 participants (75%) in the control group experienced at least one AE, with "generally no significant differences in AEs between groups."²⁴⁵ Two trials reported no statistically significant difference in SAEs; in one trial, 32/140 participants (23%) in the intervention and 73/285 participants (26%) in the control group experienced an SAE,²⁴⁵ whereas in the other smaller trial, 5/26 participants (19%) in the intervention group and 1/25 participants (4%) in the control group reported an SAE.²⁴³ None of the four trials reported a statistically significant difference in withdrawals due to AEs. These studies were not designed nor powered to detect a difference in mortality between groups.

Gonadal Steroids

Six studies (n=337), including one new trial, examined the effects of gonadal steroids on patients with dementia, including five studies of estrogen^{246, 247, 249-251} (one of which also used progestin²⁵⁰) and one study of testosterone.²⁴⁸ Daily doses of estrogen for women included 0.625 mg to 1.25 mg of estradiol or conjugated equine estrogens (Premarin) or 120 mg of raloxifene, while daily doses of progesterone for women were 0.5 mg daily; daily doses of transdermal or topical testosterone for men were 75 mg daily. No studies of gonadal steroids showed differences in reported outcomes that favored the intervention, including global function, global cognitive function, domain-specific cognitive function, physical function, neuropsychiatric symptoms, caregiver burden, or QOL. However, two studies of estrogen or estrogen plus progestin found differences in global function at 1 year that favored the control group.^{249, 250}

Only two of the six trials reported AEs, with both finding greater AEs among those on the study medication vs. placebo.^{246, 250} One of the studies, however, found more SAEs reported in participants receiving placebo (3 events/32 participants [9.4%]) than in those receiving estrogen plus progestin (0 events/33 participants [0%]; p-value not reported).²⁵⁰ However, these studies were small and in some cases, events were rare. While four of the studies on gonadal steroids reported mortality,^{246, 249-251} they were not powered nor designed to detect differences in mortality between groups.

Dietary Supplements

B vitamins. Four studies (n=877) evaluated the efficacy and safety of B vitamin supplementation in the treatment of dementia.^{252-254, 256} Specific supplementation included folic acid,²⁵³ folic acid plus vitamins B_6 and B_{12} ,^{252, 254} and folic acid plus B_{12} .²⁵⁶ One trial²⁵² required participants to have normal folic acid, B_{12} , and homocysteine levels to be eligible to participate. The other three trials did not restrict inclusion based on baseline homocysteine levels (although no participants were found to have deficiencies) and conducted subanalyses among those with high vs. low baseline levels. One 6-month study of 57 individuals with AD who were on AchEIs found that randomization to folic acid was associated with a difference in change from baseline in a combined measure of IADLs and social behavior favoring the intervention at 6 months.²⁵³ There were no differences in global cognitive function or attention between groups and no significant

differences between those with high vs. normal baseline homocysteine levels. Another larger study of 271 participants with MCI found differences in executive functioning that favored those taking B vitamins compared with those on placebo at 24 months, but found no differences in language, memory, or depression.²⁵⁴ In subanalyses, there were differences in global cognition and memory favoring the intervention for patients with baseline homocysteine levels above the median. In the remaining two studies, there were no differences in global function, global cognitive function, domain-specific cognitive function, physical function, or neuropsychiatric symptoms for patients with dementia who were or were not exposed to B vitamins.^{252, 256}

In two of four studies reporting harms, there were no differences between intervention and control groups in total AEs and SAEs.^{252, 254} One study reported mortality but was not designed or powered to detect a difference in mortality between groups.²⁵²

Vitamin E. Three trials, one of which we identified in this update, reported on the effects of vitamin E for cognitive impairment (n=1,551).^{196, 224, 259} One new parallel group RCT randomized 613 patients with dementia to memantine, vitamin E (alpha tocopherol), or combination memantine plus vitamin E, or placebo, and found differences in ADLs and IADLs that favored vitamin E at 48 months, but no differences in global cognitive functioning or neuropsychiatric symptoms.²²⁴ Two other vitamin E studies, one in patients with dementia and another in patients with MCI who were also on a multivitamin, did not find differences in reported outcomes of global function, global cognitive function, executive function, language, memory, physical function, neuropsychiatric symptoms, or rates of institutionalization between intervention and control groups at 24 to 36 months.^{196, 259}

The two vitamin E studies that reported AE rates found no differences between intervention and control groups.^{196, 224} In the longer-term trial of memantine, vitamin E, and combination memantine and vitamin E vs. placebo, there were no differences in rates of SAEs comparing vitamin E alone vs. placebo, whereas those on memantine alone or combined memantine and vitamin E did experience greater frequencies of SAEs.²²⁴ This same study conducted a survival analysis and found no statistically significant difference in survival between vitamin E and placebo groups over 48 months (HR, 0.87 [95% CI, 0.67 to 1.13]).²²⁴ The remaining two studies were not designed or powered to find differences in mortality rates between intervention and control groups.

Omega-3 fatty acids. Six studies (n=1,260), including two new studies, reported on the effects of omega-3 fatty acids on cognition, finding mixed results.^{255, 257, 258, 260, 261, 263} One study of 39 patients with dementia found that one formulation of omega-3 fatty acids (docosahexaenoic acid [DHA] 675 mg + eicosapentaenoic acid (EPA) 975 mg/day) was associated with better IADL scores compared with controls, while another formulation (DHA 675 mg + EPA 975 mg + linoleic acid 600 mg/day) was associated with both better IADL scores and better MMSE scores (but not ADAS-Cog scores) compared with controls.²⁶⁰ Another study of 54 people with MCI found differences in depression outcomes at 6 months that favored the intervention groups, which took one of two formulations of omega-3 fatty acids (DHA 1.95 g/day or EPA 1.83 g/day), but no differences in attention, language, or executive function.²⁶¹ Another study of 485 persons with MCI randomized to omega-3 fatty acids (DHA 900 mg/day) found differences in executive function at 6 months that favored the intervention groups.

cognitive function, physical function, neuropsychiatric symptoms, or caregiver burden.²⁶³ The remaining three studies of omega-3 fatty acids (involving DHA or DHA + EPA) did not demonstrate differences between exposed and unexposed patients with MCI or dementia in global function, global cognitive function, domain-specific cognitive function, physical function, or neuropsychiatric symptoms at 4 to 18 months.^{255, 257, 258}

Three of the six omega-3 fatty acid studies reported harms, and none reported differences in rates of total or serious AEs. These studies were not designed or powered to detect differences in deaths between intervention and control groups.

Multivitamins. The lone study of multivitamins (n=89) did not find any effects on reported outcomes of global cognitive function, memory, or physical function in 89 participants with dementia at 6 months.²⁶² There were no differences in rates of AEs or SAEs between groups; deaths were not reported.

Nonpharmacologic Interventions

Patient-Level Nonpharmacologic Interventions

We identified 61 trials (n=7,847) that evaluated nonpharmacologic interventions targeting the patient directly, rather than the caregiver or patient-caregiver dyad. These interventions included: 1) cognitive training, rehabilitation, and/or stimulation (31 arms in 28 trials; n=3,212);²⁶⁴⁻²⁹¹ 2) exercise interventions (21 trials; n=2,831);²⁹²⁻³¹² and 3) multicomponent and "other" interventions (16 trials; n=2,302).^{280, 291, 309, 312-324} Almost two-thirds of these studies (39 studies) are new to this update; 22 were carried forward from the previous review.

The primary outcome in most patient-level nonpharmacologic interventions was a measure of global- or domain-specific cognitive function. Measures of physical function (ADLs and IADLs) and mental and neuropsychiatric symptoms were reported in approximately half of the trials, with various instruments used. Isolated trials also reported outcome measures related to institutionalization, conversion from MCI to dementia, global function, QOL, or caregiver burden. These results are only mentioned briefly, however, due to the sparse nature of these outcomes and concern of selective reporting.

Given the heterogeneity in interventions, we present results stratified by type of intervention. Study, population, and intervention characteristics for all nonpharmacologic patient-level interventions are presented in **Table 16** and **Table 17**. A summary of results for all included trials is provided in **Table 18**, while detailed results are presented in **Appendix G**.

Cognitive Stimulation, Cognitive Training, and/or Cognitive Rehabilitation

Study and population characteristics. Twenty-eight trials (n=3,212) evaluated the effectiveness of cognitive training, stimulation, and/or rehabilitation on improving cognitive or physical function outcomes and mental and behavioral symptoms vs. no intervention or an attention control group. Seventeen of the 28 trials were newly identified as part of this update; 11 trials were included in the previous review. We rated only five of these trials as good quality and the remaining 22 as fair quality. In general, trials were relatively small (n<100), ranging from 19

to 481 patients randomized (median n randomized, 63). Most were of limited study duration (3 to 6 months followup); only nine trials had followup at 12 months or longer (maximum of 26 months).^{267, 268, 276-278, 280, 282, 285, 289}

Eleven of the 28 trials targeted patients with MCI (mean baseline MMSE score ranged from 25.7 to 27.9), 14 targeted patients with dementia (MMSE range, 17.8 to 25.1), and the remaining two^{267, 271} targeted patients with either MCI or dementia (MMSE of 26.4 in one study that reported). Among the trials of patients with dementia, all but two^{279, 290} were exclusively among patients with probable AD. In the remaining trials, most (68% and 83%) had AD, about a tenth had VaD (13% and 7%, respectively), and the remaining diagnoses were PDD or of mixed or other etiology. Most trials recruited patients directly from memory or neurology clinics or some other outpatient clinic. Among the trials targeting patients with MCI, most recruited patients presenting with memory complaints who were free of psychiatric symptoms or disorders. In four of the 28 trials,^{267, 269, 282, 285} participants were required to be on a stable dose (1 month to 2 years) of an AChEI to be enrolled in the trial, whereas five other trials^{265, 270, 284, 287, 289} specifically excluded patients who were taking an AChEI or memantine. In the remaining trials, the proportion of participants taking an AChEI at baseline ranged from 32 to 92 percent and was similar across intervention and control groups for each individual study. Across trials, the average age of patients ranged from 68 to 83 years (median, 76). These trials included an even distribution of both men and women and were conducted mostly in the United States (k=6) and western Europe (k=13). The race/ethnicity and educational level of participants were rarely reported.

Intervention characteristics. Thirty-one unique cognitive-focused interventions were tested in the 28 trials. We broadly defined these interventions as those that directly or indirectly targeted cognitive functioning as opposed to those that focused primarily on behavioral, emotional, or physical function.³²⁵ Most of the cognitive-focused interventions were cognitive stimulation interventions (defined as engaging the person with dementia in a range of general activities and discussions aimed at general enhancement of cognitive and social functioning³²⁶) or cognitive training activities (defined as a guided practice on a set of standardized tasks designed to reflect particular cognitive functions such as memory, attention, or problem-solving³²⁵). Four interventions^{266, 274, 277, 278} included individualized cognitive rehabilitation in which personally relevant goals were identified and the interventionist worked with the person and his or her family to devise strategies to address these. In cognitive rehabilitation studies, the emphasis was on improving performance in everyday life rather than on cognitive tests.³²⁵

Most of the cognitive stimulation and training interventions were group-based interventions, but the intensity of activities varied considerably from 1 day a week for 6 weeks to 5 days a week for up to 2 years (median duration, 3 months). Most ranged from 45 to 90 minutes per session. Four interventions tested computer-based cognitive training programs consisting of 24 to 52 sessions total over 2 to 6 months;^{280, 283, 286, 287} three of these four interventions were among patients with MCI. Three interventions were delivered in the home;^{272, 275, 276} in two of them caregivers were trained to lead cognitive stimulation or training activities. The few remaining interventions were individual-based, in-person cognitive stimulation, or training activities. Across all interventions, the most common interventionists were trained psychologists or neuropsychologists, but others included social workers, occupational and speech therapists, and trained research staff. Where

reported, adherence to the interventions was relatively high (e.g., more than 70% of participants completing the full intervention; participants completing 80% of sessions on average).

The comparison groups were highly variable and included no intervention (11 trials with no intervention or waitlist controls), usual care which generally did not include cognitive training (7 trials), brief interventions focused on psychoeducation and support (3 trials), and "sham" cognitive-focused activities (7 trials). In the "sham" control groups, participants took part in nonspecific cognitive activities following the same schedule as the intervention group, such as reading the newspaper, completing puzzles, and browsing the Internet, with or without interaction with an interventionist or other participants.

Results.

Cognitive function. Twenty of the 28 trials reported results for global cognitive function (e.g., ADAS-Cog, MMSE), with or without reporting domain-specific measures of cognitive function. The remaining eight trials^{264, 266, 269, 270, 283, 287, 288, 291} only reported results for domainspecific measures of cognitive function such as memory, executive functioning, or attention. Overall, there appeared to be a very small to no benefit of cognitive training and stimulation activities on global cognitive function at 3 to 12 months (k=21; n=2,754). In 15 trials that reported effects of the intervention on MMSE scores, the pooled result indicated a statistically significant association between cognitive-focused interventions and improved global cognitive function compared with control groups at 3 to 12 months; however, the confidence interval was quite wide, ranging from a very small to small effect (MD, 1.33 [95% CI, 0.29 to 2.37]; k=15; n=1,341) at 3 to 12 months followup. Additionally, there was substantial statistical heterogeneity in the model (I^2 =91.1%), which likely reflects the lack of consistency in the magnitude of effects across studies (Figure 15). In general, across all trials, the control groups experienced worsening scores on the MMSE from baseline to up to 12 months followup ranging from 0.4 points (-0.4) to 3.6 (-3.6), whereas the effects in the intervention groups were more variable, ranging from a decline of 1.3 (-1.3) to an improvement of 3.8 points. Based on the Egger's test and visual inspection of funnel plots, we found no evidence of small-study effects (an indicator of publication bias) for this outcome.

Similarly, a meta-analysis of six trials reporting the differences in change in ADAS-Cog scores between those taking part in a cognitive-focused intervention vs. control conditions found a lack of an association with cognitive improvement at 3 to 12 months followup (MD, -0.66 [95% CI, -1.60 to 0.29]; k=8; n=842; I^2 =0%) (**Figure 16**). The absolute change from baseline in ADAS-Cog scores varied across studies from an improvement of 1.5 points to a drop of 4.9 points in the intervention groups and an improvement of 1.0 points to a decline of 5.6 in the control groups. Again, wide confidence intervals within and between studies reflect clinical uncertainty regarding the magnitude of the effects seen.

Four trials that reported a measure of global cognitive function were not included in either metaanalysis due to data reporting limitations^{267, 277} or because they reported a measure other than the ADAS-Cog or MMSE.^{272, 278} None of these trials reported a statistically significant effect of cognitive-focused interventions on global function at 3 to 24 months followup, but the direction of effects was consistent with the meta-analyzed trials. There was no evidence that the effect of the intervention was modified based on study quality (good-fair vs. fair), population (dementia vs. MCI), the duration of the intervention, whether the intervention included group sessions or not, or the control group (sham activities vs. other). In the few trials that reported longer-term effects (at greater than 12 months followup),^{277, 278, 280} consistent between-group effects were seen over time, with cognitive function declining in both intervention and control group participants.

Eight trials reported results related to measures of specific domains of cognitive function without reporting a measure of global cognitive function.^{264, 266, 269, 270, 283, 287, 288, 291} In general, there was not a consistent benefit of cognitive-focused activities across measures of attention, executive function, language, and memory compared with control conditions. In some cases, mixed effects were found within trials, with some domain-specific measures showing beneficial effects and other measures of the same domain finding no effect. Even within trials that reported both global cognitive function and domain-specific measures, results were inconsistent.

Physical function. Fifteen of the 28 trials reported physical function outcomes (ADL and/or IADL outcomes), with only three finding small but statistically significant improvements in measures of ADLs or IADLs among persons with MCI or dementia at 5 to 12 months followup.^{265, 282, 287} The remaining trials showed very little change over time for both intervention and control participants or small and relatively equal decline in measures of physical function over time.

QOL. Only three of the 12 studies that reported QOL outcomes reported small but statistically significant differences between cognitive-focused interventions and controls.^{276, 278, 281} Only one of these studies also found significant benefit of cognitive training on global cognitive function; the other two trials found no other benefits of the interventions.

Neuropsychiatric symptoms. Changes in mental health and neuropsychiatric symptoms, including symptoms of depression and anxiety and behavioral problems, were reported by half of the studies (k=14). Again, there was no consistent pattern of effect across trials. Many showed relatively equal declines in self- or informant-based measures of depression or behavioral symptoms in both intervention and control group participants. Though the scales range considerably across these measures (e.g., 0–15 on the Geriatric Depression Scale, 0–38 for the CSDD; 0–144 for the NPI), most between-group differences did not exceed a 1-point difference in favor of either group.

Harms. One trial²⁸⁰ reported no harms of a cognitive training and sham physical exercises over the course of the 6-month intervention. No other trial reported on harms that occurred during the study.

Exercise Interventions

Study and population characteristics. We included 21 trials (n=2,831), six of them good quality, that studied the effectiveness of an exercise intervention to improve cognitive function, physical function, and/or neuropsychiatric and depressive symptoms among adults with MCI or dementia. Fourteen of the 21 trials were newly identified as part of this update. Similar to the

evidence on cognitive-focused interventions, the number of included participants in the exercise trials was quite small (median n randomized, 95; range, 25 to 494) and the duration of the studies were short (14 of the 21 trials were 6 months or less in duration).

Just less than half of the studies targeted patients with MCI (mean MMSE score ranged from 24.5 to 27.4) and the other half targeted patients with dementia (mean MMSE score ranged from 18 to 26.4), one of which limited inclusion to patients with VaD.²⁹³ Three trials included patients with MCI or dementia, with one only enrolling older adults with serious mobility limitations.^{297, 303, 310} Few studies reported what proportion of included participants was currently taking a cognitive medication. The mean age of patients ranged from 67 to 84 years. Both men and women were included in all trials, with most reporting an equal distribution of men and women. One trial²⁹² that had among the most intense exercise interventions (including strength and endurance activities) had a majority male sample (61%), whereas two trials^{301, 310} of dancing interventions had a mostly female sample (78% and 82%). Only four of the 21 trials took place in the United States; the remaining 17 were in Europe (k=8), Asia (k=6), Australia (k=2), and Canada (k=1).

Intervention characteristics. The included exercise interventions were highly variable across the trials. Most involved supervised group-based exercise sessions focused on aerobic activities, strength and resistance training, and/or balance training that took place in a community setting and were led by an exercise specialist. Four trials included individualized, supervised exercise sessions in the home or community setting, ^{292, 298, 303, 307} whereas three trials encouraged self- or caregiver-guided exercises at home.^{294, 300, 305} Four trials evaluated the effectiveness of a group-based ballroom dancing intervention^{301, 306} or dance-based intervention^{308, 310} and two trials evaluated the impact of a tai chi program.^{295, 311} Only a few studies mentioned specific cognitive training activities as part of the exercise intervention, including dual-task training (e.g., walking while counting backwards) and ballroom dance activities that involve physical, mental, creative, and social components. Interventions were relatively intense, with activities taking place 2 to 3 days per week for 30 minutes to 2 hours per session. Only six interventions, including the four dancing interventions, lasted more than 6 months.^{292, 299, 301, 306, 308, 310}

In about half of the trials the comparison group consisted of an attention control including general health education relevant for older adults or brief interventions that included supervised "sham" exercise sessions focused on stretching or toning (k=9). In the remaining studies, control participants continued to receive usual care from their medical or memory-specific health care provider or were offered the intervention at the end of the trial (i.e., waitlist control).

Results.

Cognitive function. All 21 trials reported a measure of global cognitive function or domain-specific cognitive function. Of the 14 trials that reported a measure of global cognitive function, all but two trials^{302, 307} had sufficient data to meta-analyze results related to differences in change in the ADAS-Cog and/or MMSE measures at 3 to 12 months followup. Overall, there was mixed evidence related to the association between exercise interventions and improvement in global cognitive function at 3 to 12 months followup among patients with MCI or dementia. Effect estimates generally favored intervention groups compared with control groups, but

findings were inconsistent across trials with nine of the 14 individual trials (6 among patients with MCI^{294, 297, 299, 301, 306, 311} and 3 among patients with dementia^{300, 304, 308, 321, 323, 324}) reporting a statistically significant benefit of the intervention compared with usual care or no intervention control groups on at least one measure of global cognitive function. The pooled analysis of 10 trials reporting results for the MMSE using resulted in small, statistically significant association (MD in change, 1.17 [95% CI, 0.45 to 1.90]; k=10; n=1,168; I^2 =81.3%%) (**Figure 15**). However, the average mean difference in change in ADAS-Cog-11 scores across six trials that were pooled using the REML model with the Knapp-Hartung correction for small samples indicated no association (MD, -1.05 [95% CI, -3.49 to 1.10]; k=6; n=1,071; I^2 =77.4%) (**Figure 16**). Results related to global cognitive function did not appear to differ according to different study (good vs. fair quality), population (MCI vs. dementia patients), intervention (duration of intervention, inclusion of any group sessions, specific type of exercise [e.g., aerobic activities, resistance training, ballroom dancing, tai chi), or control group (no intervention vs. brief or sham activities) characteristics.

Physical function. Change in physical function was variably measured across exercise trials including measures of impairment in ADLs (e.g., bathing, dressing, toileting, eating), with or without measures of impairment in IADLs (e.g., meal preparation, laundry, grocery shopping, travel, finances). Across eleven of the 21 trials measuring physical function, small improvements were seen in the exercise groups within most trials, whereas control groups reported worsening function over 3 to 12 months; five of the 11 trials reported these effects to be statistically significantly different between groups. A pattern was seen, though not definitive, where exercise interventions that included individually tailored instruction or self-guided instruction found effects on measures of ADLs or IADLs, whereas those that employed supervised, group-based exercise sessions found no effect. This difference was not statistically tested, however, given the few studies reporting these measures and could be due to other confounding factors.

QOL. Only three studies that evaluated an exercise intervention reported a measure of QOL. In all three studies, self-reported or proxy-reported measures of QOL were nearly identical between groups after the intervention and inconsistent patterns of effects across different measures of QOL.

Neuropsychiatric symptoms. Ten trials reported the effects on symptoms of depression or other behavioral and neuropsychiatric symptoms; again, there was a pattern of effect favoring the exercise groups compared with the control groups but differences between groups were small and of unclear clinical magnitude.

Harms. Eight of the 21 trials (n=1,425) reported on harms of an exercise intervention.^{292, 294, 303, 304, 306-308, 312} The most commonly reported AE in the intervention groups was musculoskeletal problems, including delayed-onset muscle soreness, back pain, or specific joint pain. In terms of SAEs, in one trial³⁰⁴ one case of atrial fibrillation experienced during one of the exercise sessions was deemed to possibly be related to the exercise intervention. In another trial of aerobic exercise,³⁰³ one case of back pain related to spinal stenosis was judged to be exacerbated by exercise (either as part of the intervention or the battery of study measures that included a cardiorespiratory treadmill test). One other trial found eight AEs related to the intervention with four deemed as serious (one hospital admission for exercise-induced angina, two injurious falls, and one case of substantially worsening hip pain).³⁰⁸ Two trials^{292, 304}

reported no difference in the proportion of participants experiencing a fracture between intervention and control groups. Other AEs reported during or following the exercise interventions were deemed by study researchers to not be related to the intervention.

Multicomponent and Other Interventions

Study and population characteristics. Sixteen trials (n=2,302), 12 of which are new to this update, included a multicomponent patient-level intervention or an intervention that was fundamentally different from the cognitive-focused and exercise interventions and therefore are reported separately here (these latter interventions were categorized as "other"). Most were small trials (median n randomized, 115; range, 24 to 453) and 10 of the 16 studies took place for 6 months or less, whereas the other six trials ran for 7 to 24 months.

Intervention characteristics. Each of these 16 trials evaluated different interventions. We categorized seven interventions as a multicomponent intervention. In these interventions, the primary aim was to investigate whether these multicomponent interventions could slow the cognitive and functional decline of persons with cognitive impairment and they typically consisted of a combination of group-based cognitive training and exercise with or without other components such as social activities or psychotherapy/cognitive behavioral therapy. The remaining nine trials, all conducted among patients with early-stage dementia, tested other unique patient-centered interventions. Interventions included diagnosis support and in-home counseling focused on patient well-being,³¹⁸ in-home counseling related to goal setting and action planning,³²⁰ group-based psychotherapy and psychoeducation³¹⁷ or cognitive behavioral therapy,²⁹¹ and a group-based self-management program.³¹⁶ Two trials focused on a multidisciplinary assessment and treatment plan coordination;^{313, 315} one was specifically for patients with moderate-to-severe dementia who had recently transferred to a dementia-specific residential care facility (mean MMSE, 14.8) One trial³¹⁹ aimed to slow functional decline among patients with mild dementia (not VaD) through pharmacologic and nonpharmacological vascular care (using aspirin, vitamin B6, folate, statins, and, if indicated, therapies targeting blood pressure, glucose, smoking, and diet/activity). And, the last trial was a four-arm trial comparing the effects of exercise, dietary counseling, and exercise plus dietary counseling with an attention control focused on general cardiovascular health topics.³⁰⁹ Comparison groups of these latter nine trials included usual care provided by general practitioners^{315, 316, 319} or residential care staff,³¹³ a minimal intervention consisting of weekly home visits not focused on well-being,^{318, 320} an attention control focused on cardiovascular disease prevention,³⁰⁹ and a waitlist.^{291, 317}

Results.

Cognitive function. There was no clear effect for maintaining or improving global cognitive function in intervention groups compared with control groups. Only three individual trials^{321, 323, 324} targeting mostly patients with MCI found statistically significantly different differences in global cognitive function at 6 to 9 months followup. The remaining trials showed generally null effects for both domain-specific and global measures of cognitive function, with effect sizes often favoring the control groups (many of which were quite intense in content and delivery). Pooling eight trials that included a multicomponent or "other" intervention that reported changes in MMSE score found an average mean difference between groups of 0.26 in

favor of the intervention group, although the confidence interval reflected no difference between groups (95% CI, -0.54 to 1.00; k=8; n=1,238; I^2 =30.3%).

Physical function. Changes in physical function were reported in only five trials with only one—a multicomponent group-based intervention with social, cognitive, and physical components over 6 months—finding a statistically significant benefit of the intervention.³²⁴ The trial of multicomponent exercise and cognitive training,²⁸⁰ cognitive behavioral therapy,²⁹¹ a multidisciplinary assessment and treatment plan,³¹⁵ and the trial of comprehensive vascular care³¹⁹ did not find that the interventions slowed the progression of decline in ADLs or IADLs at 3 to 24 months followup compared with sham activities or usual care.

QOL. The four trials focused on improving patients' well-being and QOL^{291, 316-318} showed no clear benefit of the interventions on measures of QOL in comparison with control groups; only one trial reported greater improvement in the WHO Wellbeing Index (WHO-5) in intervention vs. control participants at 6 months. But this same study found no difference in the EQ-5D measure of health-related QOL.³¹⁸ Likewise, one trial testing the effect of a diagnostic assessment and comprehensive treatment plan found a small effect on caregiver-reported patient QOL at 6 months using the EQ-VAS, but not on other measures of QOL.³¹⁵

Neuropsychiatric symptoms. There was no clear benefit of these multicomponent interventions or interventions aimed at well-being on any measure of symptoms of depression or anxiety or caregiver-ratings of neuropsychiatric symptoms.

Other outcomes. One study conducted a survival analysis of mortality and found a 63 percent lower risk of death in the multidisciplinary assessment intervention group compared with the usual care control group, although the difference was not statistically significant (95% CI, 0.22 to 1.15; p=0.08).³¹³

Harms. Five trials^{280, 312, 317, 321, 324} found no differences in the rate of harms between conditions; the remaining 11 trials did not report on harms.

Caregiver and Caregiver-Patient Dyad Interventions

We included 88 trials (n=14,880) that targeted the caregiver or caregiver-patient dyad with the primary aim of improving caregiver outcomes. More than one-third (33/88) of these trials were identified as part of this update and the remaining two-thirds (55/88) were included in the previous review. Most of the trials (k=58; n=9,139) evaluated interventions with some type of psychoeducational component for caregivers.³²⁷⁻³⁸³ These interventions provided information about dementia and/or caregiving and sought to increase caregiver skills (specific caregiving skills or general skills, such as problem solving, and communication applied to caregiving). Seventeen trials (n=3,039) provided case or care management directed at caregiver-patient dyad, with or without psychoeducation for the caregiver.³⁸⁴⁻⁴⁰⁰ The remaining 13 caregiver-focused intervention trials (n=2,702) evaluated other interventions such as physical activity counseling, social support interventions, and multicomponent dyadic interventions.⁴⁰¹⁻⁴¹³

There was no one consistent outcome reported across caregiver or caregiver-patient dyad

intervention trials. The most commonly reported outcomes of these interventions were selfreported caregiver depressive and other mental health symptoms (reported in 62 of 88 trials) and caregiver burden (reported in 52 of 88 trials). Both outcomes were reported using a variety of self-reported measures. The Center for Epidemiologic Studies Depression Scale (CES-D) was the most commonly used instrument to assess symptoms associated with depression. Response options range from 0 to 3 for each item and scores range from 0 to 60, with high scores indicating greater depressive symptoms. For caregiver burden, the most commonly used instrument was the 22-item Zarit Burden Instrument (Zarit-22). The Zarit-22 measures perceived social, physical, financial, and emotional burden of caregiving, as well as providing a total summary score with a range of 0 to 88, where higher scores indicate greater burden. Rates of institutionalization or time to nursing home placement was often a primary outcome of caregiver-patient dyad interventions but should be interpreted alongside the results of other important caregiver and patient outcomes. While delay of institutionalization may be one of the most clinically important outcomes to examine within this field, it is potentially inappropriate if it is accompanied by declines in well-being on the part of family caregivers. Other outcomes such as caregiver and patient QOL were inconsistently reported.

Study, population, and intervention characteristics for all caregiver interventions are presented in **Table 19** and **Table 20**. Summary results are provided in **Table 21** and detailed results are provided in **Appendix H**.

Psychoeducation Caregiver Interventions

Study and population characteristics. We included 58 trials, representing more than 9,139 caregivers or caregiver-patient dyads, that evaluated a caregiver psychoeducational intervention. Twenty-four of these trials are new to this update. We rated most of the studies fair quality given unclear allocation procedures, few baseline imbalances, and relatively high attrition (20% to 40%). Study sample sizes ranged from 28 to 642 participants, with most studies randomizing more than 100 caregivers or caregiver-patient dyads. Most followed participants for at least 1 year, with three studies including longer-term followup at 3 or 4 years^{346, 356, 378} and one including followup at 12 years.³⁶⁷

Almost three-quarters (74% [43/58]) of the trials targeted the caregiver only, with the remaining targeting the caregiver-patient dyad (21% [12/58]) or entire family (5% [3/58]). Most trials required that caregivers provide support to the patient for at least 4 hours a day to be eligible for the study and many limited inclusion to caregivers reporting burden related to caregiving (e.g., Zarit burden score >22) or high psychological distress (e.g., >4 on General Health Questionnaire). Two trials prespecified inclusion to spousal caregivers,^{359, 367} and one trial focused specifically on adult caregiving children of dementia patients.³⁴⁶ When reported, the remaining trials included various proportions of spousal, child, and other nonprofessional caregivers. Caregivers were mostly female in all trials (range of female caregivers, 57% to 100%). The mean age of caregivers ranged from 41 to 75 years. Socioeconomic indicators such as education, income, and employment status were reported inconsistently and variably measured. Among those that reported educational level of caregivers, in most studies more than half of caregivers had at least a high school education with mean years of education ranging from 11 to 16 years. Race/ethnicity of caregivers was sparsely reported. Among the few trials that did

report the race of participants, most caregivers and patients were white except for three trials^{341, 379} that were limited to Asian caregivers (2 trials in Hong Kong and 1 in the United States). Across all psychoeducation intervention trials, most took place in the United States (k=28) or Western Europe (k=22). Four trials took place in East Asia (Hong Kong or Taiwan) and four took place in Canada.

In all but three trials, caregivers cared for patients with dementia, mostly characterized as Alzheimer's-type dementia. Two trials included caregivers of patients with either MCI or dementia,^{345, 355} and one remaining trial³⁷¹ targeted caregivers of "frail community-dwelling older adults characterized as cognitively impaired" with an MMSE less than 23. The average MMSE scores across trials was consistent with patients having moderate, as opposed to mild, dementia (average MMSE score was 16.2 across studies that reported it). The mean age of patients ranged from 68 to 83 years.

Intervention characteristics. The psychoeducation intervention trials encompassed a wide range of approaches. The most common format was for interventionists to meet individually with caregivers, dyads, or families, most commonly in participants' homes (k=20). A number of the interventions, however, took place in group settings (k=18) or were provided remotely through telephone counseling, computer-based programs or applications, videos, or a combination of these methods (k=13). Across all psychoeducation interventions, in addition to providing information about dementia and community resources, most interventions also included training in problem solving, communication techniques, and stress management. A variety of additional components were used, including peer or social support (e.g., group support meetings or online forums to interact with peers, to express their concerns, discuss solutions to daily problems, and share their feelings and experiences), supportive counseling (counseling focused on the caregiver's emotional or psychological issues), home safety assessments or information, occupational therapy, and environmental modifications. The interventionists were also highly variable, reflecting the specific components within each intervention and included general educators or counselors, psychologists, nurses, occupational therapists, social workers, and hired and trained research staff. Only two interventions included contact with a geriatrician.^{337, 376} The majority of interventions were relatively short (median, 4 months) but ranged from 1 month to 2 years, and participants generally meet every 1 to 3 weeks over the course of the interventions.

Most trials included a usual care control group (k=22) or attention controls where caregivers received similar or slightly less contact with an interventionist who provided general dementia education with or without nondirective social support (k=21). The remaining trials included no intervention or waitlist control groups. Usual care was rarely fully described. When it was, most mentioned usual memory or primary care for patients with referrals to outside organization or community resources for caregiver support.

Results. Although there were substantial clinical differences among the interventions evaluated, overall there was a consistent finding of a benefit on caregiver burden and depression outcomes in persons caring for patients with mostly moderate dementia. Effect sizes were mostly small, however, and few of the individual trials reported statistically significant differences between groups.

Caregiver burden. The standardized pooled effect for trials reporting sufficient data to be included in the meta-analysis (k=27; n=2,776) showed a small but statistically significant effect (SMD, -0.24 [95% CI, -0.36 to -0.13]; I^2 =50.2%) (**Figure 17**). We could not include nine of the trials that reported burden in the meta-analysis because of missing data (e.g., variance) or reporting of an incompatible outcome. ^{330, 334, 340, 346, 365-367, 372, 383} In these studies, the effect sizes were similarly small, with few finding statistically significant group differences.^{346, 367}

The clinical importance of these changes in self-reported caregiver burden scores is unclear. Most studies reported group differences between 0.5 and 5 points on a scale of 0 to 88 on the Zarit-22. Baseline Zarit-22 scores ranged widely across studies from an average of around 23 to 56 points, and only one study reported average changes of greater than 2.5 points over 6 months followup in the intervention group. To aid in interpretation, we pooled the nine trials that reported change in the Zarit-22 and found an average 2.5-point difference favoring the intervention group vs. control group (MD, -2.47 [95% CI, -3.91 to -1.03]; k=9; n=1,089; I^2 =0%) (forest plot not shown). This is equivalent to a change from being bothered "always" to "sometimes" or "almost never" on one of the 22 items. Across all measure of burden, the confidence intervals of the study-level between-group differences were frequently quite wide, suggesting the possibility that some caregivers showed substantial improvement or benefit in their perceived burden and others did not benefit. Unfortunately, we could not identify what subgroups of caregivers may have benefited based on study-level data.

Caregiver mental health. Forty-three of the 58 psychoeducation trials reported a measure of caregiver depressive symptoms, using a variety of self-report instruments. Like findings for caregiver burden, the effect sizes for depression outcomes across all trials were relatively small and imprecise. Our meta-analysis included the pooled effect for 37 comparisons (n=4,555) and found a small but statistically significant effect favoring the intervention on depression measures at 3 to 12 months followup (SMD, -0.26 [95% CI, -0.39 to -0.13]; I^2 =76.9%) (Figure 18). In most cases, caregivers in the intervention groups reported experiencing fewer depressive symptoms over time, whereas caregivers in the control groups reported slightly more symptoms or little change over time. The CES-D, a 20-item instrument (scale of 0–60, with lower scores equaling fewer depressive symptoms), was the most commonly used instrument. Pooling the 20 trials that reported CES-D-measured depressive symptoms resulted in a between-group mean difference of 2.67 points favoring the intervention group (MD, -2.67 [95% CI, -3.85 to -1.48]; k=20; n=2,603; I^2 =65.1%), with most trials reporting an approximate 1- to 5-point difference (forest plot not shown). Similar to changes in caregiver burden, the clinical importance of these small changes in depression scores is unclear. A 3-point difference could mean that a person moved from endorsing a single symptom 5 to 7 days to rarely or never in the previous week, or from 3 to 4 days to 1 to 2 days for three symptoms in the previous week.

We could not include 12 trials that reported a measure of depressive symptoms in the metaanalysis due to missing data.^{327, 328, 335, 340, 346, 350, 362, 371, 372, 383, 388, 414} In five of these trials, study authors reported statistically significant benefit of the interventions on depressive symptoms.^{328, ^{350, 362, 388, 414} Five trials did not report depressive symptoms but reported measures of other mental health symptoms such as anxiety, perceived stress, and psychological morbidity.^{333, 352, ^{363, 364, 376} These trials, as well as others that reported such measures, found similar patterns of effects with intervention participants reporting slight improvements in mental health symptoms}} while control group participants reported similar scores over time. Few trials, however, reported statistically significant differences between groups over time.

For both caregiver burden and caregiver depressive symptoms, we visually explored the summary tables and forest plots and ran exploratory meta-regressions to determine if any design, population, or intervention feature explained the variability in effect sizes. These variables included study quality (good vs. fair), new vs. previously included trials, U.S.- vs non-U.S.based trials, mean baseline MMSE of patients being cared for, type of control group (minimal or brief intervention vs. usual care, waitlist, or no intervention), target audience (caregiver and patient or whole family vs. caregiver only), intervention duration, setting of intervention (home vs. not in home), primary intervention format (individual- vs. group- or family-based, or telehealth interventions), and key intervention strategies (training and support vs. training only). For caregiver depression, there was evidence of a difference in effect based on the type of control group. A statistically significant favorable effect was found when comparing psychoeducation interventions with no treatment or usual care control groups (SMD, -0.44 [95% CI, -0.65 to -0.24]; k=20; n=2,347; I^2 =81.3%), whereas no effect was found when comparing psychoeducation interventions vs. attention controls consisting of brief or minimal interventions (SMD, -0.09 [95% CI, -0.25 to 0.06); k=15; n=1,873; I^2 =60.6%) (p-value for difference=0.036). This same effect was not seen for the outcome of caregiver burden (p=0.815). None of the other variables robustly predicted larger effect sizes for measures of caregiver burden or caregiver depression.

Caregiver QOL. Only 16 of the 58 trials reported effects of the interventions on caregivers' assessments of their QOL. Patterns of change over time were inconsistent between trials, with some trials showing improved mean scores in both intervention and control participants, some showing decreased scores in both groups, and some reporting improvement in intervention participants with declines in control group participants. Seven of the 16 trials reported some statistically significant differences in favor of the intervention groups, but almost all only reported this for one of many measures of QOL within the study or only at shorter vs. longer followup.^{341, 351, 357, 359, 364, 378, 379}

Decision making. One fair-quality trial (n=111) reported the effects of a psychoeducational intervention on caregivers' reports of planning or decision making related to caring for their relative with dementia.³³⁸ The aim of this study was to test the efficacy of the "Learning to Become a Family Caregiver" program intended for caregivers following the diagnostic disclosure of AD in a relative. The intervention, delivered through seven 90-minute individual sessions over 2 months, was designed to foster a successful transition to the caregiving role by acquiring certain skills to manage stress, plan, and care for a relative. Caregivers randomized to the control arm received usual care provided by local memory care clinics, which consisted of putting caregivers in contact with a range of local available services. The relatives with dementia did not take part in the intervention; patients in both groups continued to attend the memory clinics as needed. Three months following the intervention (5 months postbaseline assessment), caregivers in both groups reported statistically significantly better planning for the future care needs of the relative with no difference between groups. Using a six-item Likert-type scale with a range of 6 to 30, where higher scores equaled greater planning, scores among intervention participants increased from a mean of 15 (SD, 5.84) to

19.67 (SD, 5.78). whereas scores for control participants increased from a mean of 15.04 (SD, 6.90) to 18.36 (SD, 6.84) and no group-by-time effect was found.³³⁸

Patient institutionalization. In terms of patient outcomes, 10 of the 54 trials reported rates of institutionalization or time to nursing home placement as primary or secondary outcomes.³²⁸, ^{346, 356, 357, 367, 375-378, 383} Half of these trials took place in the United States, and most provided followup for 1 year or longer (including 4 trials with 3 or more years followup). Only two trials, both evaluating a version of the New York University Caregiver Intervention (NYUCI), reported statistically significantly favorable effects of the interventions on delaying patient institutionalization.^{346, 367} In the first trial among spousal caregivers, after 9.5 years of followup, patients whose spouses received the intervention experienced a 28.3 percent reduction in the rate of nursing home placement vs. usual care controls (HR, 0.717 [95% CI, 0.537 to 0.958], p=0.0247).³⁴² In the second trial, adapted for adult child caregivers in Minnesota (NYUCI-AC), after 2 years, two-thirds (66%) of adult child caregivers in the control condition admitted their parent to a residential care setting (assisted living, family care home, or nursing home) compared with 37 percent in the treatment condition. Logistic regression and Cox proportional hazards models found that NYUCI-AC participants were significantly less likely (p < 0.05) to admit their parents to a residential care setting and delayed their parents' time to admission significantly longer (228.36 days longer on average) than those in the control group.³⁴⁶ In both trials, favorable benefits were also seen for outcomes of caregiver stress, burden, depression, and QOL measures. Other trials reported data on numbers of participants being institutionalized when describing participant attrition; those data are not presented here.

Other patient outcomes. Additional patient outcomes were inconsistently reported across the trials and included changes in patients' global and cognitive function, ADLs and IADLs, mental and behavioral health symptoms, and QOL. Few trials reported statistically significant favorable effects on such outcomes.

Harms. Only three trials (n=326) monitored adverse events during the trial period. Neither found any harms of the intervention. $^{351, 359}$

Care/Case Management

Study and population characteristics. We categorized 18 interventions in 17 trials as care or case management interventions (n=3,039). We broadly labeled these interventions as care or case management if the intervention included professional assistance to help arrange, implement, or facilitate services to meet a patient's and family's needs. In all cases, care management was intended for both the caregiver and the patient with dementia (or the patient's entire family). One trial⁴⁰⁰ extended existing care coordination for patients by also providing care coordination support for caregivers through a personalized caregiver support plan. Six of these 17 trials were new to this update, two of which took place in the United States.^{394, 397}

Four were cluster RCTs, randomizing at the level of the primary care clinician^{385, 398} or practice.^{396, 399} Six trials took place in the United States, six in Europe (Finland, Germany, or Netherlands), one in Australia, three in Hong Kong, and one in Canada. Most recruited participants from primary care,^{385, 391, 392, 394, 396, 398, 399} with the remaining recruiting from

memory clinics or other outpatient clinics,^{388, 393, 395} health plan membership,³⁸⁴ local Alzheimer's organization,³⁸⁶ or other social services or self-referred methods.^{387, 389, 390, 397, 400} Sample sizes ranged from 72 to 516 caregiver-patient dyads. Collectively, trials within this category of intervention provided the longest followup, with all but one³⁹⁴ following participants for a year or longer. Eight of the 18 trials provided results at 1.5 or 2 years followup.

All care management interventions were intended for patients with dementia. Two trials also included a small proportion of participants with MCI,^{395, 397} and one trial enrolled health plan members whose medical records indicated they had a dementia diagnosis or a symptom code indicating memory loss.³⁸⁴ Baseline mean MMSE scores of patients ranged from mild dementia (22.8) to moderate dementia (13.8). Few (7 trials) reported the proportion of patients being treated for dementia with medication; in those that did, 27 to 78 percent of patients were taking an AChEI. One trial required patients to be on a stable dose of an AChEI to be eligible for the study.³⁹⁴

Two trials included only or mainly spousal caregivers;^{390, 394} the others included a fairly even distribution of spouse, child, and other relational caregivers. The mean age of caregivers ranged from 44 to 75 years while the mean age of patients ranged from 68 to 84 years. Most caregivers in each trial were female. The gender distribution of patients within trials was more evenly distributed and ranged from 38 to 68 percent female, where reported. Extremely limited data about the race/ethnicity, education, or other socioeconomic variables were provided for patients or caregivers.

Intervention characteristics. While each intervention was unique, the interventions we categorized as care or case management generally all provided assessment, advice and information, individualized treatment planning, caregiver psychoeducation and skills training, ongoing monitoring, and either referral or care coordination with outside social and health care services (such as occupational and physical therapy, respite care, personal care assistance, social, and social work). Two interventions in the United States were partnerships between an Alzheimer's Association chapter and a managed care plan³⁸⁴ or primary care physicians³⁹¹ to provide care consultation and individualized treatment plans to families. One trial in the Netherlands compared the effectiveness of care coordination and postdiagnosis treatment provided by a memory clinic with the same service provided only by a general practitioner.³⁹⁵ Finally, one trial in Germany provided training for primary care physicians on non-medicationbased and medical treatment options for dementia and information and counseling for caregivers; in one intervention arm, the physician suggested that the caregiver attend support groups and receive counseling for up to 2 years, and in the other arm, the physician made the same suggestion but for up to 1 year.³⁹⁶ These interventions were longer than any other category of intervention in general, providing support and care management to caregivers and patients for a year or longer (range, 3 months to 2 years [median, 1 year]).

All but two interventions were primarily provided through individual in-person interaction with or without other delivery methods such as group sessions or support groups, telephone contact, or mailed print materials. In the remaining two interventions, information, counseling, and coordination were provided solely by telephone.^{384, 394} The interventionists varied, but most often included a nurse or other health provider serving as a "case manager" or "care coordinator."

Other providers included primary care clinicians, geriatricians, occupational therapists, neurologists, psychiatrists, social workers, and other research staff. Many interventions took a team approach, with different providers providing different components of the intervention. Interaction mostly took place in participants' homes but planning and counseling also took place in a medical setting (i.e., primary care clinic, dementia-specific clinic).

In all trials, the control group consisted of usual care provided by primary care or a memoryspecific clinic or organization (k=12) or another minimal intervention (k=5). Usual care varied, based on the study's setting, including country. In most cases, patients continued usual medical care with their primary provider and were given information on other local social and health services. The two trials that partnered with Alzheimer's Association chapters acknowledged that the control group participants had access to their normal managed or primary care and were able to contact the association independently and use any of its services other than care consultation. The five trials that included minimal attention control groups provided enhanced support for caregivers (e.g., individual counseling sessions) in addition to usual care for patients.

Results. The primary outcome or outcomes of the 17 trials of care and case management interventions differed across trials and included time to institutionalization or nursing home admissions, ^{388-391, 396, 397} caregiver outcomes such as burden, strain, caregiving competence, and QOL, ^{384, 386-388, 393-395, 398-400} mental and neuropsychiatric symptoms of the patient, ^{385, 394, 398} and patient QOL. ^{395, 399}

Patient institutionalization. Ten of the 17 trials reported rates of patient institutionalization or time to institutionalization. There was a pattern of benefit among patients in intervention vs. control groups, with fewer persons in the intervention groups placed in nursing homes than those in usual care or a delayed time to institutionalization among intervention vs. control participants. Those with dementia who were placed in nursing homes ranged from 5.5 to 32.1 percent among adults in the intervention groups and from 1.5 to 33 percent in the control groups at 1 to 2 years followup. Only three trials reported statistically significant differences related to institutionalization, but all three measures also included other health care utilization or survival measures such as death.^{386, 387, 397} In the two disease management trials in Hong Kong, both found significantly less frequent and shorter rates of placements and stays in residential homes or hospital units, including temporary hospitalizations, over the previous 6 months.^{386, 387} In the 18-month MIND care coordination trial, intervention participants were less likely to permanently leave their home or die compared with controls (30.9% vs. 45.6%; p=0.012) and remained in their homes significantly longer (mean, 496 days vs. 445 days; p=0.02). The hazard of leaving the home was decreased by 37 percent after adjusting for whether the caregiver lived in the home (HR, 0.63 [95% CI, 0.42 to 0.94]; p=0.022).³⁹⁷

The MIND care coordination trial was the only trial to include a measure of unmet care needs related to dementia.³⁹⁷ Using the Johns Hopkins Dementia Care Needs Assessment, evaluators assessed 19 common care needs for participants (71 items) and caregivers (15 items) each as being "fully met" or "unmet." A total percent of unmet needs was calculated ([# of unmet needs/# of needs assessed] *100) as well as the proportion of unmet items in six specific areas: evaluation and treatment of memory symptoms; neuropsychiatric symptom management; home

and personal safety; general, specialist, and allied health care; daily and meaningful activities; and legal issues/advanced care planning. After 18 months, there was no statistically significant group difference in reduction of total percent of unmet needs; however, the intervention participants had a significantly greater reduction in the proportion of unmet needs in the two domains of safety and legal/advance care planning domains relative to control participants.³⁹⁷

Caregiver burden. A benefit of care and case management on caregiver burden relative to usual care or other minimal interventions was evident. The effects were relatively larger than those seen for other types of caregiver interventions. Of the 12 trials reporting a measure of caregiver burden, five found a statistically significant benefit of caregiver interventions after 6 to 18 months. The combined standardized effect was -0.54 (95% CI, -0.85 to -0.22; k=8; n=1,215; I^2 =82.9%) (**Figure 17**) among the eight trials that could be pooled, translating to a between-group difference of approximately 3.5 to 4 points on the Zarit-22. Statistical heterogeneity was substantial, consistent with the clinical heterogeneity among the trials and interventions themselves.

Caregiver mental health. Fewer trials (k=7) reported caregiver depression outcomes. While effects trended toward a benefit of care management interventions, the effects were small, and a meta-analysis of available data indicated no association (MD, -0.13 [95% CI, -0.29 to 0.02]; k=4; n=668; I^2 =0%) (**Figure 18**).

Caregiver QOL. Caregiver QOL was again variably measured, and while self-reported QOL tended to improve in intervention participants and decrease in control participants, few trials reported consistent favorable effects across measures or time.

Other patient outcomes. In terms of patient outcomes, there were mixed findings related to behavioral and neuropsychiatric symptoms, measures of depressive symptoms, and QOL, with some trials finding very small benefits of the intervention on such outcomes and others finding no effects. Besides the one trial that reported a measure of unmet care needs related to care coordination, no other trial reported on how care or case management interventions affected clinician, patient, or family decision making.

Harms. None of the trials of care or case management interventions reported on AEs related to the trial.

Other Caregiver and Caregiver-Patient Dyad Interventions

Study, population, and intervention characteristics. We included 13 additional trials (n=2,702) that evaluated a caregiver or caregiver-patient dyad intervention that were unique in their intervention and were categorized as "other" interventions. Only three of these trials were new to this update. Interventions were: physical activity counseling for the caregiver; a multicomponent dyadic intervention; social support only; assessment and treatment planning or multidisciplinary assessment only; or another intervention.

Three fair-quality trials (n=293) focused on increasing physical activity of caregivers with a primary aim of reducing caregiver burden and improving caregivers' QOL.^{402, 404, 405} All

recruited caregivers of persons with dementia. One trial in the United States limited inclusion to female caregivers⁴⁰⁵ and another, also in the United States, comprised only spousal caregivers (all of whom ended up being female).⁴⁰² The remaining trial in Japan recruited caregivers living with the person with dementia.⁴⁰⁴ The majority of women in both U.S. trials were white (>85%); race/ethnicity of caregivers in the Japanese trial was not reported. All three interventions included very little in-person contact with caregivers; rather, counseling and physical activity prescriptions were provided entirely via video and telephone,⁴⁰² telephone only,⁴⁰⁵ or a one-time prescription for caregivers to participate in moderate-intensity physical activity and pedometer and journal for recording activity.⁴⁰⁴ Two additional trials (1 good-quality trial and 1 new fairquality trial) (n=264) evaluated multicomponent dyadic interventions that included exercise training, psychoeducation, and skills training to both patients and caregivers in their homes for 3 to 6 months.^{410, 412} Each had slightly different aims. In the new trial in the Netherlands, both patients with mild dementia (MMSE, 21.0) and the caregivers with whom they lived simultaneously received exercise training, psychoeducation, communication skills training, and pleasant skills training in an attempt to improve patients' mood, behavior, and physical function as well as caregivers' mood and perceived burden.⁴¹⁰ In the older, good-quality trial, patients with moderate dementia (MMSE, 16.7) received exercise training and their caregivers received psychoeducation with an aim of reducing functional dependence and delaying institutionalization of the patient with dementia.⁴¹²

Three additional fair-quality trials (n=486) tested the effects of a caregiver social support intervention on caregivers' QOL and well-being.^{401, 409, 413} Two trials took place in the United States, while the other took place in the United Kingdom. All caregivers were caring for persons with dementia, although the severity of dementia was not reported. Most caregivers were female in all three trials (range, 64% to100%). In two trials, peer volunteers were matched with caregivers and provided informational and emotional support through weekly home visits over the course of 2^{409} or 6 months.⁴⁰¹ In the other, telephone-based support groups were offered to caregivers through 26 weekly calls over 6 months.⁴¹³

Three fair-quality trials (n=1,341) focused on providing comprehensive medical and cognitive assessments, including an assessment of caregivers' impressions and well-being, and providing a standardized treatment plan.^{403, 407, 408} One each took place in the United States, Australia, and France. In all cases, persons with moderate dementia (MMSE range, 16.6 to 19.7) and their caregivers took part in the intervention. The intensity of the interventions varied: in the U.S.-based trials, participants took part in eight sessions over 4 months, in the trial in Australia, patients and caregivers attended a hospital memory clinic on two occasions over the course of a year, whereas in the trial in France, dyads met with a multidisciplinary team twice a year for 2 years.

One additional good-quality trial in the Netherlands (n=301) tested the effects of a provider training program to train professionals in the assessment of and strategies for reducing caregiver burden.⁴¹¹ And, the final new, good-quality trial evaluated the effects of a Transcendental Meditation® program on the stress and QOL of 17 dementia caregivers in Australia.⁴⁰⁶

Results. None of these trials showed a consistent benefit on patient or caregiver outcomes compared with control conditions. The pooled effects of the few trials reporting caregiver burden

(Figure 17) or caregiver depressive symptoms (Figure 18) found inconsistent and imprecise results. Only one trial (n=160) reported adverse events experienced by the caregivers, with none occurring in either group over the course of the 2-month intervention.⁴⁰³

Chapter 4. Discussion

Summary of Evidence

We identified only one trial that provided direct evidence on the benefits and harms of screening for cognitive impairment. As such, our review primarily answers two questions: 1) How well does screening detect dementia or MCI in primary care? and 2) How effective are interventions to improve patient or caregiver outcomes in persons with mild to moderate dementia or MCI? We identified more than 260 studies that addressed these questions, more than a quarter of which were identified as part of this update. Despite the accumulation of new data, we believe that the conclusions are concordant with the findings of the previous review.^{105, 106}

Table 22 presents our summary of findings for all KQs as well as our assessment of the strength of evidence for each body of evidence.

Screening

Our review identified a very large body of well-conducted test-accuracy studies that evaluated brief screening instruments in unselected, community-dwelling older adults. In general, these instruments have adequate sensitivity (mostly \geq 75%) and specificity (mostly \geq 80%) to detect dementia, although estimates vary and the optimal diagnostic thresholds or cutoffs for many of these instruments are unclear. Across all instruments, sensitivity was generally higher in the detection of dementia than in the detection of cognitive impairment (inclusive of MCI alone or MCI and dementia diagnoses), although the confidence intervals often overlapped and the cutoffs were not always adjusted to identify a lower level of impairment. Because many instruments focus preferentially on memory dysfunction (as opposed to other domains of cognitive function), it is thought that some instruments may perform better (or more consistently) for different types of dementia. For instance, memory loss is the hallmark of AD dementia but is not necessarily impaired at an early stage with other types of dementia. Unfortunately, most studies did not specify what types of dementia were identified, although most cases are presumed to be AD.

Even though this is a large body of evidence, only a handful of instruments have been evaluated in more than one study and few are very brief instruments that may be more applicable to primary care. The MMSE is the most thoroughly studied instrument, but it has a relatively long administration time (~7 to 10 minutes) and is not available for use without cost. Our bivariate pooled analysis for the MMSE at a cutoff of 23 or less or 24 or less (≤ 23 is the recommended cutoff) resulted in 89 percent sensitivity (95% CI, 0.85 to 0.92; I^2 =58.7%) and 90 percent specificity (95% CI, 0.86 to 0.93; I^2 =97.4%) (k=14; n=11,972) to identify dementia. Among the other instruments examined in at least two studies with adequate test performance to detect dementia among primary care–relevant populations, are: very brief instruments such as the Clock Drawing Test, the MIS, which includes the Memory Impairment Screen Telephone and Mental State Questionnaire, the Mini-Cog, verbal fluency tests, the AD8, and the Functional Activities Questionnaire; brief instruments such as the Abbreviated Mental Test, Montreal Cognitive Assessment, 7-Minute Screen, and Saint Louis University Mental Status Examination; and the longer, self-administered IQCODE short and long forms. Four of these instruments (the Mini-Cog, MIS, AD8, and short IQCODE) and the GPCOG are endorsed by the Alzheimer's Association, Gerontological Society of America, or NIA for use in primary care. In all cases, administration of these structured screening instruments is advised if signs or symptoms of cognitive impairment are present upon review of a health risk assessment or through clinical observation or if concerns are raised by the patient or informant.^{103, 104, 415}

Only one trial has examined the potential benefits and harms of screening (vs. no screening) on patient-reported outcomes and measures of health care utilization and future planning. In that one trial, there was no evidence of harm (i.e., no greater increase in symptoms of depression or anxiety) nor benefit (i.e., no difference in health-related QOL, health care utilization, or advanced planning) at 1, 6, and 12 months following screening. Importantly, more than a third of primary care patients age 65 years and older eligible for the trial agreed to participate and of those in the screening arm who screened positive (7.7%), two-thirds refused to go on for further diagnostic assessment and followup care.

Hypothesized Benefits and Harms of Screening

Hypothesized benefits of screening for, or early detection of, cognitive impairment include the ability to: 1) optimize current medical management (e.g., search for potentially treatable or reversible disorders such as medication interactions, depression, and thyroid disease), factor in patient comprehension of and compliance with treatment plans and other conditions, avoid medications with anticholinergic effects, and better manage related symptoms, such as depression and irritability; 2) enhance understanding of the disease, including its symptoms and course and thereby help caregivers and patients better adapt to and manage the diagnosis; 3) help ensure appropriate access to programs and services for patients and families; and 4) ensure risk reduction (e.g., consider strategies to prevent delirium, motor vehicle accidents, medication errors, and financial difficulties).⁴¹⁶ Perhaps the best rationale to routinely screen for cognitive impairment in older adults is that early diagnosis can positively influence decision making that leads to improved patient outcomes and reduced future costs. This may include facilitating involvement of patient and caregivers in planning medical, educational, and psychosocial interventions to suit their needs; starting early so the patient can still participate in medical, legal, and financial decisions; and making proxy plans.⁴¹⁶ While these are all logical arguments, there is currently little or no empirical evidence, including qualitative evidence, to support them.⁴¹⁷

Screening for cognitive impairment may also have direct or indirect harms as a result of diagnostic inaccuracy (false-positives and false-negatives) and because of the negative emotions and stigmatization that may arise once the patient is diagnosed.^{418, 419} We only found one trial however, to substantiate or refute concerns about harms of screening. Recent systematic reviews regarding patients' attitudes and preferences about screening for dementia found mixed evidence. Some studies suggested that patients have no concerns and welcome having their memory evaluated, whereas others suggested that few persons would agree to routine screening for memory problems for reasons such as stigma.^{417, 420} Additional cross-sectional evidence in this review suggested that caregivers and the general public believe they will benefit from being screened for dementia, in part because there are effective treatments and financial benefits.^{417, 421},

⁴²² However, a few studies suggest that a high proportion (48% to 67%) of patients who screen positive for cognitive impairment refuse a diagnostic evaluation.^{423, 424}

Some studies suggest that a dementia diagnosis can be difficult for patients, whereas others find no deleterious associations. One recent study found that patients experienced higher stress, greater depression, and lower QOL with awareness of their diagnosis of MCI or early-stage AD vs. those who were unaware of their condition.⁴²⁵ Similarly, another study found that older adults who knew they were ApoE4 carriers reported more symptoms of cognitive decline and performed more poorly on measures of memory than adults who were ApoE4 carriers but had no information about their genetic risk.⁴²⁶ Other studies, however, have found no association between a formal dementia diagnosis and poor psychological health outcomes.⁴²⁷⁻⁴³¹ Given the cross-sectional nature of the data, these studies have many limitations, and none provided a comprehensive look at the harms (or benefits) of routine screening.

Treatment

Our review was not a comprehensive synthesis of all treatment and management options for persons with cognitive impairment; instead, we focused on selected interventions aimed at persons with mild to moderate dementia or MCI (i.e., those populations more representative of screen-detected older adults with cognitive impairment). We reviewed available pharmacologic interventions in the United States, including FDA-approved medications for use in AD such as AChEIs and memantine, potentially disease-modifying medications (i.e., antihypertension therapy, HMG Co-A reductase inhibitors, NSAIDs, and gonadal steroids), and vitamins and supplements. Nonpharmacologic interventions represented in this review included focused and complex interventions aimed at the patient (i.e., cognitive-focused interventions, exercise interventions, and multicomponent interventions) and focused and complex interventions aimed at the caregiver-patient dyad, including psychoeducation and care management or care coordination interventions.

Overall, based on the large body of evidence, AChEIs (donepezil, galantamine, and rivastigmine) and memantine can improve global cognitive function in the short term. The improvements seen, however, are small and may not be clinically important. On average, differences between persons taking these medications and those receiving placebo favored the medications by only about 1 to 2.5 points on the ADAS-Cog and 0.50 to 1.25 points on the MMSE. The values commonly accepted as clinically important are an ADAS-Cog change of 4 points or more (on a scale of 0-70) or an MMSE change of 3 points or more (on a scale of 0-30).¹⁰⁷ Given the consistency in the effect estimates across trials and precision in these estimates over time, we are moderately confident that our pooled estimates and the results of the body of evidence lie close to true effects. While measures of global function were less commonly reported, they were still reported in most medication trials. AChEIs and memantine increased the likelihood of improving or maintaining patients' global function by 15 percent (for memantine) to 50 percent (for rivastigmine) in the short term (generally 6 months or less) compared with placebo. There was limited evidence about the effects of these medications on measures of physical function and other important patient-reported outcomes, and the measures showed mixed results when they were reported. None of the trials of medications reported QOL outcome measures. Almost all

available evidence is from trials in persons with dementia, particularly those with AD and those with moderate as opposed to mild forms of dementia. Evidence for these medications in persons with MCI is much more limited. Trials of donepezil and memantine in patients with MCI showed no benefit on global cognitive function or in the rate of conversion from MCI to AD.

Side effects are common with all these medications and discontinuation due to AEs from AChEIs, but not memantine, was higher in treatment groups than in control groups. While there did not appear to be an increase in SAEs in the medication trials of limited duration, some of the individual studies, including observational evidence, reported increased rates of bradycardia, and relatedly, of syncope, falls, and need for pacemaker placement among those exposed vs. unexposed to AChEIs. We did not abstract and analyze common adverse reactions, but the types and relative frequencies are well-described.⁴³² The most common side effects for AChEIs include gastrointestinal symptoms (i.e., nausea, vomiting, diarrhea, anorexia, and abdominal discomfort), central nervous system symptoms (i.e., dizziness, headaches, sleep disturbance, somnolence, confusion, fatigue, depression, and other mood or neuropsychiatric disturbances), and cardiovascular signs/symptoms (i.e., bradycardia, hypertension, syncope, and chest pain). The most common adverse reactions for memantine include gastrointestinal symptoms (i.e., constipation, vomiting), central nervous system symptoms (i.e., dizziness, headaches, somnolence, confusion, fatigue), and cardiovascular signs (i.e., hypertension).

We have limited confidence in the evidence regarding effects of other medications, vitamins, and supplements on important functional outcomes. Although some individual trials reported promising effects particularly for vitamin E supplementation, in general, there was no consistent benefit on cognitive or physical function among those with mild to moderate dementia or MCI within each class of therapy. Harms of these agents were not clearly higher in intervention groups than in control groups.

Most of the new evidence in this review is related to nonpharmacologic patient interventions, namely cognition-focused interventions and exercise interventions among those with mild to moderate dementia (not identified through screening). While there was a relatively large number of studies, most of the individual trials were small (<100 participants). There was no overall evidence that cognitive stimulation, training, or rehabilitation improved global or domainspecific measures of cognitive function at 3 to 12 months followup. Effect estimates generally favored the intervention groups over control groups, but the magnitude of effect was inconsistent in trials and represented very wide confidence intervals (ranging from no effect to a large effect). While a pooled analysis of cognitive training, stimulation, and rehabilitation intervention trials found a small, statistically significant mean difference of about 1.5 points on the MMSE, there was substantial clinical and statistical heterogeneity. Furthermore, there was no overall pooled difference between groups when looking specifically at measures on the ADAS-Cog. There was also no evidence that the effect of the interventions was modified based on study, population, or intervention characteristics and no evidence of longer-term effects on cognitive function. Only about half of the trials evaluating cognition-focused interventions reported other important patient outcomes such as measures of ADLs and IADLs, neuropsychiatric symptoms, or QOL, with most finding very little change over time in both intervention and control participants or small and relatively equal decline in these measures over time. Though the scales range considerably, the majority of between-group differences did not exceed a 1-point difference in

favor of either group on any of these measures. Similarly, trials of exercise interventions resulted in no marked improvement in measures of global or domain-specific cognitive function compared with no intervention or usual care. There was a favorable pattern, however, for the effect of exercise interventions on measures of physical function, with those taking part in exercise interventions experiencing small improvements of unclear clinical significance (e.g., by approximately 1 point), whereas control groups reported worsening function over 3 months to 1 year. This evidence is limited by possible selective reporting (only half of the exercise trials reported this outcome) and considerable heterogeneity in the instruments used to measure these outcomes. Likewise, there was a pattern of effect favoring the exercise groups compared with the control groups for measures of global cognitive function and neuropsychiatric and behavioral symptoms, but differences between groups were small and of unclear clinical magnitude. There were no clear benefits of multicomponent or other patient-level nonpharmacologic interventions on any important patient-reported outcome. Even those trials that specifically targeted improvements in patients' well-being and QOL found no differences between groups on these measures. Regarding all types of patient-level interventions, potential harms were rarely reported. Given the considerable heterogeneity both in the clinical characteristics of these trials and the lack of consistency and precision in the effect sizes across trials, we have low confidence that the pooled effects and patterns of effects we report in this review reflect true average effects. The heterogeneity in each individual intervention arm and differences in the populations, settings, and trial quality made it difficult to disentangle what variables might be driving larger effects, even within subgroups of interventions.

The largest body of evidence in our review included trials evaluating interventions targeting caregivers of those with dementia or the caregiver-patient dyad. Almost all the included evidence pertained to patients (or their caregivers) with dementia; very few included any patients with MCI. Further, most trials represented patients with moderate as opposed to mild dementia and none of the interventions were linked with a standard screening program. In general, these individual trials were larger and longer in duration than the other nonpharmacologic studies (likely due to the younger age and relative health of caregivers compared with patients and therefore, a greater ability to minimize loss to followup). Among trials evaluating a psychoeducation intervention for caregivers, we found that these interventions can reduce caregiver burden and depression more so than no intervention, usual care, or other brief interventions, but the average effects for both outcomes were small. Interpretation of the pooled standardized effect sizes and their 95 percent confidence intervals ranged from very small (about 0.1) to small (about 0.3), representing between-group differences of approximately 0.5 to 3.5 points on the Zarit-22 (88-point scale) or 1.5 to 4 points on the CES-D (60-point scale). In most cases, caregivers in the intervention groups reported experiencing fewer depressive symptoms or a reduced burden over time, whereas caregivers in the control groups reported slightly more symptoms or little change over time. Slightly larger effects on caregiver burden were seen among trials evaluating comprehensive care or case management interventions. The pooled effects of care management interventions vs. usual care or other brief interventions on caregiver burden indicated small (0.2) to large (0.8) effects, translating to a between-group difference of approximately 3.5 to 4 points on the Zarit-22. While effects trended toward a benefit of care management interventions on caregiver depression, the effects were small, and pooling all available data indicated no association. Regarding both outcomes and trials, the 95 percent confidence intervals of the study-level between-group differences were often wide, suggesting a

range in benefit (or lack thereof) across participants. There was no evidence in our metaregressions, however, that one type of intervention (psychoeducation vs. care or case management vs. other caregiver or caregiver-patient dyad interventions) was more effective than the others regarding measures of caregiver burden or caregiver depression. Likewise, there were no study, population, or intervention characteristics that consistently and robustly predicted larger effects on caregiver burden or depression outcomes.

Many of these interventions, particularly those employing care management programs, had explicit goals to maximize the ability of both patients and caregivers to keep patients at home or in assisted living settings and out of skilled nursing facilities. There was a pattern of benefit where fewer persons in the intervention group were placed in nursing homes (or experienced delayed time to institutionalization) compared with those in usual care, but very few trials found these differences to be statistically significant. While delay of institutionalization may be one of the most clinically important outcomes to examine within this field, it is potentially inappropriate if it is accompanied by increased stress or negative mental and physical health on the part of family caregivers.^{433, 434} Few studies, however, have examined this relationship. Other outcomes such as caregiver or patient QOL, patient mental health and neuropsychiatric symptoms, and patient functional ability were sparsely reported across the trials, with no consistent evidence of a benefit. Decision making and preparation for meeting dementia-related needs were only reported by one trial each, with neither finding statistically significant benefit of the interventions vs. control conditions on overall scores for these measures. Only two trials reported monitoring harms related to the caregiver interventions and no harms were evident.

Comparison With Other Existing Systematic Reviews

The findings of our review are consistent with the conclusions of other recent systematic reviews that have examined the test performance of instruments to detect dementia or MCI.^{435, 436} Even with the expansion of scope in these other systematic reviews (e.g., inclusion of any clinical setting, case-control studies), these other reviews also concluded the MMSE is the most-studied instrument with test performance similar to what was seen in our review (pooled sensitivity and specificity of 0.71 and 0.74 to detect MCI and 0.81 and 0.89 to detect dementia). They additionally note that several instruments have comparable test performance as the MMSE, such as the Mini-Cog or MoCA.

Likewise, the findings of our review are generally concordant with those other recent systematic reviews that have synthesized the evidence on the benefits and harms of pharmacological and nonpharmacological interventions in persons with MCI and mild to moderate dementia. Similar to our review, most of the identified recent reviews of trials testing the effectiveness of AChEIs and memantine found short-term small statistically significant improvements on global cognitive function and global function, as well as increased risk of adverse events compared with placebo groups.⁴³⁷⁻⁴⁴² Likewise, our findings on the benefits and harms of other medications, vitamins, and supplements are consistent overall with those of comparable reviews, with primarily null findings across all reported outcome types.⁴⁴³⁻⁴⁴⁶

Furthermore, recent reviews of trials evaluating patient-level cognitive-focused and physical activity interventions accord with our findings in that there was little to no benefit of the interventions on global and domain-specific cognitive function.^{325, 326, 447} Similar to our review, one review of physical activity interventions found a minor improvement in physical function.⁴⁴⁷ On the contrary, evidence from recent reviews of studies targeting caregivers of persons with dementia was less consistent with our findings.⁴⁴⁸⁻⁴⁵¹ That is, three of the four identified reviews found no benefit for caregiver burden, with inconsistent findings for other outcomes (e.g., depression, QOL, anxiety) associated with counseling, case management, and mindfulness-based stress reduction interventions. These discordant findings are primarily due to key differences in scope resulting in lesser evidence bases in each of the respective reviews.

Implementation of Screening

Our review included an examination of brief screening instruments that could be administered in primary care (i.e., before, during, or after visits) by a clinician or primary care staff with minimal training or self-administered by the patient or a close informant. Most of the included instruments are available in the public domain, although the MMSE (which remains the best-studied instrument) is a notable exception. The opportunity cost of screening can be minimized by choosing very brief instruments or those that can be self-administered. However, we acknowledge that there are implications for the subsequent workup of persons with screen-detected cognitive impairment, including issues regarding guidance on best practices for satisfactory diagnostic workup, resources and capacity for neuropsychological testing or referral to neurology, psychiatry, or geriatric specialty services (if needed), and the potential for refusal of diagnostic workup and issues around acceptability of further testing and the diagnosis itself.

Routine Screening vs. Case Finding

There is disagreement about the best approach to detect cognitive impairment. Many believe the best approach is to routinely administer a brief cognitive test to all older adults or older adults older than a specified age, then provide a diagnostic evaluation or referral for those whose scores are consistent with possible dementia. Also recommended is a stepwise approach of administering a brief cognitive test only to persons at high risk for or who have suspected cognitive impairment based on clinician observation, self- (or informant-) reported concerns, or review of a health risk assessment or single item indicating subjective cognitive complaints or concerns related to one's everyday function. This approach can be viewed as a two-step screening process or a case-finding approach: screening with a question on cognitive complaints and an assessment of ADLs/IADLs, followed by administration of a brief instrument designed to assess cognitive impairment. We found no evidence to support or refute this proposed method. We did, however, find one study that used electronic medical record data to identify patients at increased likelihood of having undiagnosed dementia based on their history of stroke and emergency department visits and found a higher likelihood of dementia diagnoses among that group vs. controls.⁴⁵² Our review focused on screening among older adults without known cognitive impairment and therefore did not address the use of brief cognitive instruments in persons with observed deficits (i.e., case-finding). We did, however, include studies that enrolled patients with subjective memory complaints, given the high prevalence of memory complaints in general among older adults. No pattern was seen in the test performance or prevalence of dementia for these studies compared with those that did not have a subjective memory complaint requirement. Further research comparing which criteria (e.g., age, comorbid conditions, functional status, self-reported memory complaint) should lead primary care clinicians to conduct cognitive screening, and perhaps how often screening should be conducted, is needed.

Age at Which to Start (and Stop) Screening

Age is the biggest risk factor for cognitive impairment. Therefore, if screening is advisable, using age to target cognitive screening is a reasonable strategy. While population estimates vary, the best estimates for dementia prevalence in North America are generally low (<5%) before age 75 years and rises to approximately 10 percent among 75- to 84-year-olds and nearly 30 percent among those age 85 years and older.^{4, 23}

The prevalence of dementia greatly affects the positive predictive value (PPV) of testing and therefore can be used to infer reasonable ages at which to start screening for cognitive impairment or possibly target subpopulations in which it could be reasonable to start earlier screening. Looking across a range of sensitivities and specificities representative of currently available brief cognitive screening instruments based on our review, it appears that the PPV is greater than 60 percent if the prevalence of underlying dementia approximates 30 percent (**Table 23**). The general prevalence is much lower in populations younger than age 85 years, as are the PPVs across a range of sensitivities and specificities. If screening is advisable, there is no compelling rationale to stop screening based on increasing prevalence with age. Therefore, the rationale for stopping screening should be based on evidence that intervening in the oldest old (age 85 years and older) does not improve important outcomes or the harms of intervening outweigh the potential benefit. Our review does not support or refute this idea. Arguably, cognitive screening in the oldest old may be considered case-finding as opposed to true screening, as the prevalence of memory complaints is extremely high in this group.

Screening Interval

Likewise, at a population level, the timing and frequency of rescreening is partly dependent on the incidence of dementia and the test performance of the cognitive screening instrument (i.e., rescreening can improve the sensitivity to detect dementia). Overall, there is a wide range of incidence rates. The incidence rate grows exponentially with age, and the estimated doubling time of AD incidence in North America is 6 years.^{27, 453} Incidence rates from one U.S.-based longitudinal cohort study demonstrated that rates increase with age, from 11.7 cases per 1,000 person-years at younger than age 75 years to 32.0 cases per 1,000 person-years at ages 75 to 79 years, 57.5 cases per 1,000 person-years at ages 80 to 84 years, and 95.9 cases per 1,000 person-years at age 85 years and older.⁴⁵⁴ If screening is advisable, based on incidence alone, it is reasonable to offer repeated screening, such as annually, and it may be reasonable to increase the frequency of repeated screening with increasing age (or other risk factors), such as more frequent screening in the oldest old (age \geq 85 years), based on the very high incidence of

dementia in this group. Repeated screening will also improve the cumulative sensitivity to detect dementia. Therefore, it may be reasonable to choose an instrument or cutoff for an instrument with very high specificity (e.g., >90%) at the expense of a slightly lower sensitivity, knowing that with repeated screening over time, the cumulative sensitivity will be much higher. Thresholds for acceptable levels of sensitivity and specificity, and therefore choice of instrument and cutoffs, may vary depending on the stakeholder's resources and preferences.

Limitations of Our Approach

Our review has several limitations given our primary aim and target audience—the USPSTF. It was relatively narrow in scope and was not meant to be a comprehensive review of all cognitive screening instruments nor all dementia treatments. We focused on the best-quality evidence for the diagnostic accuracy of cognitive screening instruments in community-dwelling older adults relevant to primary care in the United States. Therefore, we excluded case-control studies, instruments with lengthy administration times, and studies among institutionalized adults or among those selected based on cognitive impairment or clinically suspected cognitive impairment. Additionally, we did not address other important aspects of screening test performance, including the psychometric properties of instruments (besides sensitivity and specificity), the comparative performance of screening instruments, and the ability to improve diagnostic performance by combining screening instruments.

Likewise, our review focused on best-quality evidence for interventions applicable to community-dwelling older adults with screen-detected cognitive impairment. We included only evidence among older adults (or their caregivers) with mild to moderate dementia or MCI and excluded studies among institutionalized older adults and those with severe dementia, trials of experimental therapy, and interventions aimed primarily at symptom management. Despite our best efforts, there may have been some inconsistency in operationalizing these inclusion criteria and in categorizing the interventions due to reporting in individual trials. We also did not address the comparative effectiveness of different types of interventions. Given the heterogeneity in the included evidence, even within subgroups of interventions, we were unable to explain important population or intervention characteristics that predicted larger effects or the minimum components of effective interventions.

Limitations of the Studies and Future Research Needs

Despite such a large body of research on the test accuracy of screening for cognitive impairment, as well as treatment and management of persons with dementia and MCI, there are several important limitations and research gaps in the evidence base. First is the lack of evidence around decision making outcomes. Experts in the field argue that early diagnosis is important because it influences clinical and patient decision making. While this is a reasonable argument, there is currently little to no empirical evidence to support it. Researchers should conduct screening trials or observational studies to demonstrate changes in decision making (at a minimum) and patient or caregiver outcomes (as an ideal). Studies examining how (and whether) earlier identification of cognitive impairment or earlier management of patients with dementia and their caregivers

influence clinician decision making (e.g., medical management of comorbid conditions) and patient and family decision making (e.g., advanced planning) are critical to improving management of this rapidly growing health care problem.

Second, the harms of screening are very poorly studied. Some have argued that the harms of screening, other than the opportunity cost, are minimal given the noninvasive nature of screening and subsequent diagnostic workup. Others have argued that the harms of screening and mislabeling persons with dementia are quite real given the variation in practice of diagnostic confirmation of disease. If a broader adoption of screening for cognitive impairment is implemented in primary care, we need a better understanding of what, or whether, harmful tradeoffs exist.

Third, while there are many well-designed diagnostic accuracy studies, there has been very little reproducibility in testing instruments, at consistent cutoffs and for specific conditions, in primary care populations. Well-conducted diagnostic accuracy studies for the most promising instruments or those currently endorsed in national guidance need to be reproduced in relevant populations. These diagnostic accuracy studies should report adequate baseline population characteristics, including age and education (characteristics known to affect normative values of the instrument). These studies should report multiple cut-points if applicable and be explicit about scoring methods or choice of cut-points (if multiple options exist). Furthermore, studies should be explicit in describing which types of dementia were identified and have large enough samples to report the test accuracy of the instrument in detecting different forms of dementia.

Fourth, while our report did not evaluate the role of biomarkers (such as those found in plasma, urine, or cerebrospinal fluid) or imaging in screening for diseases affecting cognition, such as AD (as this field is still developmental), it is an active field of research focused on early (even preclinical) detection of disease.⁴⁵⁵ If these types of tests prove useful in the diagnosis of types of dementia or MCI, they may provide an additional "gold standard" for diagnostic accuracy and calibration. They may also be useful for case-finding or screening purposes, should the eventual discovery of reliable, valid, sensitive, specific, and affordable tests be manifested.⁴⁵⁶

Fifth, a major limitation in the treatment literature is the short followup duration (generally 6 months or less for pharmacologic trials and 1 year or less for nonpharmacologic trials). Dementia is a chronic condition that worsens over time; while 1 year of observation provides time to monitor changes in most outcomes, it does not provide a long enough observation period for more distal outcomes such as nursing home placement or mortality. Indeed, most of the included evidence did not include reports on rates of institutionalization or mortality, nor was it powered to detect differences in such outcomes. We acknowledge, however, that trials in older adult populations with longer duration and followup run the risk of heightened attrition due to institutionalization and mortality in addition to more general tendencies of attrition seen in longer-term studies.

Sixth, there are numerous challenges surrounding measurement within the treatment literature. In general, trials offer little consistency in the specific outcomes reported. Even within specific outcomes, the wide variation in the measures make cross-study comparisons difficult. A strikingly high number of trials do not fully describe the instruments, including the scale range or

direction of benefit, used to measure key outcomes. This makes it nearly impossible to determine the magnitude of change reported in individual studies or to combine seemingly "like" outcomes in pooled analyses. In some cases, to be able to combine the most studies possible, we calculated SMDs rather than MDs according to the original scale of the instruments. These standardized effect sizes are generally harder to interpret and give no indication of the meaningfulness of any differences seen. Where we could, we provided an estimate of what the effect would be based on a standardized effect size to add in interpretation. Development of a set of agreed-upon patient and caregiver measures like those being populated in the National Institutes of Health Patient-Reported Outcome Measurement Information System would advance this area of research considerably.⁴⁵⁷

Seventh, the average treatment effects revealed by this body of evidence are disappointingly small. Consequently, it is difficult to interpret the clinical importance of such small changes. It is also possible that outcome measures themselves may have limited responsiveness (sensitivity to detect change) for patients with less pronounced cognitive impairment. For example, the ADAS-Cog and MMSE may have ceiling effects and therefore be unable to show benefit in persons with MCI or even mild dementia. Other important outcomes, such as global function, physical function, QOL, and institutionalization, were inconsistently reported (except for the CIBIC+, as reported in drug trial literature). Inconsistent reporting could be symptomatic of selective reporting or inconsistent use of these outcome measures. Whatever the reason, this limits our ability to interpret effects on these outcomes as a body of literature. Given these challenges in interpreting the clinical significance of benefit (or even lack of benefit) in treatment trials, we suggest that trials should consistently report a constellation of important self-reported and objective outcomes (e.g., emergency visits and institutionalization). This might be difficult given that trials are costly to conduct and followup is limited. For outcome measures with accepted thresholds of clinical significance, consistent and standardized (using same thresholds) reporting of results that is dichotomized into "responders" and "nonresponders" will also be helpful in interpreting the small average effects on continuous outcome measures.

Eighth, the overwhelming majority of evidence is in persons with AD, and additional research is needed on the effectiveness of various interventions in other types of dementia, including VaD, FTD, and DLB.

Finally, while our report did not evaluate the effectiveness of experimental therapies targeted to alter the disease process, disease-modifying therapies (e.g., those targeting amyloid-related mechanisms or tau-related mechanisms) to slow cognitive decline are an extremely active area of research.⁴⁵⁵ If these therapies are found to truly alter the disease process, there may be reason to change the benefit-to-risk ratio, which could have implications for routine screening for cognitive impairment.

Conclusions

Several brief screening instruments can adequately detect cognitive impairment, especially in populations with a higher prevalence of underlying dementia. There is no little evidence, however, that screening for cognitive impairment or early diagnosis of cognitive impairment

improves patient, caregiver, family, or clinician decision making or other important outcomes nor results in harms. There is a robust evidence base studying pharmacologic and nonpharmacologic interventions aimed at improving patient function and caregiver well-being. In general, there is support that AChEIs and memantine and interventions that support caregivers, including those who help coordinate care for patients and caregivers, can result in small improvements in the short term. Unfortunately, the average effects of these benefits are quite small and likely not of clinical significance. Additionally, most of the evidence pointing to positive effects is applicable to persons with moderate—as opposed to mild—dementia. Therefore, the applicability of the treatment evidence to persons with screen-detected cognitive impairment is unclear. Any benefits are further limited by the commonly experienced side effects of medications and the limited availability of complex caregiver interventions. Cognitive stimulation and training, exercise interventions, and other medications and supplements showed some favorable effects on patients' cognitive and physical function, but trial evidence lacked consistency and the estimates of benefit were imprecise. There is less evidence related to screening for and treating MCI. The test performance of the few instruments evaluated to detect MCI was lower than the sensitivity and specificity to detect dementia, despite more liberal cutoffs, and there is little evidence for any pharmacologic or nonpharmacologic interventions to preserve or improve patient functioning in persons with MCI.

References

- Moyer VA, U. S. Preventive Services Task Force. Screening for cognitive impairment in older adults: U.S. Preventive Services Task Force recommendation statement.[Summary for patients in Ann Intern Med. 2014 Jun 3;160(11). doi: 10.7326/P14-9017; PMID: 24663960]. Annals of Internal Medicine. 2014;160(11):791-7. PMID: 24663815. http://dx.doi.org/10.7326/M14-0496
- 2. American Psychiatric Association. Diagnostic and Statistic Manual of Mental Disorders. Washington, DC. 1994. PMID: None.
- 3. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC. 2013. PMID: None.
- 4. Plassman BL, Langa KM, Fisher GG, et al. Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology. 2007;29(1-2):125-32. PMID: 17975326. <u>http://dx.doi.org/10.1159/000109998</u>
- 5. Warner JP, Butler R, Gupta S. Dementia. BMJ Clin Evid. 2010;2010. PMID: 21726471.
- 6. Querfurth HW, LaFerla FM. Alzheimer's disease. N Engl J Med. 2010;362(4):329-44. PMID: 20107219. <u>http://dx.doi.org/10.1056/NEJMra0909142</u>
- Savva GM, Wharton SB, Ince PG, et al. Age, neuropathology, and dementia. N Engl J Med. 2009;360(22):2302-9. PMID: 19474427. <u>http://dx.doi.org/10.1056/NEJMoa0806142</u>
- Sonnen JA, Larson EB, Crane PK, et al. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann Neurol. 2007;62(4):406-13. PMID: 17879383. <u>http://dx.doi.org/10.1002/ana.21208</u>
- 9. Espino DV, Jules-Bradley AC, Johnston CL, et al. Diagnostic approach to the confused elderly patient. Am Fam Physician. 1998;57(6):1358-66. PMID: 9531917.
- 10. Halter JB, Ouslander JG, Tinetti ME, et al. Hazzard's Geriatric Medicine and Gerontology. New York: McGraw-Hill. 2009. PMID: None.
- 11. Matthews FE, Stephan BC, Bond J, et al. Operationalization of mild cognitive impairment: a graphical approach. PLoS Med. 2007;4(10):1615-9. PMID: 17973571. http://dx.doi.org/10.1371/journal.pmed.0040304
- 12. Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240-6. PMID: 15324367. http://dx.doi.org/10.1111/j.1365-2796.2004.01380.x
- 13. Petersen RC, Roberts RO, Knopman DS, et al. Mild cognitive impairment: ten years later. Arch Neurol. 2009;66(12):1447-55. PMID: 20008648. http://dx.doi.org/10.1001/archneurol.2009.266
- 14. Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56(3):303-8. PMID: 10190820.
- Mitchell AJ, Shiri-Feshki M. Rate of progression of mild cognitive impairment to dementia--meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand. 2009;119(4):252-65. PMID: 19236314. <u>http://dx.doi.org/10.1111/j.1600-0447.2008.01326.x</u>

- Seshadri S, Beiser A, Au R, et al. Operationalizing diagnostic criteria for Alzheimer's disease and other age-related cognitive impairment-Part 2. Alzheimers Dement. 2011;7(1):35-52. PMID: 21255742. <u>http://dx.doi.org/10.1016/j.jalz.2010.12.002</u>
- 17. Stephan BC, Kurth T, Matthews FE, et al. Dementia risk prediction in the population: are screening models accurate? Nat Rev Neurol. 2010;6(6):318-26. PMID: 20498679. http://dx.doi.org/10.1038/nrneurol.2010.54
- 18. Holsinger T, Deveau J, Boustani M, et al. Does this patient have dementia? JAMA. 2007;297(21):2391-404. PMID: 17551132. <u>http://dx.doi.org/10.1001/jama.297.21.2391</u>
- 19. Boise L, Neal MB, Kaye J. Dementia assessment in primary care: results from a study in three managed care systems. J Gerontol A Biol Sci Med Sci. 2004;59(6):M621-6. PMID: 15215282.
- Bradford A, Kunik ME, Schulz P, et al. Missed and delayed diagnosis of dementia in primary care: prevalence and contributing factors. Alzheimer Dis Assoc Disord. 2009;23(4):306-14. PMID: 19568149. http://dx.doi.org/10.1097/WAD.0b013e3181a6bebc
- 21. Prince M, Bryce R, Albanese E, et al. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013;9(1):63-75 e2. PMID: 23305823. http://dx.doi.org/10.1016/j.jalz.2012.11.007
- 22. Gaugler J, James B, Johnson T, et al. 2019 Alzheimer's disease facts and figures. Alzheimers Dement. 2019;15(3):321-87. PMID: None.
- Langa KM, Larson EB, Crimmins EM, et al. A Comparison of the Prevalence of Dementia in the United States in 2000 and 2012. JAMA Intern Med. 2017;177(1):51-8.
 PMID: 27893041. <u>http://dx.doi.org/10.1001/jamainternmed.2016.6807</u>
- 24. Goodman RA, Lochner KA, Thambisetty M, et al. Prevalence of dementia subtypes in United States Medicare fee-for-service beneficiaries, 2011-2013. Alzheimers Dement. 2017;13(1):28-37. PMID: 27172148. <u>http://dx.doi.org/10.1016/j.jalz.2016.04.002</u>
- 25. Clarfield AM. The decreasing prevalence of reversible dementias: an updated metaanalysis. Arch Intern Med. 2003;163(18):2219-29. PMID: 14557220. http://dx.doi.org/10.1001/archinte.163.18.2219
- 26. Jorm AF, Jolley D. The incidence of dementia: a meta-analysis. Neurology. 1998;51(3):728-33. PMID: 9748017.
- 27. Corrada MM, Brookmeyer R, Paganini-Hill A, et al. Dementia incidence continues to increase with age in the oldest old: the 90+ study. Ann Neurol. 2010;67(1):114-21.
 PMID: 20186856. <u>http://dx.doi.org/10.1002/ana.21915</u>
- 28. Potter GG, Plassman BL, Burke JR, et al. Cognitive performance and informant reports in the diagnosis of cognitive impairment and dementia in African Americans and whites. Alzheimers Dement. 2009;5(6):445-53. PMID: 19896583. http://dx.doi.org/10.1016/j.jalz.2009.04.1234
- 29. Tang MX, Cross P, Andrews H, et al. Incidence of AD in African-Americans, Caribbean Hispanics, and Caucasians in northern Manhattan. Neurology. 2001;56(1):49-56. PMID: 11148235. <u>http://dx.doi.org/10.1212/WNL.56.1.49</u>
- Chin AL, Negash S, Hamilton R. Diversity and disparity in dementia: the impact of ethnoracial differences in Alzheimer disease. Alzheimer Dis Assoc Disord. 2011;25(3):187-95. PMID: 21399486. http://dx.doi.org/10.1097/WAD.0b013e318211c6c9

- 31. Gurland BJ, Wilder DE, Lantigua R, et al. Rates of dementia in three ethnoracial groups. Int J Geriatr Psychiatry. 1999;14(6):481-93. PMID: 10398359.
- 32. Alzheimer's Association. 2012 Alzheimer's disease facts and figures. Alzheimers Dement. 2012;8(2):131-68. PMID: 22404854. http://dx.doi.org/10.1016/j.jalz.2012.02.001
- 33. Altmann A, Tian L, Henderson VW, et al. Sex modifies the APOE-related risk of developing Alzheimer disease. Ann Neurol. 2014;75(4):563-73. PMID: 24623176. http://dx.doi.org/10.1002/ana.24135
- 34. Rocca WA, Mielke MM, Vemuri P, et al. Sex and gender differences in the causes of dementia: a narrative review. Maturitas. 2014;79(2):196-201. PMID: 24954700. http://dx.doi.org/10.1016/j.maturitas.2014.05.008
- 35. Bischkopf J, Busse A, Angermeyer MC. Mild cognitive impairment--a review of prevalence, incidence and outcome according to current approaches. Acta Psychiatr Scand. 2002;106(6):403-14. PMID: 12392483.
- 36. Ward A, Arrighi HM, Michels S, et al. Mild cognitive impairment: disparity of incidence and prevalence estimates. Alzheimers Dement. 2012;8(1):14-21. PMID: 22265588. http://dx.doi.org/10.1016/j.jalz.2011.01.002
- 37. Mioshi E, Hsieh S, Savage S, et al. Clinical staging and disease progression in frontotemporal dementia. Neurology. 2010;74(20):1591-7. PMID: 20479357. http://dx.doi.org/10.1212/WNL.0b013e3181e04070
- Sollberger M, Neuhaus J, Ketelle R, et al. Interpersonal traits change as a function of disease type and severity in degenerative brain diseases. J Neurol Neurosurg Psychiatry. 2011;82(7):732-9. PMID: 21172858. <u>http://dx.doi.org/10.1136/jnnp.2010.205047</u>
- 39. Xie J, Brayne C, Matthews FE, et al. Survival times in people with dementia: analysis from population based cohort study with 14 year follow-up. BMJ. 2008;336(7638):258-62. PMID: 18187696. <u>http://dx.doi.org/10.1136/bmj.39433.616678.25</u>
- 40. Rait G, Walters K, Bottomley C, et al. Survival of people with clinical diagnosis of dementia in primary care: cohort study. BMJ. 2010;341:c3584. PMID: 20688840. http://dx.doi.org/10.1136/bmj.c3584
- 41. Brookmeyer R, Corrada MM, Curriero FC, et al. Survival following a diagnosis of Alzheimer disease. Arch Neurol. 2002;59(11):1764-7. PMID: 12433264.
- 42. Roberson ED, Hesse JH, Rose KD, et al. Frontotemporal dementia progresses to death faster than Alzheimer disease. Neurology. 2005;65(5):719-25. PMID: 16157905. http://dx.doi.org/10.1212/01.wnl.0000173837.82820.9f
- 43. Hodges JR, Davies R, Xuereb J, et al. Survival in frontotemporal dementia. Neurology. 2003;61(3):349-54. PMID: 12913196.
- 44. Boustani M, Peterson B, Hanson L, et al. Screening for dementia in primary care: a summary of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2003;138(11):927-37. PMID: 12779304.
- 45. Ballard C, O'Brien J, Morris CM, et al. The progression of cognitive impairment in dementia with Lewy bodies, vascular dementia and Alzheimer's disease. Int J Geriatr Psychiatry. 2001;16(5):499-503. PMID: 11376466.
- 46. Hanyu H, Sato T, Hirao K, et al. Differences in clinical course between dementia with Lewy bodies and Alzheimer's disease. Eur J Neurol. 2009;16(2):212-7. PMID: 19146642. http://dx.doi.org/10.1111/j.1468-1331.2008.02388.x

- 47. McKeith IG, Dickson DW, Lowe J, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65(12):1863-72. PMID: 16237129. <u>http://dx.doi.org/10.1212/01.wnl.0000187889.17253.b1</u>
- 48. Engelborghs S, Maertens K, Nagels G, et al. Neuropsychiatric symptoms of dementia: cross-sectional analysis from a prospective, longitudinal Belgian study. Int J Geriatr Psychiatry. 2005;20(11):1028-37. PMID: 16250064. http://dx.doi.org/10.1002/gps.1395
- 49. Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456-77. PMID: 21810890. <u>http://dx.doi.org/10.1093/brain/awr179</u>
- 50. Mathias JL, Morphett K. Neurobehavioral differences between Alzheimer's disease and frontotemporal dementia: a meta-analysis. J Clin Exp Neuropsychol. 2010;32(7):682-98. PMID: 20063255. <u>http://dx.doi.org/10.1080/13803390903427414</u>
- 51. Manly JJ, Tang MX, Schupf N, et al. Frequency and course of mild cognitive impairment in a multiethnic community. Ann Neurol. 2008;63(4):494-506. PMID: 18300306. http://dx.doi.org/10.1002/ana.21326
- 52. Ganguli M, Snitz BE, Saxton JA, et al. Outcomes of mild cognitive impairment by definition: a population study. Arch Neurol. 2011;68(6):761-7. PMID: 21670400. http://dx.doi.org/10.1001/archneurol.2011.101
- 53. Loewenstein DA, Acevedo A, Small BJ, et al. Stability of different subtypes of mild cognitive impairment among the elderly over a 2- to 3-year follow-up period. Dement Geriatr Cogn Disord. 2009;27(5):418-23. PMID: 19365121. http://dx.doi.org/10.1159/000211803
- 54. Ward A, Tardiff S, Dye C, et al. Rate of conversion from prodromal Alzheimer's disease to Alzheimer's dementia: a systematic review of the literature. Dement Geriatr Cogn Dis Extra. 2013;3(1):320-32. PMID: 24174927. <u>http://dx.doi.org/10.1159/000354370</u>
- 55. Larrieu S, Letenneur L, Orgogozo JM, et al. Incidence and outcome of mild cognitive impairment in a population-based prospective cohort. Neurology. 2002;59(10):1594-9. PMID: 12451203. <u>http://dx.doi.org/10</u>.1212/01.WNL.0000034176.07159.F8
- 56. Roberts RO, Geda YE, Knopman DS, et al. The incidence of MCI differs by subtype and is higher in men: the Mayo Clinic Study of Aging. Neurology. 2012;78(5):342-51. PMID: 22282647. http://dx.doi.org/10.1212/WNL.0b013e3182452862
- 57. Johansson B, Zarit SH. Early cognitive markers of the incidence of dementia and mortality: a longitudinal population-based study of the oldest old. Int J Geriatr Psychiatry. 1997;12(1):53-9. PMID: 9050424. <u>http://dx.doi.org/10.1002/(SICI)1099-1166(199701)12:1</u><53::AID-GPS507>3.0.CO;2-M
- 58. Wilson RS, Aggarwal NT, Barnes LL, et al. Biracial population study of mortality in mild cognitive impairment and Alzheimer disease. Arch Neurol. 2009;66(6):767-72. PMID: 19506138. <u>http://dx.doi.org/10.1001/archneurol.2009.80</u>
- 59. Guehne U, Luck T, Busse A, et al. Mortality in individuals with mild cognitive impairment. Results of the Leipzig Longitudinal Study of the Aged (LEILA75+). Neuroepidemiology. 2007;29(3-4):226-34. PMID: 18073495. http://dx.doi.org/10.1159/000112479
- 60. Ingles JL, Fisk JD, Merry HR, et al. Five-year outcomes for dementia defined solely by neuropsychological test performance. Neuroepidemiology. 2003;22(3):172-8. PMID: 12711849. <u>http://dx.doi.org/69891</u>

- 61. Palmer K, Wang HX, Backman L, et al. Differential evolution of cognitive impairment in nondemented older persons: results from the Kungsholmen Project. Am J Psychiatry. 2002;159(3):436-42. PMID: 11870008. http://dx.doi.org/10.1176/appi.ajp.159.3.436
- 62. Fisk JD, Rockwood K. Outcomes of incident mild cognitive impairment in relation to case definition. J Neurol Neurosurg Psychiatry. 2005;76(8):1175-7. PMID: 16024904. http://dx.doi.org/10.1136/jnnp.2004.053751
- 63. Fisk JD, Merry HR, Rockwood K. Variations in case definition affect prevalence but not outcomes of mild cognitive impairment. Neurology. 2003;61(9):1179-84. PMID: 14610117.
- 64. Plassman BL, Williams JW, Jr., Burke JR, et al. Systematic review: factors associated with risk for and possible prevention of cognitive decline in later life. Ann Intern Med. 2010;153(3):182-93. PMID: 20547887. <u>http://dx.doi.org/10.7326/0003-4819-153-3-201008030-00258</u>
- 65. Cooper C, Sommerlad A, Lyketsos CG, et al. Modifiable predictors of dementia in mild cognitive impairment: a systematic review and meta-analysis. Am J Psychiatry. 2015;172(4):323-34. PMID: 25698435. http://dx.doi.org/10.1176/appi.ajp.2014.14070878
- 66. Ritchie K, Carriere I, Ritchie CW, et al. Designing prevention programmes to reduce incidence of dementia: prospective cohort study of modifiable risk factors. BMJ. 2010;341:c3885. PMID: 20688841. <u>http://dx.doi.org/10.1136/bmj.c3885</u>
- 67. Boyle PA, Buchman AS, Wilson RS, et al. Physical frailty is associated with incident mild cognitive impairment in community-based older persons. J Am Geriatr Soc. 2010;58(2):248-55. PMID: 20070417. <u>http://dx.doi.org/10.1111/j.1532-5415.2009.02671.x</u>
- 68. Goveas JS, Espeland MA, Hogan P, et al. Depressive symptoms, brain volumes and subclinical cerebrovascular disease in postmenopausal women: the Women's Health Initiative MRI Study. J Affect Disord. 2011;132(1-2):275-84. PMID: 21349587. http://dx.doi.org/10.1016/j.jad.2011.01.020
- 69. Vemuri P, Lesnick TG, Przybelski SA, et al. Association of lifetime intellectual enrichment with cognitive decline in the older population. JAMA Neurol. 2014;71(8):1017-24. PMID: 25054282. http://dx.doi.org/10.1001/jamaneurol.2014.963
- 70. Satizabal C, Beiser AS, Seshadri S. Incidence of Dementia over Three Decades in the Framingham Heart Study. N Engl J Med. 2016;375(1):93-4. PMID: 27406362. http://dx.doi.org/10.1056/NEJMc1604823
- 71. Matthews FE, Arthur A, Barnes LE, et al. A two-decade comparison of prevalence of dementia in individuals aged 65 years and older from three geographical areas of England: results of the Cognitive Function and Ageing Study I and II. Lancet. 2013;382(9902):1405-12. PMID: 23871492. <u>https://dx.doi.org/10.1016/S0140-6736(13)61570-6</u>
- 72. Tolppanen AM, Ngandu T, Kareholt I, et al. Midlife and late-life body mass index and late-life dementia: results from a prospective population-based cohort. J Alzheimers Dis. 2014;38(1):201-9. PMID: 23948937. <u>http://dx.doi.org/10.3233/JAD-130698</u>
- 73. Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care. Lancet. 2017;390(10113):2673-734. PMID: 28735855. http://dx.doi.org/10.1016/S0140-6736(17)31363-6

- 74. Stephen R, Hongisto K, Solomon A, et al. Physical Activity and Alzheimer's Disease: A Systematic Review. J Gerontol A Biol Sci Med Sci. 2017;72(6):733-9. PMID: 28049634. http://dx.doi.org/10.1093/gerona/glw251
- 75. Mukamal KJ, Kuller LH, Fitzpatrick AL, et al. Prospective study of alcohol consumption and risk of dementia in older adults. JAMA. 2003;289(11):1405-13. PMID: 12636463.
- 76. Scarmeas N, Luchsinger JA, Schupf N, et al. Physical activity, diet, and risk of Alzheimer disease. JAMA. 2009;302(6):627-37. PMID: 19671904. http://dx.doi.org/10.1001/jama.2009.1144
- Kane R, Butler M, Fink H, et al. Interventions to Prevent Age-Related Cognitive Decline, Mild Cognitive Impairment, and Clinical Alzheimer's-Type Dementia. (Prepared by the Minnesota Evidence-based Practice Center under Contract No. 290-2015-00008-I.) AHRQ Publication No. 17-EHC008-EF: Rockville, MD: Agency for Healthcare Research and Quality; March 2017. PMID: None. http://dx.doi.org/10.23970/AHRQEPCCER188
- 78. Brasure M, Desai P, Davila H, et al. Physical Activity Interventions in Preventing Cognitive Decline and Alzheimer-Type Dementia: A Systematic Review. Ann Intern Med. 2018;168(1):30-8. PMID: 29255839. <u>http://dx.doi.org/10.7326/M17-1528</u>
- 79. Butler M, Nelson VA, Davila H, et al. Over-the-Counter Supplement Interventions to Prevent Cognitive Decline, Mild Cognitive Impairment, and Clinical Alzheimer-Type Dementia: A Systematic Review. Ann Intern Med. 2018;168(1):52-62. PMID: 29255909. http://dx.doi.org/10.7326/M17-1530
- 80. Fink HA, Jutkowitz E, McCarten JR, et al. Pharmacologic Interventions to Prevent Cognitive Decline, Mild Cognitive Impairment, and Clinical Alzheimer-Type Dementia: A Systematic Review. Ann Intern Med. 2018;168(1):39-51. PMID: 29255847. http://dx.doi.org/10.7326/M17-1529
- 81. Chodosh J, Petitti DB, Elliott M, et al. Physician recognition of cognitive impairment: evaluating the need for improvement. J Am Geriatr Soc. 2004;52(7):1051-9. http://dx.doi.org/10.1111/j.1532-5415.2004.52301.x
- 82. Olafsdottir M, Skoog I, Marcusson J. Detection of dementia in primary care: the Linkoping study. Dement Geriatr Cogn Disord. 2000;11(4):223-9. http://dx.doi.org/17241
- 83. Valcour VG, Masaki KH, Curb JD, et al. The detection of dementia in the primary care setting. Arch Intern Med. 2000;160(19):2964-8.
- 84. Ganguli M, Rodriguez E, Mulsant B, et al. Detection and management of cognitive impairment in primary care: The Steel Valley Seniors Survey. J Am Geriatr Soc. 2004;52(10):1668-75. http://dx.doi.org/10.1111/j.1532-5415.2004.52459.x
- 85. van den Dungen P, van Marwijk HW, van der Horst HE, et al. The accuracy of family physicians' dementia diagnoses at different stages of dementia: a systematic review. Int J Geriatr Psychiatry. 2012;27(4):342-54. <u>http://dx.doi.org/10.1002/gps.2726</u>
- 86. Ashford JW, Borson S, O'Hara R, et al. Should older adults be screened for dementia? It is important to screen for evidence of dementia! Alzheimers Dement. 2007;3(2):75-80.
 PMID: 19595920. <u>http://dx.doi.org/10.1016/j.jalz.2007.03.005</u>
- 87. National Institute on Aging's Alzheimer's Disease Foundation Education and Referral (ADEAR) Center. Assessing Cognitive Impairment in Older Patients. A Quick Guide for Primary Care Physicians <u>https://www.nia.nih.gov/alzheimers/publication/assessing-cognitive-impairment-older-patients</u>. Accessed February 11, 2018.

- Knopman DS, DeKosky ST, Cummings JL, et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001;56(9):1143-53. PMID: 11342678. <u>http://dx.doi.org/</u>10.1212/WNL.56.9.1143
- 89. Larson EB. Evaluation of cognitive impairment and dementia. Dekosky S, ed. Waltham, MA: UpToDate Inc. <u>http://www.uptodate.com</u>. Accessed December 19, 2018.
- 90. American College of Medical Genetics/American Society of Human Genetics Working Group on ApoE and Alzheimer disease. Statement on use of apolipoprotein E testing for Alzheimer disease. JAMA. 1995;274(20):1627-9. PMID: 7474250. http://dx.doi.org/10.1001/jama.1995.03530200063039
- 91. Weinstein AM, Barton C, Ross L, et al. Treatment practices of mild cognitive impairment in California Alzheimer's Disease Centers. J Am Geriatr Soc. 2009;57(4):686-90. PMID: 19392962. <u>http://dx.doi.org/10.1111/j.1532-5415.2009.02200.x</u>
- 92. Alzheimer's Association. Treatment Horizon. <u>http://www.alz.org/research/science/alzheimers_treatment_horizon.asp</u>. Accessed 04/20/2017.
- 93. American Geriatrics Society. A Guide to Dementia Diagnosis and Treatment. <u>http://dementia.americangeriatrics.org/documents/AGS_PC_Dementia_Sheet_2010v2.pd</u> <u>f</u> Accessed 04/20/2017.
- 94. Canadian Task Force on Preventive Health Care, Pottie K, Rahal R, et al. Recommendations on screening for cognitive impairment in older adults. CMAJ. 2016;188(1):37-46. PMID: 26622001. <u>http://dx.doi.org/10.1503/cmaj.141165</u>
- 95. Hort J, O'Brien JT, Gainotti G, et al. EFNS guidelines for the diagnosis and management of Alzheimer's disease. Eur J Neurol. 2010;17(10):1236-48. PMID: 20831773. http://dx.doi.org/10.1111/j.1468-1331.2010.03040.x
- 96. Royal Australian College of General Practitioners. Guidelines for preventive activities in general practice. East Melbourne: Royal Australian College of General Practitioners; 2012. PMID: None.
- 97. US Department of Veterans Affairs. VHA DEMENTIA STEERING COMMITTEE RECOMMENDATIONS FOR DEMENTIA CARE IN THE VHA HEALTH CARE SYSTEM. September 2016. <u>https://www.va.gov/GERIATRICS/docs/VHA_DSC_RECOMMENDATIONS_SEPT_2_016_9-12-16.pdf</u>. Accessed November 28, 2018.
- 98. Fazio S, Pace D, Maslow K, et al. Alzheimer's Association Dementia Care Practice Recommendations. Gerontologist. 2018;58(suppl_1):S1-S9. PMID: 29361074. http://dx.doi.org/10.1093/geront/gnx182
- 99. The Gerontological Society of America. The Gerontological Society of America Workgroup on Cognitive Impairment and Earlier Diagnosis: Report and Recommendations. <u>https://www.geron.org/programs-services/alliances-and-multistakeholder-collaborations/cognitive-impairment-detection-and-earlier-diagnosis</u>. Accessed February 11, 2019.
- 100. Patient Protection and Affordable Care Act. Pub. L. No. 111-148, §2702, 124 Stat. 119, 318-319 2010. PMID: None.
- 101. Institute of Medicine. Cognitive Aging: Progress in Understanding and Opportunities for Action. 2015. PMID: 26540695. <u>http://dx.doi.org/10.17226/21693</u>

- 102. Centers for Medicare & Medicaid Services (CMS). Beneficiaries Utilizing Free Preventive Services by State, 2016. <u>https://downloads.cms.gov/files/Beneficiaries%20Utilizing%20Free%20Preventive%20S</u> <u>ervices%20by%20State%20YTD%202016.pdf</u>. Accessed 04/20/2017.
- 103. Cordell CB, Borson S, Boustani M, et al. Alzheimer's Association recommendations for operationalizing the detection of cognitive impairment during the Medicare Annual Wellness Visit in a primary care setting. Alzheimers Dement. 2013;9(2):141-50. <u>http://dx.doi.org/10.1016/j.jalz.2012.09.011</u>
- 104. Gerontological Society of America. Cognitive Impairment Detection and Earlier Diagnosis, KAER Toolkit: 4-Step Process to Detecting Cognitive Impairment and Earlier Diagnosis of Dementia <u>https://www.geron.org/images/gsa/kaer/gsa-kaer-toolkit.pdf</u>. Accessed December 3, 2018.
- 105. Lin JS, O'Connor E, Rossom RC, et al. Screening for cognitive impairment in older adults: A systematic review for the U.S. Preventive Services Task Force. Annals of Internal Medicine. 2013;159(9):601-12.
- 106. Lin JS, O'Connor E, Rossom RC, et al. U.S. Preventive Services Task Force Evidence Syntheses, formerly Systematic Evidence Reviews. In: Screening for Cognitive Impairment in Older Adults: An Evidence Update for the U.S. Preventive Services Task Force. Rockville (MD): Agency for Healthcare Research and Quality (US); 2013.
- 107. Raina P, Santaguida P, Ismaila A, et al. Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann Intern Med. 2008;148(5):379-97. PMID: 18316756.
- 108. Reid LM, Maclullich AM. Subjective memory complaints and cognitive impairment in older people. Dement Geriatr Cogn Disord. 2006;22(5-6):471-85. PMID: 17047326. http://dx.doi.org/10.1159/000096295
- 109. U.S. Preventive Services Task Force. U.S. Preventive Services Task Force Procedure Manual. Rockville, MD: U.S. Preventive Services Task Force; 2015. PMID: None.
- Wells G, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.
 <u>http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp</u>. Accessed December 3, 2018.
- 111. Whiting P, Rutjes AW, Reitsma JB, et al. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews.
 BMC Med Res Methodol. 2003;3:25. PMID: 14606960. <u>http://dx.doi.org/10.1186/1471-2288-3-25</u>
- 112. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529-36. PMID: 22007046. <u>http://dx.doi.org/10.7326/0003-4819-155-8-201110180-00009</u>
- 113. Lijmer JG, Mol BW, Heisterkamp S, et al. Empirical evidence of design-related bias in studies of diagnostic tests. JAMA. 1999;282(11):1061-6. PMID: 10493205.
- 114. Whiting P, Rutjes AW, Reitsma JB, et al. Sources of variation and bias in studies of diagnostic accuracy: a systematic review. Ann Intern Med. 2004;140(3):189-202. PMID: 14757617.
- 115. Rutjes AW, Reitsma JB, Di Nisio M, et al. Evidence of bias and variation in diagnostic accuracy studies. CMAJ. 2006;174(4):469-76. PMID: 16477057. http://dx.doi.org/10.1503/cmaj.050090

- 116. de Groot JA, Bossuyt PM, Reitsma JB, et al. Verification problems in diagnostic accuracy studies: consequences and solutions. BMJ. 2011;343:d4770. PMID: 21810869. http://dx.doi.org/10.1136/bmj.d4770
- 117. Gaugler JE, Jutkowitz E, Shippee TP, et al. Consistency of dementia caregiver intervention classification: an evidence-based synthesis. International Psychogeriatrics. 2017;29(1):19-30. PMID: 27671663. https://dx.doi.org/10.1017/S1041610216001514
- 118. DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials. 2007;28(2):105-14. PMID: 16807131. <u>http://dx.doi.org/10.1016/j.cct.2006.04.004</u>
- 119. Veroniki AA, Jackson D, Viechtbauer W, et al. Methods to estimate the between-study variance and its uncertainty in meta-analysis. 2016;7(1):55-79. PMID: 26332144. http://dx.doi.org/10.1002/jrsm.1164
- 120. Sterne JAC, Harbord RM. Funnel plots in meta-analysis. In: Meta-Analysis in Stata: An Updated Collection from the Stata Journal. Sterne JAC, editor. College Station, Texas: Stata Press; 2009. p. 109-23.
- 121. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629-34. PMID: 9310563. http://dx.doi.org/10.1136/bmj.315.7109.629
- 122. Berkman ND, Lohr KN, Ansari M, et al. Grading the Strength of a Body of Evidence When Assessing Health Care Interventions for the Effective Health Care Program of the Agency for Healthcare Research and Quality: An Update. Methods Guide for Effectiveness and Comparative Effectiveness Reviews. AHRQ Publication No. 10(14)-EHC063-EF. Rockville (MD): Agency for Healthcare Research and Quality; 2014. p. 314-49. PMID: None.
- 123. Atkins D, Eccles M, Flottorp S, et al. Systems for grading the quality of evidence and the strength of recommendations I: critical appraisal of existing approaches The GRADE Working Group. BMC Health Serv Res. 2004;4(1):38. PMID: 15615589. http://dx.doi.org/10.1186/1472-6963-4-38
- 124. Fowler N, Perkins A, Gao S, et al. Risks and benefits of screening for dementia in primary care: the IU CHOICE trial. J Am Geriatr Soc. 2019; <u>http://dx.doi.org/10.1111/jgs.16247</u>
- 125. Fowler NR, Harrawood A, Frame A, et al. The Indiana University Cognitive Health Outcomes Investigation of the Comparative Effectiveness of dementia screening (CHOICE) study: study protocol for a randomized controlled trial. Trials. 2014;15:209. PMID: 24903469. <u>http://dx.doi.org/10.1186/1745-6215-15-209</u>
- 126. Ayalon L. The IQCODE Versus a Single-Item Informant Measure to Discriminate Between Cognitively Intact Individuals and Individuals With Dementia or Cognitive Impairment. J Geriatr Psychiatry Neurol. 2011;24(3):168-73. PMID: 21856971. http://dx.doi.org/10.1177/0891988711418506
- 127. Ball LJ, Ogden A, Mandi D, et al. The validation of a mailed health survey for screening of dementia of the Alzheimer's type. J Am Geriatr Soc. 2001;49(6):798-802. PMID: 11454121. <u>http://dx.doi.org/10.1046/j.1532-5415.2001.49159.x</u>
- 128. Borson S, Scanlan JM, Watanabe J, et al. Improving identification of cognitive impairment in primary care. Int J Geriatr Psychiatry. 2006;21(4):349-55. PMID: 16534774. <u>http://dx.doi.org/10.1002/gps.1470</u>

- 129. Brodaty H, Pond D, Kemp NM, et al. The GPCOG: a new screening test for dementia designed for general practice. J Am Geriatr Soc. 2002;50(3):530-4. PMID: 11943052. http://dx.doi.org/10.1046/j.1532-5415.2002.50122.x
- 130. Buschke H, Kuslansky G, Katz M, et al. Screening for dementia with the memory impairment screen. Neurology. 1999;52(2):231-8. PMID: 9932936. http://dx.doi.org/10.1212/WNL.52.2.231
- 131. Callahan CM, Unverzagt FW, Hui SL, et al. Six-item screener to identify cognitive impairment among potential subjects for clinical research. Med Care. 2002;40(9):771-81.
 PMID: 12218768. <u>http://dx.doi.org/10.1097/01.MLR.0000024610.33213.C8</u>
- 132. Chan QL, Xu X, Shaik MA, et al. Clinical utility of the informant AD8 as a dementia case finding instrument in primary healthcare. J Alzheimers Dis Rep. 2016;49(1):121-7. PMID: 26444776. <u>http://dx.doi.org/10.3233/JAD-150390</u>
- 133. Cook SE, Marsiske M, McCoy KJ. The use of the Modified Telephone Interview for Cognitive Status (TICS-M) in the detection of amnestic mild cognitive impairment. J Geriatr Psychiatry Neurol. 2009;22(2):103-9. PMID: 19417219. http://dx.doi.org/10.1177/0891988708328214
- 134. Cruz-Orduna I, Bellon JM, Torrero P, et al. Detecting MCI and dementia in primary care: efficiency of the MMS, the FAQ and the IQCODE. Fam Pract. 2012;29(4):401-6. PMID: 22121012. <u>http://dx.doi.org/10.1093/fampra/cmr114</u>
- 135. Cullen B, Fahy S, Cunningham CJ, et al. Screening for dementia in an Irish community sample using MMSE: a comparison of norm-adjusted versus fixed cut-points. Int J Geriatr Psychiatry. 2005;20(4):371-6. PMID: 15799072. <u>http://dx.doi.org/10.1002/gps.1291</u>
- 136. Cummings-Vaughn LA, Chavakula NN, Malmstrom TK, et al. Veterans Affairs Saint Louis University Mental Status examination compared with the Montreal Cognitive Assessment and the Short Test of Mental Status. J Am Soc Geriatr Dent. 2014;62(7):1341-6. PMID: 24916485. <u>http://dx.doi.org/10.1111/jgs.12874</u>
- 137. Del Ser T, Sanchez-Sanchez F, Garcia de Yebenes MJ, et al. Validation of the sevenminute screen neurocognitive battery for the diagnosis of dementia in a Spanish population-based sample. Dement Geriatr Cogn Disord. 2006;22(5-6):454-64. PMID: 16988506. <u>http://dx.doi.org/10.1159/000095858</u>
- Donnelly K, Donnelly JP, Cory E. Primary care screening for cognitive impairment in elderly veterans. Am J Alzheimers Dis Other Demen. 2008;23(3):218-26. PMID: 18375531. <u>http://dx.doi.org/10.1177/1533317508315932</u>
- 139. Ehreke L, Luck T, Luppa M, et al. Clock drawing test screening utility for mild cognitive impairment according to different scoring systems: results of the Leipzig Longitudinal Study of the Aged (LEILA 75+). Int Psychogeriatr. 2011;23(10):1592-601. PMID: 21813037. <u>http://dx.doi.org/10.1017/S104161021100144X</u>
- 140. Ehreke L, Luppa M, Luck T, et al. Is the clock drawing test appropriate for screening for mild cognitive impairment?--Results of the German study on Ageing, Cognition and Dementia in Primary Care Patients (AgeCoDe). Dement Geriatr Cogn Disord. 2009;28(4):365-72. PMID: 19887799. <u>http://dx.doi.org/10.1159/000253484</u>
- 141. Erkinjuntti T, Sulkava R, Wikstrom J, et al. Short Portable Mental Status Questionnaire as a screening test for dementia and delirium among the elderly. J Am Geriatr Soc. 1987;35(5):412-6. PMID: 3571790. <u>http://dx.doi.org/10.1111/j.1532-5415.1987.tb04662.x</u>

- 142. Fillenbaum G, Heyman A, Williams K, et al. Sensitivity and specificity of standardized screens of cognitive impairment and dementia among elderly black and white community residents. J Clin Epidemiol. 1990;43(7):651-60. PMID: 2370572. http://dx.doi.org/10.1016/0895-4356(90)90035-N
- 143. Fong TG, Jones RN, Rudolph JL, et al. Development and validation of a brief cognitive assessment tool: the sweet 16. Arch Intern Med. 2011;171(5):432-7. PMID: 21059967. http://dx.doi.org/10.1001/archinternmed.2010.423
- 144. Fuchs A, Wiese B, Altiner A, et al. Cued Recall and Other Cognitive Tasks to Facilitate Dementia Recognition in Primary Care. J Am Geriatr Soc. 2012:130-5. PMID: 22150245. <u>http://dx.doi.org/10.1111/j.1532-5415.2011.03765.x</u>
- 145. Gagnon M, Letenneur L, Dartigues JF, et al. Validity of the Mini-Mental State examination as a screening instrument for cognitive impairment and dementia in French elderly community residents. Neuroepidemiology. 1990;9(3):143-50. PMID: 2402325. http://dx.doi.org/10.1159/000110764
- 146. Galvin JE, Roe CM, Powlishta KK, et al. The AD8: a brief informant interview to detect dementia. Neurology. 2005;65(4):559-64. PMID: 16116116. http://dx.doi.org/10.1212/01.wnl.0000172958.95282.2a
- 147. Grut M, Fratiglioni L, Viitanen M, et al. Accuracy of the Mini-Mental Status Examination as a screening test for dementia in a Swedish elderly population. Acta Neurol Scand. 1993;87(4):312-7. PMID: 8503262. <u>http://dx.doi.org/10.1111/j.1600-0404.1993.tb05514.x</u>
- Heun R, Papassotiropoulos A, Jennssen F. The validity of psychometric instruments for detection of dementia in the elderly general population. Int J Geriatr Psychiatry. 1998;13(6):368-80. PMID: 9658272.
- 149. Holsinger T, Plassman BL, Stechuchak KM, et al. Screening for Cognitive Impairment: Comparing the Performance of Four Instruments in Primary Care. J Am Geriatr Soc. 2012;60(6):1027-36. PMID: 22646750. <u>http://dx.doi.org/10.1111/j.1532-5415.2012.03967.x</u>
- 150. Hooijer C, Dinkgreve M, Jonker C, et al. Short screening tests for dementia in the elderly population. I. A comparison between AMTS, MMSE, MSQ and SPMSQ. Int J Geriatr Psychiatry. 1992;7(8):559-71. PMID: None. http://dx.doi.org/10.1002/gps.930070805
- 151. Hsu JL, Fan YC, Huang YL, et al. Improved predictive ability of the Montreal Cognitive Assessment for diagnosing dementia in a community-based study. Alzheimers Res Ther. 2015;7(1):69. PMID: 26549573. <u>http://dx.doi.org/10.1186/s13195-015-0156-8</u>
- 152. Jeong SK, Cho KH, Kim JM. The usefulness of the Korean version of modified Mini-Mental State Examination (K-mMMSE) for dementia screening in community dwelling elderly people. BMC Public Health. 2004;4:31. PMID: 15283869. http://dx.doi.org/10.1186/1471-2458-4-31
- 153. Jorm AF, Broe GA, Creasy H, et al. Further data on the validity of the informant questionnaire on cognitive decline in the elderly (IQCODE). Int J Geriatr Psychiatry. 1996;11(2):131-9. PMID: None. <u>http://dx.doi.org/10.1002/(SICI)1099-1166(199602)11:2</u><131::AID-GPS294>3.0.CO;2-5
- 154. Juva K, Makela M, Erkinjuntti T, et al. Functional assessment scales in detecting dementia. Age Ageing. 1997;26(5):393-400. PMID: 9351484.

- 155. Kahle-Wrobleski K, Corrada MM, Li B, et al. Sensitivity and specificity of the minimental state examination for identifying dementia in the oldest-old: the 90+ study. J Am Geriatr Soc. 2007;55(2):284-9. PMID: 17302668. <u>http://dx.doi.org/10.1111/j.1532-5415.2007.01049</u>
- 156. Kaufer DI, Williams CS, Braaten AJ, et al. Cognitive screening for dementia and mild cognitive impairment in assisted living: comparison of 3 tests. J Am Med Dir Assoc. 2008;9(8):586-93. PMID: 19083293. <u>http://dx.doi.org/10.1016/j.jamda.2008.05.006</u>
- 157. Kay DW, Henderson AS, Scott R, et al. Dementia and depression among the elderly living in the Hobart community: the effect of the diagnostic criteria on the prevalence rates. Psychol Med. 1985;15(4):771-88. PMID: 4080881.
- 158. Kirby M, Denihan A, Bruce I, et al. The clock drawing test in primary care: sensitivity in dementia detection and specificity against normal and depressed elderly. Int J Geriatr Psychiatry. 2001;16(10):935-40. PMID: 11607936.
- 159. Kuslansky G, Buschke H, Katz M, et al. Screening for Alzheimer's disease: the memory impairment screen versus the conventional three-word memory test. J Am Geriatr Soc. 2002;50(6):1086-91. PMID: 12110070. <u>http://dx.doi.org/10.1046/j.1532-5415.2002.50265.x</u>
- 160. Lam LC, Tam CW, Lui VW, et al. Screening of mild cognitive impairment in Chinese older adults--a multistage validation of the Chinese abbreviated mild cognitive impairment test. Neuroepidemiology. 2008;30(1):6-12. PMID: 18204291. http://dx.doi.org/10.1159/000113300
- 161. Lee JY, Dong WL, Cho SJ, et al. Brief screening for mild cognitive impairment in elderly outpatient clinic: validation of the Korean version of the Montreal Cognitive Assessment. J Geriatr Psychiatry Neurol. 2008;21(2):104-10. PMID: 18474719. http://dx.doi.org/10.1177/0891988708316855
- 162. Lee KS, Kim EA, Hong CH, et al. Clock drawing test in mild cognitive impairment: quantitative analysis of four scoring methods and qualitative analysis. Dement Geriatr Cogn Disord. 2008;26(6):483-9. PMID: 18987468. <u>http://dx.doi.org/10.1159/000167879</u>
- 163. Lipton RB, Katz MJ, Kuslansky G, et al. Screening for dementia by telephone using the memory impairment screen. J Am Geriatr Soc. 2003;51(10):1382-90. PMID: 14511157. <u>http://dx.doi.org/10.1046/j.1532-5415.2003.51455.x</u>
- Manly JJ, Schupf N, Stern Y, et al. Telephone-based identification of mild cognitive impairment and dementia in a multicultural cohort. Arch Neurol. 2011;68(5):607-14.
 PMID: 21555635. <u>http://dx.doi.org/10.1001/archneurol.2011.88</u>
- 165. Markwick A, Zamboni G, de Jager CA. Profiles of cognitive subtest impairment in the Montreal Cognitive Assessment (MoCA) in a research cohort with normal Mini-Mental State Examination (MMSE) scores. J Clin Exp Neuropsychol. 2012;34(7):750-7. PMID: 22468719. <u>http://dx.doi.org/10.1080/13803395.2012.672966</u>
- 166. McDowell I, Kristjansson B, Hill GB, et al. Community screening for dementia: the Mini Mental State Exam (MMSE) and Modified Mini-Mental State Exam (3MS) compared. J Clin Epidemiol. 1997;50(4):377-83. PMID: 9179095. <u>http://dx.doi.org/10.1016/S0895-4356(97)00060-7</u>
- 167. Morales JM, Bermejo F, Romero M, et al. Screening of dementia in community-dwelling elderly through informant report. Int J Geriatr Psychiatry. 1997;12(8):808-16. PMID: 9283925.

- 168. Ozer S, Noonan K, Burke M, et al. The validity of the Memory Alteration Test and the Test Your Memory test for community-based identification of amnestic mild cognitive impairment. Alzheimers Dement. 2016;12(9):987-95. PMID: 27149906. <u>http://dx.doi.org/10.1016/j.jalz.2016.03.014</u>
- 169. Rait G, Burns A, Baldwin R, et al. Validating screening instruments for cognitive impairment in older South Asians in the United Kingdom. Int J Geriatr Psychiatry. 2000;15(1):54-62. PMID: 10637405.
- 170. Rait G, Morley M, Burns A, et al. Screening for cognitive impairment in older African-Caribbeans. Psychol Med. 2000;30(4):957-63. PMID: 11037103.
- 171. Reischies FM, Geiselmann B. Age-related cognitive decline and vision impairment affecting the detection of dementia syndrome in old age. Br J Psychiatry. 1997;171:449-51. PMID: 9463604. http://dx.doi.org/10.1192/bjp.171.5.449
- 172. Rideaux T, Beaudreau SA, Fernandez S, et al. Utility of the abbreviated Fuld Object Memory Evaluation and MMSE for detection of dementia and cognitive impairment not dementia in diverse ethnic groups. J Alzheimers Dis. 2012;31(2):371-86. PMID: 22555374. <u>http://dx.doi.org/10.3233/JAD-2012-112180</u>
- 173. Saxton J, Morrow L, Eschman A, et al. Computer assessment of mild cognitive impairment. Postgrad Med. 2009;121(2):177-85. PMID: 19332976. http://dx.doi.org/10.3810/pgm.2009.03.1990
- 174. Solomon PR, Brush M, Calvo V, et al. Identifying dementia in the primary care practice. Int Psychogeriatr. 2000;12(4):483-93. PMID: 11263715.
- 175. Stein J, Luppa M, Kaduszkiewicz H, et al. Is the Short Form of the Mini-Mental State Examination (MMSE) a better screening instrument for dementia in older primary care patients than the original MMSE? Results of the German study on ageing, cognition, and dementia in primary care patients (AgeCoDe). Psychol Assess. 2015;27(3):895-904. PMID: 25822830. <u>http://dx.doi.org/10.1037/pas0000076</u>
- Swearer JM, Drachman DA, Li L, et al. Screening for dementia in "real world" settings: the cognitive assessment screening test: CAST. Clin Neuropsychol. 2002;16(2):128-35.
 PMID: 12221476. <u>http://dx.doi.org/10.1076/clin.16.2.128.13235</u>
- 177. Tariq SH, Tumosa N, Chibnall JT, et al. Comparison of the Saint Louis University mental status examination and the mini-mental state examination for detecting dementia and mild neurocognitive disorder--a pilot study. Am J Geriatr Psychiatry. 2006;14(11):900-10. PMID: 17068312. <u>http://dx.doi.org/10.1097/01.JGP.0000221510.33817.86</u>
- 178. Tokuhara KG, Valcour VG, Masaki KH, et al. Utility of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) for dementia in a Japanese-American population. Hawaii Med J. 2006;65(3):72-5. PMID: 16724448.
- 179. Vannier-Nitenberg C, Dauphinot V, Bongue B, et al. Performance of cognitive tests, individually and combined, for the detection of cognitive disorders amongst community-dwelling elderly people with memory complaints: the EVATEM study. Eur J Neurol. 2016;23(3):554-61. PMID: 26518736. <u>http://dx.doi.org/10.1111/ene.12888</u>
- 180. Vercambre MN, Cuvelier H, Gayon YA, et al. Validation study of a French version of the modified telephone interview for cognitive status (F-TICS-m) in elderly women. Int J Geriatr Psychiatry. 2010;25(11):1142-9. PMID: 20054838. <u>http://dx.doi.org/10.10002/gps.2447</u>

- 181. Waite LM, Broe GA, Casey B, et al. Screening for Dementia Using an Informant Interview. Neuropsychology, development, and cognition Section B, Aging, neuropsychology and cognition. 1998;5(3):194-202. PMID: 25233059. <u>http://dx.doi.org/10.1076/anec.5.3.194.614</u>
- 182. Wolf-Klein GP, Silverstone FA, Levy AP, et al. Screening for Alzheimer's disease by clock drawing. J Am Geriatr Soc. 1989;37(8):730-4. PMID: 2754158. http://dx.doi.org/10.1111/j.1532-5415.1989.tb02234.x
- 183. McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984;34(7):939-44. PMID: 6610841.
- Roman GC, Tatemichi TK, Erkinjuntti T, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology. 1993;43(2):250-60. PMID: 8094895.
- 185. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183-94. PMID: 15324362. <u>http://dx.doi.org/10.1111/j.1365-2796.2004.01388.x</u>
- 186. Black S, Roman GC, Geldmacher DS, et al. Efficacy and tolerability of donepezil in vascular dementia: positive results of a 24-week, multicenter, international, randomized, placebo-controlled clinical trial. Stroke. 2003;34(10):2323-30. PMID: 12970516. http://dx.doi.org/10.1161/01.STR.0000091396.95360.E1
- 187. Burns A, Rossor M, Hecker J, et al. The effects of donepezil in Alzheimer's disease results from a multinational trial. Dement Geriatr Cogn Disord. 1999;10(3):237-44. PMID: 10325453. <u>http://dx.doi.org/10.1159/000017126</u>
- 188. Doody RS, Ferris SH, Salloway S, et al. Donepezil treatment of patients with MCI: a 48week randomized, placebo-controlled trial. Neurology. 2009;72(18):1555-61. PMID: 19176895. <u>http://dx.doi.org/10.1212/01.wnl.0000344650.95823.03</u>
- 189. Feldman H, Gauthier S, Hecker J, et al. A 24-week, randomized, double-blind study of donepezil in moderate to severe Alzheimer's disease.[Erratum appears in Neurology 2001 Dec 11;57(11):2153]. Neurology. 2001;57(4):613-20. PMID: 11524468. <u>http://dx.doi.org/10.1212/WNL.57.4.613</u>
- 190. Holmes C, Wilkinson D, Dean C, et al. The efficacy of donepezil in the treatment of neuropsychiatric symptoms in Alzheimer disease. Neurology. 2004;63(2):214-9. PMID: 15277611. <u>http://dx.doi.org/10.1212/01.WNL.0000129990.32253.7B</u>
- 191. Ikeda M, Mori E, Matsuo K, et al. Donepezil for dementia with Lewy bodies: a randomized, placebo-controlled, confirmatory phase III trial. Alzheimers Res Ther. 2015;7(1):4. PMID: 25713599. <u>http://dx.doi.org/10.1186/s13195-014-0083-0</u>
- 192. Krishnan KR, Charles HC, Doraiswamy PM, et al. Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer's disease. Am J Psychiatry. 2003;160(11):2003-11. PMID: 14594748. http://dx.doi.org/10.1176/appi.ajp.160.11.2003
- 193. Mazza M, Capuano A, Bria P, et al. Ginkgo biloba and donepezil: a comparison in the treatment of Alzheimer's dementia in a randomized placebo-controlled double-blind study. Eur J Neurol. 2006;13(9):981-5. PMID: 16930364. http://dx.doi.org/10.1111/j.1468-1331.2006.01409.x

- Mohs RC, Doody RS, Morris JC, et al. A 1-year, placebo-controlled preservation of function survival study of donepezil in AD patients. Neurology. 2001;57(3):481-8.
 PMID: 11502917. <u>http://dx.doi.org/10.1212/WNL.57.3.481</u>
- 195. Mori E, Ikeda M, Kosaka K. Donepezil for dementia with Lewy bodies: a randomized, placebo-controlled trial. Ann Neurol. 2012;72(1):41-52. PMID: 22829268. http://dx.doi.org/10.1002/ana.23557
- 196. Petersen RC, Thomas RG, Grundman M, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. NEJM. 2005;352(23):2379-88. PMID: 15829527. http://dx.doi.org/10.1056/NEJMoa050151
- 197. Rogers SL, Doody RS, Mohs RC, et al. Donepezil improves cognition and global function in Alzheimer disease: a 15-week, double-blind, placebo-controlled study. Donepezil Study Group. Arch Intern Med. 1998;158(9):1021-31. PMID: 9588436. http://dx.doi.org/10.1001/archinte.158.9.1021
- 198. Rogers SL, Friedhoff LT. The efficacy and safety of donepezil in patients with Alzheimer's disease: results of a US Multicentre, Randomized, Double-Blind, Placebo-Controlled Trial. The Donepezil Study Group. Dementia. 1996;7(6):293-303. PMID: 8915035. <u>http://dx.doi.org/10.1159/000106895</u>
- 199. Salloway S, Ferris S, Kluger A, et al. Efficacy of donepezil in mild cognitive impairment: a randomized placebo-controlled trial. Neurology. 2004;63(4):651-7. PMID: 15326237. http://dx.doi.org/10.1212/01.WNL.0000134664.80320.92
- 200. Seltzer B, Zolnouni P, Nunez M, et al. Efficacy of donepezil in early-stage Alzheimer disease: a randomized placebo-controlled trial. Arch Neurol. 2004;61(12):1852-6. PMID: 15596605. <u>http://dx.doi.org/10.1001/archneur.61.12.1852</u>
- 201. Tune L, Tiseo PJ, Ieni J, et al. Donepezil HCl (E2020) maintains functional brain activity in patients with Alzheimer disease: results of a 24-week, double-blind, placebo-controlled study. Am J Geriatr Psychiatry. 2003;11(2):169-77. PMID: 12611746. http://dx.doi.org/10.1097/00019442-200303000-00007
- 202. Wilkinson D, Doody R, Helme R, et al. Donepezil in vascular dementia: A randomized, placebo-controlled study. Neurology. 2003;61(4):479-86. PMID: 12939421. http://dx.doi.org/10.1212/01.WNL.0000078943.50032.FC
- Winblad B, Engedal K, Soininen H, et al. A 1-year, randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology. 2001;57(3):489-95.
 PMID: 11502918. <u>http://dx.doi.org/10.1212/WNL.57.3.489</u>
- 204. Auchus AP, Brashear HR, Salloway S, et al. Galantamine treatment of vascular dementia: a randomized trial. Neurology. 2007;69(5):448-58. PMID: 17664404. http://dx.doi.org/10.1212/01.wnl.0000266625.31615.f6
- 205. Brodaty H, Corey-Bloom J, Potocnik FC, et al. Galantamine prolonged-release formulation in the treatment of mild to moderate Alzheimer's disease. Dement Geriatr Cogn Disord. 2005;20(2-3):120-32. PMID: 15990426. http://dx.doi.org/10.1159/000086613
- 206. Erkinjuntti T, Kurz A, Gauthier S, et al. Efficacy of galantamine in probable vascular dementia and Alzheimer's disease combined with cerebrovascular disease: a randomised trial. Lancet. 2002;359(9314):1283-90. PMID: 11965273. http://dx.doi.org/10.1016/S0140-6736(02)08267-3

- 207. Hager K, Baseman A, Nye J, et al. Effects of galantamine in a 2-year, randomized, placebo-controlled study in Alzheimer's disease. Neuropsychiatr Dis Treat. 2014;10:391-401. PMID: 24591834. <u>http://dx.doi.org/10.2147/NDT.S57909</u>
- 208. Raskind MA, Peskind ER, Wessel T, et al. Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. The Galantamine USA-1 Study Group. Neurology. 2000;54(12):2261-8. PMID: 10881250. http://dx.doi.org/10.1212/WNL.54.12.2261
- 209. Rockwood K, Fay S, Song X, et al. Attainment of treatment goals by people with Alzheimer's disease receiving galantamine: a randomized controlled trial. CMAJ. 2006;174(8):1099-105. PMID: 16554498. http://dx.doi.org/10.1503/cmaj.051432
- Rockwood K, Mintzer J, Truyen L, et al. Effects of a flexible galantamine dose in Alzheimer's disease: a randomised, controlled trial. J Neurol Neurosurg Psychiatry. 2001;71(5):589-95. PMID: 11606667. <u>http://dx.doi.org/10.1136/jnnp.71.5.589</u>
- Tariot PN, Solomon PR, Morris JC, et al. A 5-month, randomized, placebo-controlled trial of galantamine in AD. The Galantamine USA-10 Study Group. Neurology. 2000;54(12):2269-76. PMID: 10881251. <u>http://dx.doi.org/10.1212/WNL.54.12.2269</u>
- 212. Wilcock GK, Lilienfeld S, Gaens E. Efficacy and safety of galantamine in patients with mild to moderate Alzheimer's disease: multicentre randomised controlled trial. Galantamine International-1 Study Group.[Erratum appears in BMJ 2001 Feb 17;322(7283):405]. BMJ. 2000;321(7274):1445-9. PMID: 11110737. http://dx.doi.org/10.1136/bmj.321.7274.1445
- 213. Wilkinson D, Murray J. Galantamine: a randomized, double-blind, dose comparison in patients with Alzheimer's disease. Int J Geriatr Psychiatry. 2001;16(9):852-7. PMID: 11571763. <u>http://dx.doi.org/10.1002/gps.409</u>
- 214. Agid Y, Dubois B, Anand R, et al. Efficacy and tolerability of rivastigmine in patients with dementia of the Alzheimer type. Curr Ther Res Clin Exp. 1998;59:837-45. PMID: None. http://dx.doi.org/10.1016/S0011-393X(98)85048-0
- 215. Ballard C, Sauter M, Scheltens P, et al. Efficacy, safety and tolerability of rivastigmine capsules in patients with probable vascular dementia: the VantagE study. Curr Med Res Opin. 2008;24(9):2561-74. PMID: 18674411. http://dx.doi.org/10.1185/03007990802328142
- 216. Corey-Bloom J, Anand R, Veach J. A randomized trial evaluating the efficacy and safety of ENA 713 (rivastigmine tartrate), a new acetylcholinesterase inhibitor, in patients with mild to moderately severe Alzheimer's disease. Int J Geriatr Psychopharmacol. 1998;1(2):55-65. PMID: None.
- 217. Feldman HH, Lane R, Group S. Rivastigmine: a placebo controlled trial of twice daily and three times daily regimens in patients with Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2007;78(10):1056-63. PMID: 17353259. http://dx.doi.org/10.1136/jnnp.2006.099424
- 218. McKeith I, Del Ser T, Spano P, et al. Efficacy of rivastigmine in dementia with Lewy bodies: a randomised, double-blind, placebo-controlled international study. Lancet. 2000;356(9247):2031-6. PMID: 11145488. <u>http://dx.doi.org/10.1016/S0140-6736(00)03399-7</u>
- 219. Mok V, Wong A, Ho S, et al. Rivastigmine in Chinese patients with subcortical vascular dementia. Neuropsychiatr Dis Treat. 2007;3(6):943-8. PMID: 19300631. <u>http://dx.doi.org/10.2147/NDT.S2221</u>

- 220. Rosler M, Anand R, Cicin-Sain A, et al. Efficacy and safety of rivastigmine in patients with Alzheimer's disease: international randomised controlled trial.[Erratum appears in BMJ 2001 Jun 16;322(7300):1456]. BMJ. 1999;318(7184):633-8. PMID: 10066203. http://dx.doi.org/10.1136/bmj.318.7184.633
- 221. Winblad B, Cummings J, Andreasen N, et al. A six-month double-blind, randomized, placebo-controlled study of a transdermal patch in Alzheimer's disease--rivastigmine patch versus capsule. Int J Geriatr Psychiatry. 2007;22(5):456-67. PMID: 17380489. http://dx.doi.org/10.1002/gps.1788
- 222. Bakchine S, Loft H. Memantine treatment in patients with mild to moderate Alzheimer's disease: results of a randomised, double-blind, placebo-controlled 6-month study.[Republished from J Alzheimers Dis. 2007 Jul;11(4):471-9; PMID: 17656827]. J Alzheimers Dis. 2008;13(1):97-107. PMID: 18334761. <u>http://dx.doi.org/10.3233/JAD-2008-13110</u>
- 223. Choi SH, Park KW, Na DL, et al. Tolerability and efficacy of memantine add-on therapy to rivastigmine transdermal patches in mild to moderate Alzheimer's disease: a multicenter, randomized, open-label, parallel-group study. Curr Med Res Opin. 2011;27(7):1375-83. PMID: 21561398. <u>http://dx.doi.org/10.1185/03007995.2011.582484</u>
- 224. Dysken MW, Sano M, Asthana S, et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA. 2014;311(1):33-44. PMID: 24381967. http://dx.doi.org/10.1001/jama.2013.282834
- 225. Ferris S, Schneider L, Farmer M, et al. A double-blind, placebo-controlled trial of memantine in age-associated memory impairment (memantine in AAMI). Int J Geriatr Psychiatry. 2007;22(5):448-55. PMID: 17117395. <u>http://dx.doi.org/10.1002/gps.1711</u>
- 226. Herrmann N, Gauthier S, Boneva N, et al. A randomized, double-blind, placebocontrolled trial of memantine in a behaviorally enriched sample of patients with moderate-to-severe Alzheimer's disease. Int Psychogeriatr. 2013;25(6):919-27. PMID: 23472619. <u>http://dx.doi.org/10.1017/S1041610213000239</u>
- 227. Orgogozo JM, Rigaud AS, Stoffler A, et al. Efficacy and safety of memantine in patients with mild to moderate vascular dementia: a randomized, placebo-controlled trial (MMM 300). Stroke. 2002;33(7):1834-9. PMID: 12105362. http://dx.doi.org/10.1161/01.STR.0000020094.08790.49
- 228. Peskind ER, Potkin SG, Pomara N, et al. Memantine treatment in mild to moderate Alzheimer disease: a 24-week randomized, controlled trial. Am J Geriatr Psychiatry. 2006;14(8):704-15. PMID: 16861375. http://dx.doi.org/10.1097/01.JGP.0000224350.82719.83
- 229. Peters O, Fuentes M, Joachim L, et al. Combined treatment with memantine and galantamine-CR compared with galantamine-CR only in antidementia drug naive patients with mild-to-moderate Alzheimer's disease. Alzheimers Dement (N Y). 2015;1(3):198-204. PMID: 29854939. http://dx.doi.org/10.1016/j.trci.2015.10.001
- 230. Porsteinsson AP, Grossberg GT, Mintzer J, et al. Memantine treatment in patients with mild to moderate Alzheimer's disease already receiving a cholinesterase inhibitor: a randomized, double-blind, placebo-controlled trial. Curr Alzheimer Res. 2008;5(1):83-9. PMID: 18288936. <u>http://dx.doi.org/10.2174/156720508783884576</u>

- 231. Saxton J, Hofbauer RK, Woodward M, et al. Memantine and functional communication in Alzheimer's disease: results of a 12-week, international, randomized clinical trial. J Alzheimers Dis. 2012;28(1):109-18. PMID: 21955815. <u>http://dx.doi.org/10.3233/JAD-2011-110947</u>
- 232. Wilcock G, Mobius HJ, Stoffler A. A double-blind, placebo-controlled multicentre study of memantine in mild to moderate vascular dementia (MMM500). Int Clin Psychopharmacol. 2002;17(6):297-305. PMID: 12409683. http://dx.doi.org/10.1212/WNL.54.12.2269
- Wilkinson D, Fox NC, Barkhof F, et al. Memantine and brain atrophy in Alzheimer's disease: a 1-year randomized controlled trial. J Alzheimers Dis. 2012;29(2):459-69.
 PMID: 22269160. <u>http://dx.doi.org/10.3233/JAD-2011-111616</u>
- 234. Gill SS, Anderson GM, Fischer HD, et al. Syncope and its consequences in patients with dementia receiving cholinesterase inhibitors: a population-based cohort study. Arch Intern Med. 2009;169(9):867-73. PMID: 19433698. http://dx.doi.org/10.1001/archinternmed.2009.43
- 235. Hernandez RK, Farwell W, Cantor MD, et al. Cholinesterase inhibitors and incidence of bradycardia in patients with dementia in the veterans affairs new England healthcare system. J Am Geriatr Soc. 2009;57(11):1997-2003. PMID: 19793162. http://dx.doi.org/10.1111/j.1532-5415.2009.02488.x
- 236. Thavorn K, Gomes T, Camacho X, et al. Upper gastrointestinal bleeding in elderly adults with dementia receiving cholinesterase inhibitors: a population-based cohort study. J Am Geriatr Soc. 2014;62(2):382-4. PMID: 24521369. <u>http://dx.doi.org/10.1111/jgs.12670</u>
- 237. Moonen JE, Foster-Dingley JC, de Ruijter W, et al. Effect of Discontinuation of Antihypertensive Treatment in Elderly People on Cognitive Functioning--the DANTE Study Leiden: A Randomized Clinical Trial.[Erratum appears in JAMA Intern Med. 2016 Feb;176(2):284; PMID: 26830247]. JAMA Intern Med. 2015;175(10):1622-30. PMID: 26301603. <u>http://dx.doi.org/10.1001/jamainternmed.2015.4103</u>
- 238. Feldman HH, Doody RS, Kivipelto M, et al. Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease: LEADe. Neurology. 2010;74(12):956-64. PMID: 20200346. <u>http://dx.doi.org/10.1212/WNL.0b013e3181d6476a</u>
- 239. Sano M, Bell KL, Galasko D, et al. A randomized, double-blind, placebo-controlled trial of simvastatin to treat Alzheimer disease. Neurology. 2011;77(6):556-63. PMID: 21795660. <u>http://dx.doi.org/10.1212/WNL.0b013e318228bf11</u>
- 240. Simons M, Schwarzler F, Lutjohann D, et al. Treatment with simvastatin in normocholesterolemic patients with Alzheimer's disease: A 26-week randomized, placebo-controlled, double-blind trial. Ann Neurol. 2002;52(3):346-50. PMID: 12205648. <u>http://dx.doi.org/10.1002/ana.10292</u>
- 241. Sparks DL, Sabbagh MN, Connor DJ, et al. Atorvastatin for the treatment of mild to moderate Alzheimer disease: preliminary results. Arch Neurol. 2005;62(5):753-7. PMID: 15883262. <u>http://dx.doi.org/10.1001/archneur.62.5.753</u>
- 242. Aisen PS, Schafer KA, Grundman M, et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA. 2003;289(21):2819-26. PMID: 12783912. http://dx.doi.org/10.1001/jama.289.21.2819
- 243. de Jong D, Jansen R, Hoefnagels W, et al. No effect of one-year treatment with indomethacin on Alzheimer's disease progression: a randomized controlled trial. PLoS One. 2008;3(1):e1475. PMID: 18213383. <u>http://dx.doi.org/10.1371/journal.pone.0001475</u>

- 244. Pasqualetti P, Bonomini C, Dal Forno G, et al. A randomized controlled study on effects of ibuprofen on cognitive progression of Alzheimer's disease. Aging Clin Exp Res. 2009;21(2):102-10. PMID: 19448381.
- 245. Soininen H, West C, Robbins J, et al. Long-term efficacy and safety of celecoxib in Alzheimer's disease. Dement Geriatr Cogn Dis. 2007;23(1):8-21. PMID: 17068392. http://dx.doi.org/10.1159/000096588
- 246. Henderson VW, Ala T, Sainani KL, et al. Raloxifene for women with Alzheimer disease: A randomized controlled pilot trial. Neurology. 2015;85(22):1937-44. PMID: 26537053. http://dx.doi.org/10.1212/WNL.00000000002171
- Henderson VW, Paganini-Hill A, Miller BL, et al. Estrogen for Alzheimer's disease in women: randomized, double-blind, placebo-controlled trial. Neurology. 2000;54(2):295-301. PMID: 10668686. <u>http://dx.doi.org/10.1212/WNL.54.2.295</u>
- 248. Lu PH, Masterman DA, Mulnard R, et al. Effects of testosterone on cognition and mood in male patients with mild Alzheimer disease and healthy elderly men. Arch Neurol. 2006;63(2):177-85. PMID: 16344336. <u>http://dx.doi.org/10.1001/archneur.63.2.nct50002</u>
- 249. Mulnard RA, Cotman CW, Kawas C, et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: A randomized controlled trial [Erratum appears in JAMA 2000 Nov 22-29;284(20):2597]. JAMA. 2000;283(8):1007-15. PMID: 10697060. http://dx.doi.org/10.1001/jama.283.8.1007
- 250. Valen-Sendstad A, Engedal K, Stray-Pedersen B, et al. Effects of hormone therapy on depressive symptoms and cognitive functions in women with Alzheimer disease: a 12 month randomized, double-blind, placebo-controlled study of low-dose estradiol and norethisterone. Am J Geriatr Psychiatry. 2010;18(1):11-20. PMID: 20094015. http://dx.doi.org/10.1097/JGP.0b013e3181beaaf4
- 251. Wang PN, Liao SQ, Liu RS, et al. Effects of estrogen on cognition, mood, and cerebral blood flow in AD: a controlled study. Neurology. 2000;54(11):2061-6. PMID: 10851363. http://dx.doi.org/10.1212/WNL.54.11.2061
- Aisen PS, Schneider LS, Sano M, et al. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA. 2008;300(15):1774-83. PMID: 18854539. <u>http://dx.doi.org/10.1001/jama.300.15.1774</u>
- 253. Connelly PJ, Prentice NP, Cousland G, et al. A randomised double-blind placebocontrolled trial of folic acid supplementation of cholinesterase inhibitors in Alzheimer's disease. Int J Geriatr Psychiatry. 2008;23(2):155-60. PMID: 17600848. <u>http://dx.doi.org/10.1002/gps.1856</u>
- 254. de Jager CA, Oulhaj A, Jacoby R, et al. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry. 2012;27(6):592-600. PMID: 21780182. http://dx.doi.org/10.1002/gps.2758
- 255. Freund-Levi Y, Eriksdotter-Jonhagen M, Cederholm T, et al. Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch Neurol. 2006;63(10):1402-8. PMID: 17030655. http://dx.doi.org/10.1001/archneur.63.10.1402
- 256. Kwok T, Lee J, Law CB, et al. A randomized placebo controlled trial of homocysteine lowering to reduce cognitive decline in older demented people. Clinical nutrition (Edinburgh, Scotland). 2011;30(3):297-302. PMID: 21216507. http://dx.doi.org/10.1016/j.clnu.2010.12.004

- 257. Phillips MA, Childs CE, Calder PC, et al. No Effect of Omega-3 Fatty Acid Supplementation on Cognition and Mood in Individuals with Cognitive Impairment and Probable Alzheimer's Disease: A Randomised Controlled Trial. Int J Mol Sci. 2015;16(10):24600-13. PMID: 26501267. <u>http://dx.doi.org/10.3390/ijms161024600</u>
- 258. Quinn JF, Raman R, Thomas RG, et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA. 2010;304(17):1903-11. PMID: 21045096. <u>http://dx.doi.org/10.1001/jama.2010.1510</u>
- 259. Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study. NEJM. 1997;336(17):1216-22. PMID: 9110909. http://dx.doi.org/10.1056/NEJM199704243361704
- Shinto L, Quinn J, Montine T, et al. A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer's disease. J Alzheimers Dis. 2014;38(1):111-20. PMID: 24077434. <u>http://dx.doi.org/10.3233/JAD-130722</u>
- 261. Sinn N, Milte CM, Street SJ, et al. Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial. Br J Nutr. 2012;107(11):1682-93. PMID: 21929835. http://dx.doi.org/10.1017/S0007114511004788
- 262. Sun Y, Lu CJ, Chien KL, et al. Efficacy of multivitamin supplementation containing vitamins B6 and B12 and folic acid as adjunctive treatment with a cholinesterase inhibitor in Alzheimer's disease: a 26-week, randomized, double-blind, placebo-controlled study in Taiwanese patients. Clin Ther. 2007;29(10):2204-14. PMID: 18042476. http://dx.doi.org/10.1016/j.clinthera.2007.10.012
- Yurko-Mauro K, McCarthy D, Rom D, et al. Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement. 2010;6(6):456-64.
 PMID: 20434961. <u>http://dx.doi.org/10.1016/j.jalz.2010.01.013</u>
- 264. Troyer AK, Murphy KJ, Anderson ND, et al. Changing everyday memory behaviour in amnestic mild cognitive impairment: a randomised controlled trial. Neuropsychol Rehabil. 2008;18(1):65-88. PMID: 17943615. http://dx.doi.org/10.1080/09602010701409684
- 265. Tsolaki M, Kounti F, Agogiatou C, et al. Effectiveness of nonpharmacological approaches in patients with mild cognitive impairment. Neurodegener Dis. 2011;8(3):138-45. PMID: 21135531. <u>http://dx.doi.org/10.1159/000320575</u>
- 266. Kinsella GJ, Mullaly E, Rand E, et al. Early intervention for mild cognitive impairment: a randomised controlled trial. J Neurol Neurosurg Psychiatry. 2009;80(7):730-6. PMID: 19332424. http://dx.doi.org/10.1136/jnnp.2008.148346
- 267. Olazaran J, Muniz R, Reisberg B, et al. Benefits of cognitive-motor intervention in MCI and mild to moderate Alzheimer disease. Neurology. 2004;63(12):2348-53. PMID: 15623698. <u>http://dx.doi.org/10.1212/01.WNL.0000147478.03911.28</u>
- 268. Chapman SB, Weiner MF, Rackley A, et al. Effects of cognitive-communication stimulation for Alzheimer's disease patients treated with donepezil. J Speech Lang Hear Res. 2004;47(5):1149-63. PMID: 15603468. <u>http://dx.doi.org/10.1044/1092-4388(2004/085</u>)

- 269. Cahn-Weiner DA, Malloy PF, Rebok GW, et al. Results of a randomized placebocontrolled study of memory training for mildly impaired Alzheimer's disease patients. Appl Neuropsychol. 2003;10(4):215-23. PMID: 14690802. <u>http://dx.doi.org/10.1207/s15324826an1004_3</u>
- 270. Rapp S, Brenes G, Marsh AP. Memory enhancement training for older adults with mild cognitive impairment: a preliminary study. Aging Ment Health. 2002;6(1):5-11. PMID: 11827617. <u>http://dx.doi.org/10.1080/13607860120101077</u>
- 271. Buschert VC, Friese U, Teipel SJ, et al. Effects of a newly developed cognitive intervention in amnestic mild cognitive impairment and mild Alzheimer's disease: a pilot study. J Alzheimers Dis. 2011;25(4):679-94. PMID: 21483095. http://dx.doi.org/10.3233/JAD-2011-100999
- 272. Quayhagen MP, Quayhagen M, Corbeil RR, et al. A dyadic remediation program for care recipients with dementia. Nurs Res. 1995;44(3):153-9. PMID: 7761291.
- 273. Greenaway MC, Duncan NL, Smith GE. The memory support system for mild cognitive impairment: randomized trial of a cognitive rehabilitation intervention. Int J Geriatr Psychiatry. 2012. PMID: 22678947. <u>http://dx.doi.org/10.1002/gps.3838</u>
- 274. Kurz A, Thone-Otto A, Cramer B, et al. CORDIAL: cognitive rehabilitation and cognitive-behavioral treatment for early dementia in Alzheimer disease: a multicenter, randomized, controlled trial. Alzheimer Dis Assoc Disord. 2012;26(3):246-53. PMID: 21986341. <u>http://dx.doi.org/10.1097/WAD.0b013e318231e46e</u>
- 275. Orrell M, Yates L, Leung P, et al. The impact of individual Cognitive Stimulation Therapy (iCST) on cognition, quality of life, caregiver health, and family relationships in dementia: A randomised controlled trial. PLoS Med. 2017;14(3):e1002269. PMID: 28350796. <u>http://dx.doi.org/10.1371/journal.pmed.1002269</u>
- 276. Jeong JH, Na HR, Choi SH, et al. Group- and Home-Based Cognitive Intervention for Patients with Mild Cognitive Impairment: A Randomized Controlled Trial. Psychother Psychosom. 2016;85(4):198-207. PMID: 27230861. <u>http://dx.doi.org/10.1159/000442261</u>
- 277. Amieva H, Robert PH, Grandoulier AS, et al. Group and individual cognitive therapies in Alzheimer's disease: the ETNA3 randomized trial. Int Psychogeriatr. 2016;28(5):707-17. PMID: 26572551. <u>http://dx.doi.org/10.1017/S1041610215001830</u>
- 278. Vidovich MR, Lautenschlager NT, Flicker L, et al. The PACE study: a randomized clinical trial of cognitive activity strategy training for older people with mild cognitive impairment. Am J Geriatr Psychiatry. 2015;23(4):360-72. PMID: 24801607. http://dx.doi.org/10.1016/j.jagp.2014.04.002
- 279. Cove J, Jacobi N, Donovan H, et al. Effectiveness of weekly cognitive stimulation therapy for people with dementia and the additional impact of enhancing cognitive stimulation therapy with a carer training program. Clin Interv Aging. 2014;9:2143-50. PMID: 25525349. <u>http://dx.doi.org/10.2147/CIA.S66232</u>
- 280. Fiatarone Singh MA, Gates N, Saigal N, et al. The Study of Mental and Resistance Training (SMART) study-resistance training and/or cognitive training in mild cognitive impairment: a randomized, double-blind, double-sham controlled trial. J Am Med Dir Assoc. 2014;15(12):873-80. PMID: 25444575. http://dx.doi.org/10.1016/j.jamda.2014.09.010

- 281. Orrell M, Aguirre E, Spector A, et al. Maintenance cognitive stimulation therapy for dementia: single-blind, multicentre, pragmatic randomised controlled trial. Br J Psychiatry. 2014;204(6):454-61. PMID: 24676963. <u>http://dx.doi.org/10.1192/bjp.bp.113.137414</u>
- 282. Bergamaschi S, Arcara G, Calza A, et al. One-year repeated cycles of cognitive training (CT) for Alzheimer's disease. Aging Clin Exp Res. 2013;25(4):421-6. PMID: 23784727. http://dx.doi.org/10.1007/s40520-013-0065-2
- Herrera C, Chambon C, Michel BF, et al. Positive effects of computer-based cognitive training in adults with mild cognitive impairment. Neuropsychologia. 2012;50(8):1871-81. PMID: 22525705. <u>http://dx.doi.org/10.1016/j.neuropsychologia.2012.04.012</u>
- 284. Jelcic N, Cagnin A, Meneghello F, et al. Effects of lexical-semantic treatment on memory in early Alzheimer disease: an observer-blinded randomized controlled trial. Neurorehabil Neural Repair. 2012;26(8):949-56. PMID: 22460609. <u>http://dx.doi.org/10.1177/1545968312440146</u>
- 285. Tsantali E, Economidis D, Rigopoulou S. Testing the benefits of cognitive training vs. Cognitive stimulation in mild Alzheimer's disease: A randomised controlled trial. Brain Impair. 2017;18(2):188-96. PMID: None. <u>http://dx.doi.org/10.1017/BrImp.2017.6</u>
- 286. Cavallo M, Hunter EM, van der Hiele K, et al. Computerized structured cognitive training in patients affected by early-stage Alzheimer's disease is feasible and effective: A randomized controlled study. Archives of clinical neuropsychology : the official journal of the National Academy of Neuropsychologists. 2016;31(8):868-76. PMID: 27600448. http://dx.doi.org/10.1093/arclin/acw072
- 287. Hyer L, Scott C, Atkinson MM, et al. Cognitive training program to improve working memory in older adults with MCI. Clinical Gerontologist. 2016;39(5):410-27. PMID: 29471774. <u>http://dx.doi.org/10.1080/07317115.2015.1120257</u>
- 288. Nousia A, Siokas V, Aretouli E, et al. Beneficial Effect of Multidomain Cognitive Training on the Neuropsychological Performance of Patients with Early-Stage Alzheimer's Disease. Neural Plast. 2018;2018:2845176. PMID: 30123243. <u>http://dx.doi.org/10.1155/2018/2845176</u>
- 289. Pantoni L, Poggesi A, Diciotti S, et al. Effect of Attention Training in Mild Cognitive Impairment Patients with Subcortical Vascular Changes: The RehAtt Study. J Alzheimers Dis. 2017;60(2):615-24. PMID: 28869475. <u>http://dx.doi.org/10.3233/JAD-170428</u>
- 290. Kallio EL, Ohman H, Hietanen M, et al. Effects of Cognitive Training on Cognition and Quality of Life of Older Persons with Dementia. J Am Geriatr Soc. 2018;66(4):664-70.
 PMID: 29345724. <u>http://dx.doi.org/10.1111/jgs.15196</u>
- 291. Belleville S, Hudon C, Bier N, et al. MEMO+: Efficacy, Durability and Effect of Cognitive Training and Psychosocial Intervention in Individuals with Mild Cognitive Impairment. J Am Geriatr Soc. 2018;66(4):655-63. PMID: 29313875. <u>http://dx.doi.org/10.1111/jgs.15192</u>
- 292. Pitkälä KH, Pöysti MM, Laakkonen ML, et al. Effects of the Finnish Alzheimer disease exercise trial (FINALEX): a randomized controlled trial. JAMA Intern Med. 2013;173(10):894-901. PMID: 23589097. http://dx.doi.org/10.1001/jamainternmed.2013.359
- 293. Liu-Ambrose T, Best JR, Davis JC, et al. Aerobic exercise and vascular cognitive impairment: A randomized controlled trial. Neurology. 2016;[Epub ahead of print]. PMID: 27760869. <u>http://dx.doi.org/10.1212/wnl.00000000003332</u>

- 294. Lautenschlager NT, Cox KL, Flicker L, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial.[Erratum appears in JAMA. 2009 Jan 21;301(3):276]. JAMA. 2008;300(9):1027-37. PMID: 18768414. <u>http://dx.doi.org/10.1001/jama.300.9.1027</u>
- 295. Lam LC, Chau RC, Wong BM, et al. Interim follow-up of a randomized controlled trial comparing Chinese style mind body (Tai Chi) and stretching exercises on cognitive function in subjects at risk of progressive cognitive decline. Int J Geriatr Psychiatry. 2011;26(7):733-40. PMID: 21495078. <u>http://dx.doi.org/10.1002/gps.2602</u>
- 296. Schwenk M, Zieschang T, Oster P, et al. Dual-task performances can be improved in patients with dementia: a randomized controlled trial. Neurology. 2010;74(24):1961-8. PMID: 20445152. <u>http://dx.doi.org/10.1212/WNL.0b013e3181e39696</u>
- 297. Venturelli M, Lanza M, Muti E, et al. Positive effects of physical training in activity of daily living-dependent older adults. Exp Aging Res. 2010;36(2):190-205. PMID: 20209421. <u>http://dx.doi.org/10.1080/03610731003613771</u>
- 298. Baker LD, Frank LL, Foster-Schubert K, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67(1):71-9. PMID: 20065132. <u>http://dx.doi.org/10.1001/archneurol.2009.307</u>
- 299. Suzuki T, Shimada H, Makizako H, et al. Effects of multicomponent exercise on cognitive function in WMS-LM older adults with amnestic mild cognitive impairment: a randomized controlled trial. BMC Neurol. 2012;12(1):128. PMID: 23113898. http://dx.doi.org/10.1186/1471-2377-12-128
- 300. Vreugdenhil A, Cannell J, Davies A, et al. A community-based exercise programme to improve functional ability in people with Alzheimer's disease: a randomized controlled trial. Scand J Caring Sci. 2012;26(1):12-9. PMID: 21564154. http://dx.doi.org/10.1111/j.1471-6712.2011.00895.x
- 301. Lazarou I, Parastatidis T, Tsolaki A, et al. International Ballroom Dancing Against Neurodegeneration: A Randomized Controlled Trial in Greek Community-Dwelling Elders With Mild Cognitive impairment. Am J Alzheimers Dis Other Demen. 2017:1533317517725813. PMID: 28840742. http://dx.doi.org/10.1177/1533317517725813
- 302. Hong SG, Kim JH, Jun TW. Effects of 12-Week Resistance Exercise on Electroencephalogram Patterns and Cognitive Function in the Elderly With Mild Cognitive Impairment: A Randomized Controlled Trial. Clinical journal of sport medicine : official journal of the Canadian Academy of Sport Medicine. 2017. PMID: 28727639. <u>http://dx.doi.org/10.1097/jsm.00000000000476</u>
- 303. Morris JK, Vidoni ED, Johnson DK, et al. Aerobic exercise for Alzheimer's disease: A randomized controlled pilot trial. PLoS One. 2017;12(2):e0170547. PMID: 28187125. http://dx.doi.org/10.1371/journal.pone.0170547
- 304. Hoffmann K, Sobol NA, Frederiksen KS, et al. Moderate-to-High Intensity Physical Exercise in Patients with Alzheimer's Disease: A Randomized Controlled Trial. J Alzheimers Dis. 2016;50(2):443-53. PMID: 26682695. <u>http://dx.doi.org/10.3233/JAD-150817</u>
- 305. Holthoff VA, Marschner K, Scharf M, et al. Effects of physical activity training in patients with Alzheimer's dementia: results of a pilot RCT study. PLoS One. 2015;10(4):e0121478. PMID: 25884637. <u>http://dx.doi.org/10.1371/journal.pone.0121478</u>

- 306. Doi T, Verghese J, Makizako H, et al. Effects of Cognitive Leisure Activity on Cognition in Mild Cognitive Impairment: Results of a Randomized Controlled Trial. J Am Med Dir Assoc. 2017;18(8):686-91. PMID: 28396179. http://dx.doi.org/10.1016/j.jamda.2017.02.013
- 307. Dawson NT. Examining the effects of a moderate-intensity home-based functional exercise intervention on cognition and function in individuals with dementia. Diss Abstr Int. 2016;76(12-A(E)):No Pagination Specified. PMID: None.
- 308. Lamb SE, Sheehan B, Atherton N, et al. Dementia And Physical Activity (DAPA) trial of moderate to high intensity exercise training for people with dementia: randomised controlled trial. BMJ. 2018;361:K1675. PMID: 29769247. <u>http://dx.doi.org/10.1136/bmj.k1675</u>
- 309. Blumenthal JA, Smith PJ, Mabe S, et al. Lifestyle and neurocognition in older adults with cognitive impairments: A randomized trial. Neurology. 2018. PMID: 30568005. http://dx.doi.org/10.1212/WNL.00000000006784
- 310. Ho RTH, Fong TCT, Chan WC, et al. Psychophysiological effects of Dance Movement Therapy and physical exercise on older adults with mild dementia: A randomized controlled trial. J Gerontol B Psychol Sci Soc Sci. 2018. PMID: 30496547. http://dx.doi.org/10.1093/geronb/gby145
- 311. Siu MY, Lee DTF. Effects of tai chi on cognition and instrumental activities of daily living in community dwelling older people with mild cognitive impairment. BMC Geriatr. 2018;18(1):37. PMID: 29394884. <u>http://dx.doi.org/10.1186/s12877-018-0720-8</u>
- 312. Karssemeijer EGA, Aaronson JA, Bossers WJR, et al. The quest for synergy between physical exercise and cognitive stimulation via exergaming in people with dementia: a randomized controlled trial. Alzheimers Res Ther. 2019;11(1):3. PMID: 30611286. http://dx.doi.org/10.1186/s13195-018-0454-z
- 313. Bellantonio S, Kenny AM, Fortinsky RH, et al. Efficacy of a geriatrics team intervention for residents in dementia-specific assisted living facilities: effect on unanticipated transitions. J Am Geriatr Soc. 2008;56(3):523-8. PMID: 18179497. http://dx.doi.org/10.1111/j.1532-5415.2007.01591.x
- Burgener SC, Yang Y, Gilbert R, et al. The effects of a multimodal intervention on outcomes of persons with early-stage dementia. Am J Alzheimers Dis Other Demen. 2008;23(4):382-94. PMID: 18453642. <u>http://dx.doi.org/10.1177/1533317508317527</u>
- Wolfs CAG, Kessels A, Dirksen CD, et al. Integrated multidisciplinary diagnostic approach for dementia care: Randomised controlled trial. Br J Psychiatry. 2008;192(4):300-5. PMID: 18378994. <u>http://dx.doi.org/10.1192/bjp.bp.107.035204</u>
- 316. Quinn C, Toms G, Jones C, et al. A pilot randomized controlled trial of a selfmanagement group intervention for people with early-stage dementia (The SMART study). Int Psychogeriatr. 2016;28(5):787-800. PMID: 26674087. <u>http://dx.doi.org/10.1017/S1041610215002094</u>
- 317. Marshall A, Spreadbury J, Cheston R, et al. A pilot randomised controlled trial to compare changes in quality of life for participants with early diagnosis dementia who attend a 'Living Well with Dementia' group compared to waiting-list control. Aging Ment Health. 2015;19(6):526-35. PMID: 25196239. http://dx.doi.org/10.1080/13607863.2014.954527

- 318. Jha A, Jan F, Gale T, et al. Effectiveness of a recovery-orientated psychiatric intervention package on the wellbeing of people with early dementia: a preliminary randomised controlled trial. Int J Geriatr Psychiatry. 2013;28(6):589-96. PMID: 22847712. http://dx.doi.org/10.1002/gps.3863
- 319. Richard E, Kuiper R, Dijkgraaf MG, et al. Vascular care in patients with Alzheimer's disease with cerebrovascular lesions-a randomized clinical trial. J Am Geriatr Soc. 2009;57(5):797-805. PMID: 19484836.
- 320. Rovner BW, Casten RJ, Hegel MT, et al. Preventing Cognitive Decline in Black Individuals With Mild Cognitive Impairment: A Randomized Clinical Trial. JAMA Neurol. 2018. PMID: 30208380. <u>http://dx.doi.org/10.1001/jamaneurol.2018.2513</u>
- 321. Train the Brain Consortium. Randomized trial on the effects of a combined physical/cognitive training in aged MCI subjects: the Train the Brain study. Sci. 2017;7:39471. PMID: 28045051. http://dx.doi.org/10.1038/srep39471
- 322. Bae S, Lee S, Lee S, et al. The effect of a multicomponent intervention to promote community activity on cognitive function in older adults with mild cognitive impairment: A randomized controlled trial. Complement Ther Med. 2019;42:164-9. PMID: 30670238. http://dx.doi.org/10.1016/j.ctim.2018.11.011
- 323. Shimada H, Makizako H, Doi T, et al. Effects of Combined Physical and Cognitive Exercises on Cognition and Mobility in Patients With Mild Cognitive Impairment: A Randomized Clinical Trial. J Am Med Dir Assoc. 2018;19(7):584-91. PMID: 29153754. http://dx.doi.org/10.1016/j.jamda.2017.09.019
- 324. Straubmeier M, Behrndt E-M, Seidl H, et al. Non-pharmacological treatment in people with cognitive impairment: Results from the randomized controlled German Day Care Study. Dtsch. 2017;114(48):815-21. PMID: 29249224. http://dx.doi.org/10.3238/arztebl.2017.0815
- 325. Bahar-Fuchs A, Clare L, Woods B. Cognitive training and cognitive rehabilitation for mild to moderate Alzheimer's disease and vascular dementia. Cochrane Database of Systematic Reviews. 2013(6). PMID: 23924584. http://dx.doi.org/10.1002/14651858.CD003260.pub2
- Woods B, Aguirre E, Spector AE, et al. Cognitive stimulation to improve cognitive functioning in people with dementia. Cochrane Database of Systematic Reviews. 2012(2):CD005562. PMID: 22336813. http://dx.doi.org/10.1002/14651858.CD005562.pub2
- 327. Barnes CJ, Markham C. A pilot study to evaluate the effectiveness of an individualized and cognitive behavioural communication intervention for informal carers of people with dementia: The Talking Sense programme. Int J Lang Commun Disord. 2018;53(3):615-27. PMID: 29460337. http://dx.doi.org/10.1111/1460-6984.12375
- 328. Belle SH, Burgio L, Burns R, et al. Enhancing the quality of life of dementia caregivers from different ethnic or racial groups: a randomized, controlled trial.[Summary for patients in Ann Intern Med. 2006 Nov 21;145(10):I39; PMID: 17116914]. Ann Int Med. 2006;145(10):727-38. PMID: 17116917. <u>http://dx.doi.org/10.7326/0003-4819-145-10-200611210-00005</u>
- 329. Berwig M, Heinrich S, Spahlholz J, et al. Individualized support for informal caregivers of people with dementia effectiveness of the German adaptation of REACH II. BMC Geriatr. 2017;17(1):286. PMID: 29233097. <u>http://dx.doi.org/10.1186/s12877-017-0678-y</u>

- Brennan PF, Moore SM, Smyth KA. The effects of a special computer network on caregivers of persons with Alzheimer's disease. Nurs Res. 1995;44(3):166-72. PMID: 7761293. <u>http://dx.doi.org/10.1097/00006199-199505000-00007</u>
- 331. Bruvik FK, Allore HG, Ranhoff AH, et al. The effect of psychosocial support intervention on depression in patients with dementia and their family caregivers: an assessor-blinded randomized controlled trial. Dement Geriatr Cogn Dis Extra. 2013;3(1):386-97. PMID: 24348500. http://dx.doi.org/10.1159/000355912
- 332. Burgio L, Stevens A, Guy D, et al. Impact of two psychosocial interventions on white and African American family caregivers of individuals with dementia. Gerontologist. 2003;43(4):568-79. PMID: 12937335.
- 333. Chang BL. Cognitive-behavioral intervention for homebound caregivers of persons with dementia. Nurs Res. 1999;48(3):173-82. PMID: 10337848. <u>http://dx.doi.org/10.1097/00006199-199905000-00007</u>
- 334. Chu H, Yang CY, Liao YH, et al. The effects of a support group on dementia caregivers' burden and depression. J Aging Health. 2011;23(2):228-41. PMID: 20847363. http://dx.doi.org/10.1177/0898264310381522
- 335. Coon DW, Thompson L, Steffen A, et al. Anger and depression management: psychoeducational skill training interventions for women caregivers of a relative with dementia. Gerontologist. 2003;43(5):678-89. PMID: 14570964. <u>http://dx.doi.org/10.1093/geront/43.5.678</u>
- 336. Cristancho-Lacroix V, Wrobel J, Cantegreil-Kallen I, et al. A web-based psychoeducational program for informal caregivers of patients with Alzheimer's disease: a pilot randomized controlled trial. J Med Internet Res. 2015;17(5):e117. PMID: 25967983. <u>http://dx.doi.org/10.2196/jmir.3717</u>
- 337. De Rotrou J, Cantegreil I, Faucounau V, et al. Do patients diagnosed with Alzheimer's disease benefit from a psycho-educational programme for family caregivers? A randomised controlled study. Int J Geriatr Psychiatry. 2011;26(8):833-42. PMID: 20922772. <u>http://dx.doi.org/10.1002/gps.2611</u>
- 338. Ducharme FC, Levesque LL, Lachance LM, et al. "Learning to become a family caregiver" efficacy of an intervention program for caregivers following diagnosis of dementia in a relative. Gerontologist. 2011;51(4):484-94. PMID: 21383112. http://dx.doi.org/10.1093/geront/gnr014
- 339. Duggleby W, Ploeg J, McAiney C, et al. Web-Based Intervention for Family Carers of Persons with Dementia and Multiple Chronic Conditions (My Tools 4 Care): Pragmatic Randomized Controlled Trial. J Med Internet Res. 2018;20(6):e10484. PMID: 29959111. <u>http://dx.doi.org/10.2196/10484</u>
- Finkel S, Czaja SJ, Schulz R, et al. E-care: a telecommunications technology intervention for family caregivers of dementia patients. Am J Geriatr Psychiatry. 2007;15(5):443-8.
 PMID: 17463195. <u>http://dx.doi.org/10.1097/JGP.0b013e3180437d87</u>
- 341. Fung W, Chien W. The effectiveness of a mutual support group for family caregivers of a relative with dementia. Arch Psychiatr Nurs. 2002;16(3):134-44. PMID: 12037799. http://dx.doi.org/10.1053/apnu.2002.32951
- Gallagher-Thompson D, Coon DW, Solano N, et al. Change in indices of distress among Latino and Anglo female caregivers of elderly relatives with dementia: site-specific results from the REACH national collaborative study. Gerontologist. 2003;43(4):580-91. PMID: 12937336. <u>http://dx.doi.org/10.1093/geront/43.4.580</u>

- 343. Gallagher-Thompson D, Gray HL, Dupart T, et al. Effectiveness of cognitive/behavioral small group intervention for reduction of depression and stress in non-Hispanic White and Hispanic/Latino women dementia family caregivers: Outcomes and mediators of change. J Ration Emot Cogn Behav Ther. 2008;26(4):286-303. PMID: 25067886. http://dx.doi.org/10.1007/s10942-008-0087-4
- 344. Gallagher-Thompson D, Wang PC, Liu W, et al. Effectiveness of a psychoeducational skill training DVD program to reduce stress in Chinese American dementia caregivers: results of a preliminary study. Aging Ment Health. 2010;14(3):263-73. PMID: 20425645. http://dx.doi.org/10.1080/13607860903420989
- 345. Garand L, Rinaldo DE, Alberth MM, et al. Effects of problem solving therapy on mental health outcomes in family caregivers of persons with a new diagnosis of mild cognitive impairment or early dementia: a randomized controlled trial. Am J Geriatr Psychiatry. 2014;22(8):771-81. PMID: 24119856. <u>http://dx.doi.org/10.1016/j.jagp.2013.07.007</u>
- 346. Gaugler JE, Reese M, Mittelman MS. Effects of the NYU caregiver intervention-adult child on residential care placement. Gerontologist. 2013;53(6):985-97. PMID: 23339050. http://dx.doi.org/10.1093/geront/gns193
- 347. Gitlin LN, Corcoran M, Winter L, et al. A randomized, controlled trial of a home environmental intervention: effect on efficacy and upset in caregivers and on daily function of persons with dementia. Gerontologist. 2001;41(1):4-14. PMID: 11220813. http://dx.doi.org/10.1093/geront/41.1.4
- 348. Gitlin LN, Winter L, Burke J, et al. Tailored activities to manage neuropsychiatric behaviors in persons with dementia and reduce caregiver burden: a randomized pilot study. Am J Geriatr Psychiatry. 2008;16(3):229-39. PMID: 18310553. http://dx.doi.org/10.1097/JGP.0b013e318160da72
- 349. Gitlin LN, Winter L, Corcoran M, et al. Effects of the home environmental skill-building program on the caregiver-care recipient dyad: 6-month outcomes from the Philadelphia REACH Initiative. Gerontologist. 2003;43(4):532-46. PMID: 12937332. http://dx.doi.org/10.1093/geront/43.4.532
- 350. Gitlin LN, Winter L, Dennis MP, et al. Targeting and managing behavioral symptoms in individuals with dementia: a randomized trial of a nonpharmacological intervention. J Am Geriatr Soc. 2010;58(8):1465-74. PMID: 20662955. http://dx.doi.org/10.1111/j.1532-5415.2010.02971.x
- 351. Graff MJ, Vernooij-Dassen MJ, Thijssen M, et al. Community based occupational therapy for patients with dementia and their care givers: randomised controlled trial. BMJ. 2006;333(7580):1196. PMID: 17114212. http://dx.doi.org/10.1136/bmj.39001.688843.BE
- 352. Hebert R, Levesque L, Vezina J, et al. Efficacy of a psychoeducative group program for caregivers of demented persons living at home: a randomized controlled trial. J Gerontol B Psychol Sci Soc Sci. 2003;58(1):S58-S67. PMID: 12496309. http://dx.doi.org/10.1093/geronb/58.1.S58
- 353. Hepburn KW, Lewis M, Narayan S, et al. Partners in Caregiving: A Psychoeducation Program Affecting Dementia Family Caregivers' Distress and Caregiving Outlook. Clin Gerontol. 2005;29(1):53-69. PMID: None. <u>http://dx.doi.org/10.1300/J018v29n01_05</u>

- 354. Joling KJ, van Marwijk HW, Smit F, et al. Does a family meetings intervention prevent depression and anxiety in family caregivers of dementia patients? A randomized trial. PLoS One. 2012;7(1):e30936. PMID: 22303473. http://dx.doi.org/10.1371/journal.pone.0030936
- 355. Judge KS, Yarry SJ, Looman WJ, et al. Improved Strain and Psychosocial Outcomes for Caregivers of Individuals with Dementia: Findings from Project ANSWERS. Gerontologist. 2013;53(2):280-92. PMID: 22899427. http://dx.doi.org/10.1093/geront/gns076
- 356. Koivisto AM, Hallikainen I, Valimaki T, et al. Early psychosocial intervention does not delay institutionalization in persons with mild Alzheimer disease and has impact on neither disease progression nor caregivers' well-being: ALSOVA 3-year follow-up. Int J Geriatr Psychiatry. 2016;31(3):273-83. PMID: 26177825. http://dx.doi.org/10.1002/gps.4321
- 357. Kurz A, Wagenpfeil S, Hallauer J, et al. Evaluation of a brief educational program for dementia carers: the AENEAS study. Int J Geriatr Psychiatry. 2010;25(8):861-9. PMID: 19946869. <u>http://dx.doi.org/10.1002/gps.2428</u>
- 358. Kwok T, Wong B, Ip I, et al. Telephone-delivered psychoeducational intervention for Hong Kong Chinese dementia caregivers: a single-blinded randomized controlled trial. Clin Interv Aging. 2013;8:1191-7. PMID: 24072965. http://dx.doi.org/10.2147/CIA.S48264
- 359. Laakkonen ML, Kautiainen H, Holtta E, et al. Effects of Self-Management Groups for People with Dementia and Their Spouses--Randomized Controlled Trial. J Am Geriatr Soc. 2016;64(4):752-60. PMID: 27060101. <u>http://dx.doi.org/10.1111/jgs.14055</u>
- 360. Livingston G, Barber J, Rapaport P, et al. Clinical effectiveness of a manual based coping strategy programme (START, STrAtegies for RelaTives) in promoting the mental health of carers of family members with dementia: pragmatic randomised controlled trial. BMJ. 2013;347:f6276. PMID: 24162942. <u>http://dx.doi.org/10.1136/bmj.f6276</u>
- 361. Losada A, Marquez-Gonzalez M, Romero-Moreno R. Mechanisms of action of a psychological intervention for dementia caregivers: effects of behavioral activation and modification of dysfunctional thoughts. Int J Geriatr Psychiatry
- 2010:1119-27. PMID: 21061414. http://dx.doi.org/10.1002/gps.2648
- 362. Marriott A, Donaldson C, Tarrier N, et al. Effectiveness of cognitive-behavioural family intervention in reducing the burden of care in carers of patients with Alzheimer's disease. Br J Psychiatry. 2000;176:557-62. PMID: 10974962. http://dx.doi.org/10.1192/bjp.176.6.557
- 363. Martin-Carrasco M, Dominguez-Panchon AI, Gonzalez-Fraile E, et al. Effectiveness of a psychoeducational intervention group program in the reduction of the burden experienced by caregivers of patients with dementia: the EDUCA-II randomized trial. Alzheimer Dis Assoc Disord. 2014;28(1):79-87. PMID: 24113563. http://dx.doi.org/10.1097/WAD.000000000000003
- 364. Martin-Carrasco M, Martin MF, Valero CP, et al. Effectiveness of a psychoeducational intervention program in the reduction of caregiver burden in Alzheimer's disease patients' caregivers. Int J Geriatr Psychiatry. 2009;24(5):489-99. PMID: 18949763. http://dx.doi.org/10.1002/gps.2142

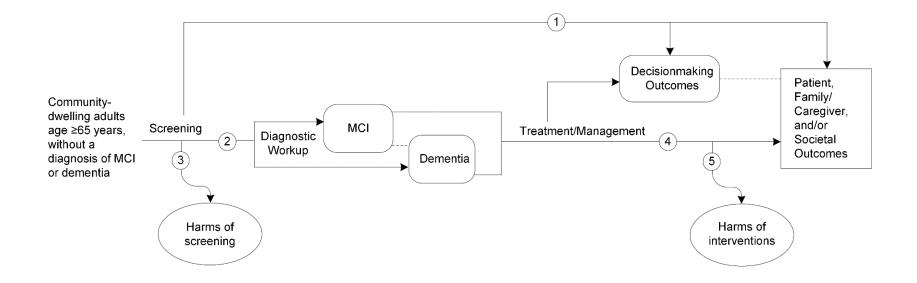
- 365. Martin-Cook K, Davis BA, Hynan LS, et al. A randomized, controlled study of an Alzheimer's caregiver skills training program. Am J Alzheimers Dis Other Demen. 2005;20(4):204-10. PMID: 16136843. <u>http://dx.doi.org/10.1177/153331750502000411</u>
- 366. Martindale-Adams J, Nichols LO, Burns R, et al. A trial of dementia caregiver telephone support. The Canadian journal of nursing research = Revue canadienne de recherche en sciences infirmieres. 2013;45(4):30-48. PMID: 24617278. http://dx.doi.org/10.1177/084456211304500404
- 367. Mittelman MS, Roth DL, Coon DW, et al. Sustained benefit of supportive intervention for depressive symptoms in caregivers of patients with Alzheimer's disease. Am J Psychiatry. 2004;161(5):850-6. PMID: 15121650. http://dx.doi.org/10.1176/appi.ajp.161.5.850
- 368. Nunez-Naveira L, Alonso-Bua B, de Labra C, et al. UnderstAID, an ICT Platform to Help Informal Caregivers of People with Dementia: A Pilot Randomized Controlled Study. Biomed Res Int. 2016;2016:5726465. PMID: 28116300. <u>http://dx.doi.org/10.1155/2016/5726465</u>
- 369. Ostwald SK, Hepburn KW, Caron W, et al. Reducing caregiver burden: a randomized psychoeducational intervention for caregivers of persons with dementia. Gerontologist. 1999;39(3):299-309. PMID: 10396888. <u>http://dx.doi.org/10.1093/geront/39.3.299</u>
- 370. Roberts J, Browne G, Milne C, et al. Problem-solving counseling for caregivers of the cognitively impaired: effective for whom? Nurs Res. 1999;48(3):162-72. PMID: 10337847.
- 371. Schoenmakers B, Buntinx F, DeLepeleire J. Supporting family carers of communitydwelling elder with cognitive decline: a randomized controlled trial. Int J Family Med. 2010;2010:184152. PMID: 22332005. <u>http://dx.doi.org/10.1155/2010/184152</u>
- 372. Spalding-Wilson KN, Guzman-Velez E, Angelica J, et al. A novel two-day intervention reduces stress in caregivers of persons with dementia. Alzheimers Dement (N Y). 2018;4:450-60. PMID: 30258974. <u>http://dx.doi.org/10.1016/j.trci.2018.08.004</u>
- 373. Steffen AM, Gant JR. A telehealth behavioral coaching intervention for neurocognitive disorder family carers. Int J Geriatr Psychiatry. 2016;31(2):195-203. PMID: 26077904. http://dx.doi.org/10.1002/gps.4312
- 374. Teri L, McCurry SM, Logsdon R, et al. Training community consultants to help family members improve dementia care: a randomized controlled trial. Gerontologist. 2005;45(6):802-11. PMID: 16326662. <u>http://dx.doi.org/10.1093/geront/45.6.802</u>
- 375. Tremont G, Davis JD, Papandonatos GD, et al. Psychosocial telephone intervention for dementia caregivers: A randomized, controlled trial. Alzheimers Dement. 2015;11(5):541-8. PMID: 25074341. http://dx.doi.org/10.1016/j.jalz.2014.05.1752
- 376. Ulstein ID, Sandvik L, Wyller TB, et al. A one-year randomized controlled psychosocial intervention study among family carers of dementia patients--effects on patients and carers. Dement Geriatr Cogn Dis Extra. 2007;24(6):469-75. PMID: 17986818. http://dx.doi.org/10.1159/000110740
- 377. Voigt-Radloff S, Graff M, Leonhart R, et al. A multicentre RCT on community occupational therapy in Alzheimer's disease: 10 sessions are not better than one consultation. BMJ Open. 2011;1(1):e000096. PMID: 22021760. http://dx.doi.org/10.1136/bmjopen-2011-000096

- 378. Waldorff FB, Buss DV, Eckermann A, et al. Efficacy of psychosocial intervention in patients with mild Alzheimer's disease: the multicentre, rater blinded, randomised Danish Alzheimer Intervention Study (DAISY). BMJ. 2012;345:e4693. PMID: 22807076. http://dx.doi.org/10.1136/bmj.e4693
- Wang L-Q, Chien W-T. Randomised controlled trial of a family-led mutual support programme for people with dementia. Journal of clinical nursing. 2011;20(15-16):2362-6.
 PMID: 21752121. <u>http://dx.doi.org/10.1111/j.1365-2702.2011.03746.x</u>
- 380. Williams VP, Bishop-Fitzpatrick L, Lane JD, et al. Video-based coping skills to reduce health risk and improve psychological and physical well-being in Alzheimer's disease family caregivers. Psychosom Med. 2010;72(9):897-904. PMID: 20978227. http://dx.doi.org/10.1097/PSY.0b013e3181fc2d09
- 381. Wilz G, Soellner R. Evaluation of a Short-Term Telephone-Based Cognitive Behavioral Intervention for Dementia Family Caregivers. Clin Gerontol. 2016;39(1):25-47. PMID: None. <u>http://dx.doi.org/10.1080/07317115.2015.1101631</u>
- 382. Wilz G, Reder M, Meichsner F, et al. The Tele.TAnDem Intervention: Telephone-based CBT for Family Caregivers of People With Dementia. Gerontologist. 2018;58(2):e118e29. PMID: 29190357. <u>http://dx.doi.org/10.1093/geront/gnx183</u>
- 383. Wright LK, Litaker M, Laraia MT, et al. Continuum of care for Alzheimer's disease: a nurse education and counseling program. Issues Ment Health Nurs. 2001;22(3):231-52. PMID: 11885210. <u>http://dx.doi.org/10.1080/01612840117980</u>
- Bass DM, Clark PA, Looman WJ, et al. The Cleveland Alzheimer's managed care demonstration: outcomes after 12 months of implementation. Gerontologist. 2003;43(1):73-85. PMID: 12604748. http://dx.doi.org/10.1093/geront/43.1.73
- 385. Callahan CM, Boustani MA, Unverzagt FW, et al. Effectiveness of collaborative care for older adults with Alzheimer disease in primary care: a randomized controlled trial. JAMA. 2006;295(18):2148-57. PMID: 16684985. http://dx.doi.org/10.1001/jama.295.18.2148
- 386. Chien WT, Lee IY. Randomized controlled trial of a dementia care programme for families of home-resided older people with dementia. J Adv Nurs. 2011;67(4):774-87. PMID: 21198803. <u>http://dx.doi.org/10.1111/j.1365-2648.2010.05537.x</u>
- 387. Chien WT, Lee YM. A disease management program for families of persons in Hong Kong with dementia. Psychiatr Serv. 2008;59(4):433-6. PMID: 18378844. http://dx.doi.org/10.1176/ps.2008.59.4.433
- 388. Chu P, Edwards J, Levin R, et al. The use of clinical case management for early state Alzheimer's patients and their families. Am J Alzheimers Dis Other Demen. 2000;15(5):284-90. PMID: None. http://dx.doi.org/10.1177/153331750001500506
- 389. Eloniemi-Sulkava U, Notkola IL, Hentinen M, et al. Effects of supporting communityliving demented patients and their caregivers: a randomized trial. J Am Geriatr Soc. 2001;49(10):1282-7. PMID: 11890485. <u>http://dx.doi.org/10.1046/j.1532-5415.2001.49255.x</u>
- 390. Eloniemi-Sulkava U, Saarenheimo M, Laakkonen ML, et al. Family care as collaboration: effectiveness of a multicomponent support program for elderly couples with dementia. Randomized controlled intervention study. J Am Geriatr Soc. 2009;57(12):2200-8. PMID: 20121986. <u>http://dx.doi.org/10.1111/j.1532-5415.2009.02564.x</u>

- 391. Fortinsky RH, Kulldorff M, Kleppinger A, et al. Dementia care consultation for family caregivers: collaborative model linking an Alzheimer's association chapter with primary care physicians. Aging Ment Health. 2009;13(2):162-70. PMID: 19347683. http://dx.doi.org/10.1080/13607860902746160
- 392. Jansen AP, van Hout HP, Nijpels G, et al. Effectiveness of case management among older adults with early symptoms of dementia and their primary informal caregivers: A randomized clinical trial. Int J Nurs Stud. 2011;48(8):933-43. PMID: 21356537. http://dx.doi.org/10.1016/j.ijnurstu.2011.02.004
- 393. Lam LC, Lee JS, Chung JC, et al. A randomized controlled trial to examine the effectiveness of case management model for community dwelling older persons with mild dementia in Hong Kong. Int J Geriatr Psychiatry. 2010;25(4):395-402. PMID: 19606455. <u>http://dx.doi.org/10.1002/gps.2352</u>
- 394. Mavandadi S, Wright EM, Graydon MM, et al. A randomized pilot trial of a telephonebased collaborative care management program for caregivers of individuals with dementia. Psychol Serv. 2017;14(1):102-11. PMID: 28134558. <u>http://dx.doi.org/10.1037/ser0000118</u>
- 395. Meeuwsen EJ, Melis RJ, Van Der Aa GC, et al. Effectiveness of dementia follow-up care by memory clinics or general practitioners: randomised controlled trial. BMJ. 2012;344:e3086. PMID: 22589500. <u>http://dx.doi.org/10.1136/bmj.e3086</u>
- 396. Menn P, Holle R, Kunz S, et al. Dementia care in the general practice setting: a cluster randomized trial on the effectiveness and cost impact of three management strategies. Value Health. 2012;15(6):851-9. PMID: 22999135. http://dx.doi.org/10.1016/j.jval.2012.06.007
- 397. Samus QM, Johnston D, Black BS, et al. A multidimensional home-based care coordination intervention for elders with memory disorders: the maximizing independence at home (MIND) pilot randomized trial. Am J Geriatr Psychiatry. 2014;22(4):398-414. PMID: 24502822. <u>http://dx.doi.org/10.1016/j.jagp.2013.12.175</u>
- 398. Thyrian JR, Hertel J, Wucherer D, et al. Effectiveness and Safety of Dementia Care Management in Primary Care: A Randomized Clinical Trial. JAMA Psychiatry. 2017;74(10):996-1004. PMID: 28746708. http://dx.doi.org/10.1001/jamapsychiatry.2017.2124
- 399. Vickrey BG, Mittman BS, Connor KI, et al. The effect of a disease management intervention on quality and outcomes of dementia care: a randomized, controlled trial. Ann Int Med. 2006;145(10):713-26. PMID: 17116916. <u>http://dx.doi.org/10.7326/0003-4819-145-10-200611210-00004</u>
- 400. Xiao LD, De Bellis A, Kyriazopoulos H, et al. The Effect of a Personalized Dementia Care Intervention for Caregivers From Australian Minority Groups. Am J Alzheimers Dis Other Demen. 2016;31(1):57-67. PMID: 25805891. http://dx.doi.org/10.1177/1533317515578256
- 401. Charlesworth G, Shepstone L, Wilson E, et al. Befriending carers of people with dementia: randomised controlled trial. BMJ. 2008;336(7656):1295-7. PMID: 18505757. http://dx.doi.org/10.1136/bmj.39549.548831.AE
- 402. Connell CM, Janevic MR. Effects of a telephone-based exercise intervention for dementia caregiving wives: A randomized controlled trial. J Appl Gerontol. 2009;28(2):171-94. PMID: 21709757. <u>http://dx.doi.org/10.1177/0733464808326951</u>

- 403. Gitlin LN, Arthur P, Piersol C, et al. Targeting Behavioral Symptoms and Functional Decline in Dementia: A Randomized Clinical Trial. J Am Geriatr Soc. 2018;66(2):339-45. PMID: 29192967. <u>http://dx.doi.org/10.1111/jgs.15194</u>
- 404. Hirano A, Suzuki Y, Kuzuya M, et al. Influence of regular exercise on subjective sense of burden and physical symptoms in community-dwelling caregivers of dementia patients: a randomized controlled trial. Arch Gerontol Geriatr. 2011;53(2):e158-e63. PMID: 20850878. <u>http://dx.doi.org/10.1016/j.archger.2010.08.004</u>
- 405. King AC, Baumann K, O'Sullivan P, et al. Effects of Moderate-Intensity Exercise on Physiological, Behavioral, and Emotional Responses to Family Caregiving. J Gerontol A Biol Sci Med Sci. 2002;57(1):M26-M36. PMID: 11773209. http://dx.doi.org/10.1093/gerona/57.1.M26
- 406. Leach M, Francis A, Ziaian T. Transcendental Meditation for the improvement of health and wellbeing in community-dwelling dementia caregivers : a randomised wait-list controlled trial. BMC Complement Altern Med. 2015;15:145. PMID: 25952550. http://dx.doi.org/10.1186/s12906-015-0666-8
- 407. LoGiudice D, Waltrowicz W, Brown K, et al. Do memory clinics improve the quality of life of carers? A randomized pilot trial. Int J Geriatr Psychiatry. 1999;14(8):626-32.
 PMID: 10489653. <u>http://dx.doi.org/10.1002/(SICI)1099-1166(199908)14:8</u><626::AID-GPS990>3.0.CO;2-5
- 408. Nourhashemi F, Andrieu S, Gillette-Guyonnet S, et al. Effectiveness of a specific care plan in patients with Alzheimer's disease: cluster randomised trial (PLASA study). BMJ. 2010;340:c2466. PMID: 20522656. <u>http://dx.doi.org/10.1136/bmj.c2466</u>
- 409. Pillemer K, Jill SJ. Peer support for Alzheimer's caregivers: Is it enough to make a difference? Res Aging. 2002;24(2):171-92. PMID: None. http://dx.doi.org/10.1177/0164027502242001
- 410. Prick AE, de Lange J, Twisk J, et al. The effects of a multi-component dyadic intervention on the psychological distress of family caregivers providing care to people with dementia: a randomized controlled trial. Int Psychogeriatr. 2015;27(12):2031-44. PMID: 26004290. <u>http://dx.doi.org/10.1017/S104161021500071X</u>
- 411. Spijker A, Wollersheim H, Teerenstra S, et al. Systematic care for caregivers of patients with dementia: a multicenter, cluster-randomized, controlled trial. Am J Geriatr Psychiatry. 2011:521-31. PMID: 21358385. http://dx.doi.org/10.1097/JGP.0b013e3182110599
- 412. Teri L, Gibbons LE, McCurry SM, et al. Exercise plus behavioral management in patients with Alzheimer disease: a randomized controlled trial. JAMA. 2003;290(15):2015-22. PMID: 14559955. http://dx.doi.org/10.1001/jama.290.15.2015
- 413. Winter L, Gitlin LN. Evaluation of a telephone-based support group intervention for female caregivers of community-dwelling individuals with dementia. Am J Alzheimers Dis Other Demen. 2006;21(6):391-7. PMID: 17267370. http://dx.doi.org/10.1177/1533317506291371
- 414. Kuo LM, Huang HL, Huang HL, et al. A home-based training program improves Taiwanese family caregivers' quality of life and decreases their risk for depression: a randomized controlled trial. Int J Geriatr Psychiatry. 2013;28(5):504-13. PMID: 22778053. <u>http://dx.doi.org/10.1002/gps.3853</u>

- 415. National Institute on Aging, National Institutes of Health, US Department of Health & Human Services. Dementia Resources for Health Professionals: Assessing Cognitive Impairment in Older Patients. <u>https://www.nia.nih.gov/health/assessing-cognitive-impairment-older-patients</u>. Accessed December 3, 2018.
- 416. Prince M, Bryce R, Ferri C, et al. World Alzheimer Report 2011: The benefits of early diagnosis and intervention.
 <u>https://www.alz.co.uk/research/WorldAlzheimerReport2011.pdf</u>. Accessed December 5, 2018.
- Martin S, Kelly S, Khan A, et al. Attitudes and preferences towards screening for dementia: a systematic review of the literature. BMC Geriatr. 2015;15:66. PMID: 26076729. <u>http://dx.doi.org/10.1186/s12877-015-0064-6</u>
- 418. Borson S, Frank L, Bayley PJ, et al. Improving dementia care: the role of screening and detection of cognitive impairment. Alzheimers Dement. 2013;9(2):151-9. PMID: 23375564. https://dx.doi.org/10.1016/j.jalz.2012.08.008
- 419. Le Couteur DG, Doust J, Creasey H, et al. Political drive to screen for pre-dementia: not evidence based and ignores the harms of diagnosis. BMJ. 2013;347:f5125. PMID: 24018000.
- 420. Bunn F, Goodman C, Sworn K, et al. Psychosocial factors that shape patient and carer experiences of dementia diagnosis and treatment: a systematic review of qualitative studies. PLoS Med. 2012;9(10):e1001331. PMID: 23118618. http://dx.doi.org/10.1371/journal.pmed.1001331
- 421. Boustani MA, Justiss MD, Frame A, et al. Caregiver and noncaregiver attitudes toward dementia screening. J Am Geriatr Soc. 2011;59(4):681-6. PMID: 21438862. http://dx.doi.org/10.1111/j.1532-5415.2011.03327.x
- 422. Holsinger T, Boustani M, Abbot D, et al. Acceptability of dementia screening in primary care patients. Int J Geriatr Psychiatry. 2011;26(4):373-9. PMID: 20845398. http://dx.doi.org/10.1002/gps.2536
- 423. Boustani M, Callahan CM, Unverzagt FW, et al. Implementing a screening and diagnosis program for dementia in primary care. J Gen Intern Med. 2005;20(7):572-7. PMID: 16050849.
- 424. Fowler NR, Frame A, Perkins AJ, et al. Traits of patients who screen positive for dementia and refuse diagnostic assessment. Alzheimers Dement (Amst). 2015;1(2):236-41. PMID: 26258162. <u>http://dx.doi.org/10.1016/j.dadm.2015.01.002</u>
- 425. Stites SD, Karlawish J, Harkins K, et al. Awareness of Mild Cognitive Impairment and Mild Alzheimer's Disease Dementia Diagnoses Associated With Lower Self-Ratings of Quality of Life in Older Adults. J Gerontol B Psychol Sci Soc Sci. 2017;72(6):974-85. PMID: 28958089. <u>http://dx.doi.org/10.1093/geronb/gbx100</u>
- 426. Lineweaver TT, Bondi MW, Galasko D, et al. Effect of knowledge of APOE genotype on subjective and objective memory performance in healthy older adults. Am J Psychiatry. 2014;171(2):201-8. PMID: 24170170. <u>http://dx.doi.org/10.1176/appi.ajp.2013.12121590</u>
- 427. Eichler T, Thyrian JR, Hertel J, et al. Patient Variables Associated with the Assignment of a Formal Dementia Diagnosis to Positively Screened Primary Care Patients. Curr Alzheimer Res. 2017. PMID: 28891445. http://dx.doi.org/10.2174/1567205014666170908095707


- Mormont E, Jamart J, Jacques D. Symptoms of depression and anxiety after the disclosure of the diagnosis of Alzheimer disease. J Geriatr Psychiatry Neurol. 2014;27(4):231-6. PMID: 24759087. <u>http://dx.doi.org/10.1177/0891988714532021</u>
- 429. Lee SM, Roen K, Thornton A. The psychological impact of a diagnosis of Alzheimer's disease. Dementia (London, England). 2014;13(3):289-305. PMID: 24339103. http://dx.doi.org/10.1177/1471301213497080
- 430. Mate KE, Pond CD, Magin PJ, et al. Diagnosis and disclosure of a memory problem is associated with quality of life in community based older Australians with dementia. International Psychogeriatrics. 2012;24(12):196271. http://dx.doi.org/10.1017/S1041610212001111
- 431. van den Dungen P, van Kuijk L, van Marwijk H, et al. Preferences regarding disclosure of a diagnosis of dementia: a systematic review. International Psychogeriatrics. 2014;26(10):1603-18. PMID: 24933479. https://dx.doi.org/10.1017/S1041610214000969
- 432. Press D, Alexander M. Cholinesterase inhibitors in the treatment of dementia. DeKosky S, ed. Waltham, MA: UpToDate Inc. <u>http://www.uptodate.com</u>. Accessed December 4, 2018.
- Gaugler JE, Mittelman MS, Hepburn K, et al. Clinically significant changes in burden and depression among dementia caregivers following nursing home admission. BMC Med. 2010;8:85. PMID: 21167022. <u>http://dx.doi.org/10.1186/1741-7015-8-85</u>
- 434. Gaugler JE, Roth DL, Haley WE, et al. Can counseling and support reduce burden and depressive symptoms in caregivers of people with Alzheimer's disease during the transition to institutionalization? Results from the New York University caregiver intervention study. J Am Geriatr Soc. 2008;56(3):421-8. PMID: 18179495.
- 435. Tsoi KK, Chan JY, Hirai HW, et al. Cognitive Tests to Detect Dementia: A Systematic Review and Meta-analysis. JAMA Intern Med. 2015;175(9):1450-8. PMID: 26052687. http://dx.doi.org/10.1001/jamainternmed.2015.2152
- 436. Tsoi KKF, Chan JYC, Hirai HW, et al. Recall Tests Are Effective to Detect Mild Cognitive Impairment: A Systematic Review and Meta-analysis of 108 Diagnostic Studies. J Am Med Dir Assoc. 2017;18(9):807.e17-.e29. PMID: 28754516. https://dx.doi.org/10.1016/j.jamda.2017.05.016
- 437. Birks Jacqueline S, Grimley Evans J. Rivastigmine for Alzheimer's disease. Cochrane Database of Systematic Reviews. 2015(4). PMID: 25858345. http://dx.doi.org/10.1002/14651858.CD001191.pub3
- 438. Birks JS, Harvey RJ. Donepezil for dementia due to Alzheimer's disease. The Cochrane database of systematic reviews. 2018;6:CD001190. PMID: 29923184. http://dx.doi.org/10.1002/14651858.CD001190.pub3
- Jiang D, Yang X, Li M, et al. Efficacy and safety of galantamine treatment for patients with Alzheimer's disease: a meta-analysis of randomized controlled trials. J Neural Transm. 2015;122(8):1157-66. PMID: 25547862. <u>http://dx.doi.org/10.1007/s00702-014-1358-0</u>
- Jiang J, Jiang H. Efficacy and adverse effects of memantine treatment for Alzheimer's disease from randomized controlled trials. Neurological Sciences. 2015;36(9):1633-41.
 PMID: 25899425. <u>http://dx.doi.org/10.1007/s10072-015-2221-2</u>

- Kobayashi H, Ohnishi T, Nakagawa R, et al. The comparative efficacy and safety of cholinesterase inhibitors in patients with mild-to-moderate Alzheimer's disease: a Bayesian network meta-analysis. Int J Geriatr Psychiatry. 2016;31(8):892-904. PMID: 26680338. <u>http://dx.doi.org/10.1002/gps.4405</u>
- 442. Strohle A, Schmidt DK, Schultz F, et al. Drug and Exercise Treatment of Alzheimer Disease and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis of Effects on Cognition in Randomized Controlled Trials. Am J Geriatr Psychiatry. 2015;23(12):1234-49. PMID: 26601726. http://dx.doi.org/10.1016/j.jagp.2015.07.007
- Burckhardt M, Herke M, Wustmann T, et al. Omega-3 fatty acids for the treatment of dementia. Cochrane Database of Systematic Reviews. 2016;4:CD009002. PMID: 27063583. <u>http://dx.doi.org/10.1002/14651858.CD009002.pub3</u>
- 444. Farina N, Llewellyn D, Isaac M, et al. Vitamin E for Alzheimer's dementia and mild cognitive impairment. Cochrane Database of Systematic Reviews. 2017;4:CD002854. PMID: 28418065. <u>http://dx.doi.org/10.1002/14651858.CD002854.pub5</u>
- 445. McGuinness B, Craig D, Bullock R, et al. Statins for the treatment of dementia. Cochrane Database of Systematic Reviews. 2014(7). http://dx.doi.org/10.1002/14651858.CD007514.pub3
- 446. Miguel-Alvarez M, Santos-Lozano A, Sanchis-Gomar F, et al. Non-steroidal antiinflammatory drugs as a treatment for Alzheimer's disease: a systematic review and metaanalysis of treatment effect. Drugs & Aging. 2015;32(2):139-47. PMID: 25644018. http://dx.doi.org/10.1007/s40266-015-0239-z
- 447. Forbes D, Forbes Scott C, Blake Catherine M, et al. Exercise programs for people with dementia. Cochrane Database of Systematic Reviews. 2015(4). PMID: 24302466. http://dx.doi.org/10.1002/14651858.CD006489.pub4
- 448. Reilly S, Miranda-Castillo C, Malouf R, et al. Case management approaches to home support for people with dementia. Cochrane Database of Systematic Reviews. 2015(1). http://dx.doi.org/10.1002/14651858.CD008345.pub2
- 449. Lins S, Hayder-Beichel D, Rücker G, et al. Efficacy and experiences of telephone counselling for informal carers of people with dementia. Cochrane Database of Systematic Reviews. 2014(9). http://dx.doi.org/10.1002/14651858.CD009126.pub2
- Liu Z, Sun YY, Zhong BL. Mindfulness-based stress reduction for family carers of people with dementia. The Cochrane database of systematic reviews. 2018;8:CD012791. PMID: 30106471. <u>http://dx.doi.org/10.1002/14651858.CD012791.pub2</u>
- 451. Abrahams R, Liu KPY, Bissett M, et al. Effectiveness of interventions for co-residing family caregivers of people with dementia: Systematic review and meta-analysis. Aust Occup Ther J. 2018;65(3):208-24. PMID: 29527683. <u>http://dx.doi.org/10.1111/1440-1630.12464</u>
- 452. Wray L, Wade M, Beehler G, et al. A program to improve detection of undiagnosed dementia in primary care and its association with healthcare utilization. Am J Geriatr Psychiatry. 2014;22(11):1282-91. PMID: 23954037. http://dx.doi.org/10.1016/j.jagp.2013.04.018
- 453. Ziegler-Graham K, Brookmeyer R, Johnson E, et al. Worldwide variation in the doubling time of Alzheimer's disease incidence rates. Alzheimers Dement. 2008;4(5):316-23. PMID: 18790458. <u>http://dx.doi.org/10.1016/j.jalz.2008.05.2479</u>

- 454. Fitzpatrick AL, Kuller LH, Ives DG, et al. Incidence and prevalence of dementia in the Cardiovascular Health Study. J Am Geriatr Soc. 2004;52(2):195-204. PMID: 14728627. http://dx.doi.org/10.1111/j.1532-5415.2004.52058.x
- 455. Cummings J, Lee G, Ritter A, et al. Alzheimer's disease drug development pipeline: 2018. Alzheimers Dement (N Y). 2018;4:195-214. PMID: 29955663. http://dx.doi.org/10.1016/j.trci.2018.03.009
- 456. Jack CR, Jr., Bennett DA, Blennow K, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimers Dement. 2018;14(4):535-62.
 PMID: 29653606. <u>http://dx.doi.org/10.1016/j.jalz.2018.02.018</u>
- 457. US Department of Health and Human Services. PROMIS® (Patient-Reported Outcomes Measurement Information System). <u>http://www.healthmeasures.net/explore-measurement-systems/promis</u>. Accessed December 5, 2018.
- 458. Morley JE, Morris JC, Berg-Weger M, et al. Brain health: the importance of recognizing cognitive impairment: an IAGG consensus conference. J Am Med Dir Assoc. 2015;16(9):731-9. PMID: 26315321. http://dx.doi.org/10.1016/j.jamda.2015.06.017
- 459. National Institute for Health Care and Excellence (NICE). Dementia: supporting people with dementia and their carers in health and social care. London (UK): National Institute for Health and Care Excellence: 2011. PMID: None.
- Mao HF, Chang LH, Tsai AY, et al. Diagnostic accuracy of Instrumental Activities of Daily Living for dementia in community-dwelling older adults. Age Ageing. 2018. PMID: 29528375. <u>http://dx.doi.org/10.1093/ageing/afy021</u>
- 461. Ranson JM, Kuźma E, Hamilton W, et al. Predictors of dementia misclassification when using brief cognitive assessments. Neurol Clin Pract. 2018;9(1):1-9. PMID: None. http://dx.doi.org/10.1212/CPJ.00000000000566
- 462. Gitlin LN, Winter L, Dennis MP, et al. A biobehavioral home-based intervention and the well-being of patients with dementia and their caregivers: the COPE randomized trial. JAMA. 2010;304(9):983-91. PMID: 20810376. http://dx.doi.org/10.1001/jama.2010.1253
- 463. Mohs RC, Rosen WG, Davis KL. The Alzheimer's disease assessment scale: an instrument for assessing treatment efficacy. Psychopharmacol Bull. 1983;19(3):448-50. PMID: 6635122.
- 464. Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer's disease. Am J Psychiatry. 1984;141(11):1356-64. PMID: 6496779. <u>http://dx.doi.org/10.1176/ajp.141.11.1356</u>
- 465. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189-98. PMID: 1202204.
- 466. Schneider LS, Olin JT, Doody RS, et al. Validity and reliability of the Alzheimer's Disease Cooperative Study-Clinical Global Impression of Change. The Alzheimer's Disease Cooperative Study. Alzheimer Dis Assoc Disord. 1997;11 Suppl 2:S22-32. PMID: 9236949.
- 467. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412-4. PMID: 8232972.
- 468. Reisberg B, Ferris SH, de Leon MJ, et al. The Global Deterioration Scale for assessment of primary degenerative dementia. Am J Psychiatry. 1982;139(9):1136-9. PMID: 7114305. <u>http://dx.doi.org/10.1176/ajp.139.9.1136</u>

- 469. Galasko D, Bennett D, Sano M, et al. An inventory to assess activities of daily living for clinical trials in Alzheimer's disease. The Alzheimer's Disease Cooperative Study. Alzheimer Dis Assoc Disord. 1997;11 Suppl 2:S33-9. PMID: 9236950.
- 470. Gelinas I, Gauthier L, McIntyre M, et al. Development of a functional measure for persons with Alzheimer's disease: the disability assessment for dementia. Am J Occup Ther. 1999;53(5):471-81. PMID: 10500855.
- 471. Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9(3):179-86. PMID: 5349366.
- 472. Alexopoulos GS, Abrams RC, Young RC, et al. Cornell Scale for Depression in Dementia. Biol Psychiatry. 1988;23(3):271-84. PMID: 3337862.
- 473. Yesavage JA, Brink TL, Rose TL, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res. 1982;17(1):37-49. PMID: 7183759.
- 474. Cummings JL, Mega M, Gray K, et al. The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology. 1994;44(12):2308-14. PMID: 7991117.
- 475. Cummings JL. The Neuropsychiatric Inventory: assessing psychopathology in dementia patients. Neurology. 1997;48(5 Suppl 6):S10-6. PMID: 9153155.
- 476. Teri L, Truax P, Logsdon R, et al. Assessment of behavioral problems in dementia: the revised memory and behavior problems checklist. Psychol Aging. 1992;7(4):622-31. PMID: 1466831.
- 477. Radloff LS. The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Appl Psychol Meas. 1977;1(385-401). PMID: None. http://dx.doi.org/10.1177/014662167700100306
- 478. Beck AT, Ward CH, Mendelson M, et al. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561-71. PMID: 13688369.
- 479. Zarit SH, Reever KE, Bach-Peterson J. Relatives of the impaired elderly: correlates of feelings of burden. Gerontologist. 1980;20(6):649-55. PMID: 7203086.
- 480. Logsdon RG, Gibbons LE, McCurry SM, et al. Assessing quality of life in older adults with cognitive impairment. Psychosom Med. 2002;64(3):510-9. PMID: 12021425.
- 481. Smith SC, Lamping DL, Banerjee S, et al. Measurement of health-related quality of life for people with dementia: development of a new instrument (DEMQOL) and an evaluation of current methodology. Health Technol Assess. 2005;9(10):1-93, iii-iv. PMID: 15774233.
- 482. EuroQol G. EuroQol--a new facility for the measurement of health-related quality of life. Health Policy. 1990;16(3):199-208. PMID: 10109801.
- 483. Hays RD, Sherbourne CD, Mazel RM. The RAND 36-Item Health Survey 1.0. Health Econ. 1993;2(3):217-27. PMID: 8275167.

Figure 1. Analytic Framework

Abbreviation: MCI = mild cognitive impairment.

Figure 2. Test Accuracy of Very Brief Screening Tests Reported in More Than One Study (KQ 2)

yarcontianLadiContianTateSpecific (With C)Specific	Author,	Target		% with			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Cutoff		Total	Specificity (95% CI)	Sensitivity (95%
$\begin{aligned} & \text{def s}, 2004 \\ & \text{Dementia} & \text{R} (P (reacher) \\ & \text{Dementia} & \text{S} ((uracher) \\ & \text{S} \\ & \text{def s}, 2012 \\ & \text{Dementia} & \text{S} ((uracher) \\ & \text{S} \\ & \text{def s}, 2012 \\ & \text{Dementia} \\ & \text{def s}, 2012 \\ $	DT						
Undr., 1012Dementia27 (Burderlend)84200.84 (0.80, 0.87)0.94 (0.80, 0.87)		Dementia	NR (Freedman)	11.5	416	➡ 0.81 (0.76, 0.84)	0.98 (0.89, 1.00)
thy, 2011Dementiadef (furthermore) planema 33.8 4618 $6.8, 1077, 0.64)$ 4.04 $0.6, 0077, 0.64)$ 4.04 $0.6, 0077, 0.64)$ 4.04 $0.6, 0077, 0.64)$ 0.72 <					423		0.89 (0.76, 1.00)
Defection, 1989 constrainty, 2089 hanks, 2007 hanks, 2007 							0.76 (0.61, 0.86)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							0.75 (0.67, 0.82)
Nucl. value, 2001 wale, 2004 wale, 2011MCI MCI40 (Binderland) 13 (a15 422318 4220.7 ($0.55, 0.59$) 0.83 ($0.70, 0.07$)0.85 4.040.85 0.83 ($0.70, 0.07$)0.85 4.040.85 0.83 ($0.70, 0.07$)0.85 4.040.85 0.85 0.83 ($0.70, 0.07$)0.85 4.040.85 0.85 0.850.85 0.85 0.850.85 0.85 0.850.85 0.85 0.85<							
MCI printed, 2011AGI 910 (freedman)13.6 910 (freedman)42.2 42.4 $0.50 (0.57, 0.57)$ $0.51 (0.57, 0.57)$ 0.50 $0.51 (0.57, 0.57)$ where kADL where kADL rest, 307012.2 $0.51 (0.57, 0.57)$ 0.58 (0.57, 0.57) $0.51 (0.57, 0.57)$ -0.45 $0.51 (0.57, 0.57)$ -0.45 $0.52 (0.58, 0.58)$ -0.55 (0.57, 0.57)-0.45 $0.52 (0.58, 0.58)$ -0.55 (0.57, 0.57)-0.45 $0.52 (0.57, 0.57)$ -0.45 $0.52 (0.57, 0.57)$ 0.45 $0.52 (0.57, 0.57)$ 0.45 $0.52 (0.57, 0.57)$ 0.45 $0.52 (0.57, 0.57)$ 0.45 $0.52 (0.$							0.85 (0.62, 0.97)
me. 2009MCI910 (Preedmann) 42.2 45.5 \bullet $0.51 (0.70, 0.7)$ \bullet 0.41 barten ACL man 1007Dementia 6.3 6.3 6.3 6.3 6.5 $0.61 (0.60, 0.27)$ \bullet $0.51 (0.51 (0.51)$ \bullet <							0.58 (0.54, 0.63
$ \begin{array}{c} \operatorname{vx}_{3}, \operatorname{107}^{3} & \operatorname{Dementia}_{3} & \operatorname{s4}_{4} & \operatorname{13}_{2} & \operatorname{424}_{4} & \operatorname{0.66} (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.82, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.63, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.63, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.63, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.63, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.63, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & \operatorname{0.67} \\ 0.68 (0.63, 0.63) & \begin{array}{c} \bullet & \operatorname{0.67} & 0.67$							0.69 (0.56, 0.79) 0.41 (0.34, 0.47)
ya, 197 Damenia 54 1.2 242 0.66 (0.82, 0.89)			or to (i toodinan)	1012	100		0.41 (0.04, 0.47)
an 2019 Demontia 6.5 6.6 8005 \bullet 0.81 (0.80, 0.82) \bullet 0.89 ISAM5-T ISA		Dementia		40.0	101		0.04 (0.04.0.00)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							0.91 (0.81, 0.96)
inclode, 1090 tableme, 1090 tableme, 2012Dementin 4410,4483 43 \bullet <t< td=""><td>80, 2018</td><td>Demenua</td><td>0.0</td><td>0.0</td><td>8005</td><td></td><td>0.89 (0.86, 0.91)</td></t<>	80, 2018	Demenua	0.0	0.0	8005		0.89 (0.86, 0.91)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
partnersky porz, 2002 anson, 2018 benerskaDemerska 411,7240 9 $0.37 (0.24, 0.29)$ 0.485 (0.82, 0.85) 0.85 (0.82, 0.85) 0.87 0.85 0.82, 0.85) 0.87 0.85 0.82, 0.85) 0.87 0.85 0.82, 0.85) 0.87 0.85 0.82, 0.85) 0.87 0.85 0.8							0.80 (0.67, 0.89)
Jalands, 2002Dementia4411.7240 $0.77 (0.44, 0.9)$ $0.95 (0.42, 0.9)$ $0.95 (0.42, 0.9)$ $0.95 (0.42, 0.9)$ $0.95 (0.42, 0.8)$ $0.95 (0.4$	olsinger, 2012	Dementia				0.93 (0.90, 0.95)	0.43 (0.24, 0.64
plan, 2003 Dementia 4 9 300 $0.33 (0.80, 0.81)$ $0.33 (0.80, 0.81)$ 0.70 0.78 0.80 $0.23 (0.80, 0.81)$ 0.70 0.78 0.80 $0.23 (0.81, 0.81)$ 0.70 0.78 0.80 $0.23 (0.81, 0.81)$ 0.70 0.78 0.80 $0.23 (0.81, 0.81)$ 0.70 0.78 0.80 $0.81 (0.81, 0.81)$ 0.70 0.78 0.81 $0.28 (0.81, 0.81)$ 0.70 0.78 0.81 $0.28 (0.81, 0.81)$ 0.70 0.78 0.81 $0.81 (0.81, 0.81)$ 0.71 0.78 0.81 $0.81 (0.81, 0.81)$ 0.71 0.78 0.81 $0.81 (0.81, 0.81)$ 0.71 0.78 0.81 $0.81 (0.81, 0.81)$ 0.71 0.78 0.81 $0.81 (0.81, 0.81)$ 0.71 0.78 0.81 $0.81 (0.81, 0.81)$ 0.71 0.78 0.81 $0.81 (0.81, 0.81)$ 0.71 0.78 0.81 $0.81 (0.81, 0.81)$ 0.71 0.78 0.81 $0.81 (0.81, 0.81)$ 0.71 0.78 0.81 0.78 0.81 $0.81 (0.81, 0.81)$ 0.71 0.81 0.78 0.81		Dementia	≤4	11.7	240		0.86 (0.69, 0.94
ananon, 2018 Dementia s4 13.9 824		Dementia	4	9	300	0.93 (0.89, 0.95)	0.78 (0.59, 0.89
clainger, 2012Cognitive Impairment244.2.56.30 \bullet 0.88 (0.86, 0.99) \bullet 0.17SO/SPMSO				13.9			0.82 (0.77, 0.86
ni ser, 2006 Dementia NR 11.5 416 \bullet 0.88 (0.65, 0.91) \bullet 0.90 (0.84, 0.94) 100 (0.97, 1.00) \bullet 0.90 (0.84, 0.94) 100 (0.97, 1.00) 0.90 (0.84, 0.94) 100 (0.97, 1.00) 0.90 (0.84, 0.94) 100 (0.97, 0.98) 0.90 (0.84, 0.94) 0.90 (0.94, 0.98) 0.90							0.17 (0.13, 0.22
ni Sar, 2006 Dementia NR 11.5 416 \bullet 0.88 (0.85, 0.91) \bullet 0.90 (0.84, 0.94) 100 (0.97, 1.00) \bullet 0.90 (0.84, 0.94) 100 (0.97, 1.00) 0.90 (0.84, 0.94) 100 (0.97, 1.00) 0.90 (0.84, 0.94) 100 (0.97, 0.98) 0.90 (0.84, 0.94) 0.90 (0.94, 0.98) 0.90	SO/SPMSO						
kinjurtil. 1987 Dementia 57 2.5 199 $(0.000, 0.07, 1.00)$ $(0.07, 1.00)$ kinjurtil. 1987 Dementia 57 3.6 358 $(0.00, 0.04)$ 0.091 (0.891, 0.89) $(0.91, 0.91)0.910 (0.891, 0.89)$ $(0.91, 0.91)0.910 (0.891, 0.89)$ $(0.91, 0.91)0.910 (0.891, 0.89)$ $(0.91, 0.91)0.910 (0.891, 0.89)$ $(0.91, 0.91)0.910 (0.891, 0.89)$ $(0.91, 0.91)0.910 (0.891, 0.89)$ $(0.91, 0.91)0.910 (0.891, 0.89)$ $(0.91, 0.91)0.910 (0.891, 0.89)$ $(0.91, 0.91)0.910 (0.891, 0.89)$ $(0.91, 0.91)0.910 (0.891, 0.89)$ $(0.91, 0.91)0.910 (0.891, 0.89)$ $(0.91, 0.91)0.910 (0.91, 0.91)$ $(0.91, 0.91)0.910 (0.91, 0.91)$ $(0.91, 0.91)0.910 (0.91, 0.91)$ $(0.91, 0.91)0.910 (0.91, 0.91)$ $(0.91, 0.91)0.910 (0.91, 0.91)$ $(0.91, 0.91)0.910 (0.91, 0.91)$ $(0.91, 0.91)0.910 (0.91, 0.91)$ $(0.91, 0.91)0.910 (0.91, 0.91)$ $(0.91, 0.91)0.910 (0.91, 0.91)$		Dementia	NR	11.5	416	▲ 0.88 (0.85, 0.91)	0.96 (0.86, 0.99
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							1.00 (0.44, 1.00
polger, 1992Dementia 27 3.6 358 4 $0.58 (0.96, 0.99)$ 4 1.00 polger, 1992Dementia 27 3.6 358 $0.97 (0.94, 0.98)$ 4 0.92 pini-Cogreson, 2006Dementia 82 41.5 371 4 $0.71 (0.65, 0.77)$ 0.97 production constraints 51 6 423 $0.73 (0.69, 0.76)$ 4 $0.97 (0.94, 0.88)$ 4 production constraints 52 2.3 371 4 $0.58 (0.41, 0.64)$ $0.87 (0.48, 0.68)$ 4 production constraints 22 2.33 371 4 $0.58 (0.41, 0.64)$ 4 $4.5 (0.77)$ $0.67 (0.73 (0.69, 0.76)$ 4 production constraints 22 2.33 371 4 $0.58 (0.41, 0.64)$ $0.87 (0.43, 0.64)$ $0.87 (0.43, 0.64)$ $0.88 (0.41, 0.64)$ production constraints 22 2.33 371 4 $0.58 (0.41, 0.64)$ $0.88 (0.41, 0.64)$ $0.87 (0.45, 0.62)$ $0.88 (0.41, 0.64)$ production constraints 22 2.33 371 4.64 $0.73 (0.45, 0.62)$ 4 $0.39 (0.65, 0.71)$ $0.97 (0.45, 0.62)$ $0.97 (0.45, 0.62)$ production constraints 22 2.57 2.50 $0.58 (0.45, 0.91)$ 4 $0.98 (0.45, 0.91)$ 4 $0.98 (0.45, 0.91)$ 4 $0.98 (0.76, 0.91)$ 4 $0.98 (0.76, 0.91)$ 4 $0.98 (0.76, 0.91)$ 4 $0.98 (0.76, 0.91)$ 4 $0.98 (0.76, 0.91)$ 4 $0.98 (0.76, 0.91)$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.92 (0.76, 0.98</td>							0.92 (0.76, 0.98
sonjer, 1992Dementia ≤ 7 3.6 358 $0.97(0.94, 0.98)$ $\rightarrow 0.92$ ni-Cog rson, 2006Dementia ≤ 2 41.5 371 $\rightarrow 0.71(0.65, 0.77)$ $0.65(0.84, 0.88)$ hi-for, 2012Dementia ≤ 2 3.3 630 $\rightarrow 0.73(0.69, 0.76)$ 0.97 hisinger, 2012Dementia 22 3.3 630 $\rightarrow 0.73(0.69, 0.76)$ 0.76 hisinger, 2012Cognitive Impairment 22 62.3 371 46 $0.68(0.61, 0.92)$ $\rightarrow 0.84$ hisinger, 2012Cognitive Impairment 22 62.3 371 46 $0.73(0.46, 0.89)$ $\rightarrow 0.73(0.45, 0.92)$ $\rightarrow 0.84$ hisinger, 2012Cognitive Impairment 0 89.7 146 $0.73(0.45, 0.92)$ $\rightarrow 0.84$ $0.86(0.81, 0.92)$ $\rightarrow 0.84$ hisinger, 2012Dementia 11.5 416 $\rightarrow 0.84(0.80, 0.87)$ hisinger, 2012Dementia 512 5 423 $\rightarrow 0.84(0.80, 0.87)$ $\rightarrow 0.84(0.80, 0.86)$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.00 (0.87, 1.00</td>							1.00 (0.87, 1.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							1.00 (0.77, 1.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	poijer, 1992	Dementia	≤7	3.6	358	 0.97 (0.94, 0.98) 	0.92 (0.67, 0.99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	lini-Cog						
uchs, 2012Dementias115423 $0.85 (0.84, 0.88)$ 1.00 olsinger, 2012Dementia23.3630 $0.73 (0.69, 0.76)$ $0.73 (0.69, 0.76)$ 0.76 orson, 2006Cognitive impairment526.337.1 $0.88 (0.84, 0.92)$ $0.88 (0.84, 0.9$		Dementia	≤2	41.5	371	0.71 (0.65, 0.77)	0.97 (0.93, 0.99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							1.00 (0.82, 1.00
Juder 2008 parson, 2006 cognitive impairment037,7146 cognitive impairment0.54 (0.43, 0.64) of 30, 20, 0.80 (0.81, 0.92) \bullet 0.87 of 30, 0.80 (0.81, 0.82)Juder, 2008 balleder, 2008 uuler, 2008 uuler, 2008 uuler, 2008 balleder, 2008 balleder, 2008 balleder, 2008 balleder, 2008 balleder, 2008 balleder, 2008 balleder, 2008037,7146 balleder, 2008 balleder, 2008 balleder, 20080.88 (0.81, 0.92) balleder, 2008 balleder, 2008 balleder, 200800.87 (0.43, 0.64) balleder, 2008 balleder, 200800.87 (0.43, 0.64) balleder, 2008 balleder, 20080.89 (0.87, 0.92) balleder, 20080.87 (0.43, 0.64) balleder, 20080.86 (0.73, 0.92)0.87 (0.45, 0.92)0.98 (0.650 balleder, 20080.98 (0.63, 0.97) balleder, 20080.98 (0.63, 0.97) balleder, 20080.98 (0.63, 0.97) balleder, 20080.98 (0.76, 0.91) balleder, 20080.98 (0.76, 0.91) balle							0.76 (0.54, 0.90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0.87 (0.76, 0.95
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0.84 (0.79, 0.88
Judier, 2008Cognitive Impairment089.71460.73 (0.48, 0.89) \rightarrow 0.66Judier, 2008MCI083.5910.73 (0.45, 0.92) \rightarrow 0.66Jorda FluencyJorda FluencyJorda FluencyJorda Fluency0.84 (0.80, 0.87) \rightarrow 0.66Jorda FluencyJorda FluencyJorda FluencyJorda Fluency0.84 (0.80, 0.87) \rightarrow 0.98Jorda FluencyDementia51254230.88 (0.85, 0.91) \rightarrow 0.89Jorda FluencyJorda FluencyJorda Fluency0.88 (0.85, 0.91) \rightarrow 0.89Jorda FluencyJorda FluencyJorda Fluency0.88 (0.84, 0.91) \rightarrow 0.89Jorda FluencyJorda FluencyJorda Fluency0.89 (0.87, 0.94) \rightarrow 0.89Jorda FluencyJorda FluencyJorda Fluency0.890.91 (0.87, 0.94) \rightarrow 0.81Jorda FluencyJorda FluencyJorda FluencyJorda Fluency0.890.86 (0.78, 0.91) \rightarrow 0.81Jorda FluencyJorda FluencyJorda FluencyJorda FluencyJorda Fluency0.810.880.86 (0.78, 0.91) \rightarrow 0.81Jorda FluencyJorda FluencyJorda FluencyJorda FluencyJorda Fluency0.810.880.86 (0.78, 0.91) \rightarrow 0.81Jorda FluencyJorda F							
NCI083.591 $0.73 (0.45, 0.92)$ 0.50 stral Fluencyel Ser, 2006DementiaNR11.5416 $0.84 (0.80, 0.87)$ $0.88 (0.85, 0.91)$ uchs, 2012Dementia53012.9287 $0.88 (0.86, 0.91)$ $0.88 (0.86, 0.91)$ uchs, 2013Dementia53012.9287 $0.88 (0.86, 0.91)$ $0.88 (0.86, 0.91)$ anson, 2016Dementia5813.9824 $0.89 (0.87, 0.92)$ $0.86 (0.87, 0.91)$ Dementia5613.9824 $0.91 (0.87, 0.94)$ $0.91 (0.87, 0.94)$ $0.91 (0.87, 0.94)$ Ano, 2018Dementia1.56.68805 $0.86 (0.78, 0.91)$ $0.91 (0.87, 0.94)$ $0.91 (0.87, 0.91)$ Dementia2237.8180 $0.86 (0.78, 0.91)$ $0.91 (0.87, 0.91)$ $0.91 (0.77, 0.76, 0.91)$ NCCognitive Ingairment2237.8180 $0.86 (0.78, 0.91)$ $0.91 (0.87, 0.91)$ NCCognitive Ingairment2237.8180 $0.86 (0.78, 0.91)$ $0.91 (0.87, 0.81)$ NQNCI2237.8180 $0.86 (0.78, 0.91)$ $0.94 (0.80, 0.88)$ $0.87 (0.94, 0.98)$ NQNCI2237.8180 $0.82 (0.75, 0.87)$ $0.87 (0.94, 0.98)$ $0.87 (0.94, 0.98)$ NQNCI2237.8180 $0.82 (0.75, 0.87)$ $0.87 (0.94, 0.98)$ $0.87 (0.94, 0.98)$ NQNCI2337.8180 $0.84 (0.80, 0.88)$ $0.87 (0.94, 0.98)$ $0.87 (0.94, 0.98)$ </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.39 (0.34, 0.45</td>							0.39 (0.34, 0.45
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							0.66 (0.57, 0.73
al Ser. 2006DementiaNR11.54 fe \bullet 0.84 (0.80, 0.87) \bullet 0.88uchs, 2012Dementia5012.92870.88 (0.86, 0.91)0.890.89uchs, 2013Dementia5012.92870.88 (0.86, 0.91)0.68uchs, 2013Dementia1993000.88 (0.87, 0.91)0.68uchs, 2013Dementia13.9240.89 (0.87, 0.92)0.68uchs, 2016Dementia1.56.688050.91 (0.87, 0.94)0.91uch, 2015Cognitive (ingairment)2237.81800.94 (0.80, 0.85)0.93uch, 2012Dementia299.41600.82 (0.75, 0.87)0.920.97uz-Orduna, 2012Dementia2814.33700.84 (0.80, 0.88)0.94	auter, 2008	MCI	U	83.5	91	0.73 (0.45, 0.92)	0.50 (0.38, 0.62
benefita 12 5 423 0.88 0.88 0.86 0.85 0.81 0.89 0.84 </td <td>rbal Fluency</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	rbal Fluency						
Page numberDementiaS2012.927 \bullet 0.81 ($0.76, 0.86$) \bullet 0.84 pton, 2003Dementia199300 \bullet 0.88 ($0.84, 0.91$) \bullet 0.68 pton, 2003Dementia5813.9824 \bullet 0.89 ($0.87, 0.92$) \bullet 0.68 D8Dementia2414.2309 \bullet 0.91 ($0.87, 0.94$) \bullet 0.91 ao, 2018Dementia1.56.68805 \bullet 0.84 ($0.83, 0.85$) \bullet 0.81 ao, 2018Cognitive Impairment2252.5236 \bullet 0.86 ($0.78, 0.91$) \bullet 0.88 advin, 2005Cognitive Impairment2237.8180 \bullet 0.86 ($0.78, 0.91$) \bullet 0.74 VQuzo-Orduna, 2012Dementia299.4160 \bullet 0.82 ($0.75, 0.87$) \bullet 0.87 Var (J907)Dementia2814.3370 \bullet 0.84 ($0.80, 0.88$) \bullet 0.87	el Ser, 2006	Dementia	NR	11.5	416	0.84 (0.80, 0.87)	0.98 (0.89, 1.00
Jun, 1998Dementia 30 12.9 287 \bullet 0.81 $(0.76, 0.86)$ \bullet 0.84 John, 2003Dementia199300 0.88 0.81 0.88 0.88 0.81 0.88 0.86 <	ichs, 2012	Dementia	≤12	5	423	0.88 (0.85, 0.91)	0.89 (0.76, 1.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				12.9			0.84 (0.69, 0.92
Inson, 2018 Dementia ≤8 13.9 824 ● 0.89 (0.87, 0.92) ● 0.78 1an, 2016 Dementia ≥4 14.2 309 ● 0.91 (0.87, 0.94) ● 0.91 0.8, 2018 Dementia 1.5 6.6 8805 ● 0.84 (0.83, 0.85) ● 0.83 0.8, 2015 Cognitive Impairment ≥2 52.5 2.36 ● 0.86 (0.78, 0.91) ● 0.86 0.44 (0.83, 0.85) ● 0.86 (0.78, 0.91) ● 0.86 (0.78, 0.91) ● 0.86 ● 0.86 0.44 (0.83, 0.85) ● 0.86 (0.78, 0.91) ● 0.86 ● 0.86 ● 0.86 0.44 (0.80, 0.86) ● 0.85 ● 0.85 ● 0.86 ● 0.86 0.44 (0.80, 0.81) ● 0.82 ● 0.85 ● 0.85 0.44 (0.80, 0.88) ● 0.85 ● 0.85 ● 0.85 0.44 (0.80, 0.88) ● 0.85 ● 0.85 ● 0.85							0.68 (0.48, 0.81
ana. 2016 Dementia ≥4 14.2 309 ◆ 0.91 (0.87, 0.94) ◆ 0.91 0.87 0.81 0.91 0.87 0.91 0.91 0.87 0.91							0.78 (0.73, 0.83
Jan, 2016 Dementia 24 14.2 309 ◆ 0.91 (0.87, 0.94) ◆ 0.91 ao, 2018 Dementia 1.5 6.6 8805 ◆ 0.84 (0.83, 0.85) ◆ 0.88 win, 2005 Cognitive (inpairment) 22 52.5 236 ◆ 0.86 (0.78, 0.91) ◆ 0.83 Jain, 2005 MCI 22 37.8 180 ◆ 0.86 (0.78, 0.91) ◆ 0.74 VQ uzo-rduna, 2012 Dementia ≥9 9.4 160 ◆ 0.82 (0.75, 0.87) ● ● 0.84 (0.80, 0.88) ● 0.94 var, 1997 Dementia ≥8 14.3 370 ● 0.84 (0.80, 0.88) ● 0.94	90						
ao, 2018 Dementia 1.5 6.6 8805 • 0.84 (0.83, 0.85) • 0.88 <td></td> <td>Pomontia</td> <td>>4</td> <td>14.2</td> <td>200</td> <td>▲ 0.01/0.87 0.04)</td> <td>0.91 (0.79, 0.96</td>		Pomontia	>4	14.2	200	▲ 0.01/0.87 0.04)	0.91 (0.79, 0.96
alvin, 2005 Cognitive Impairment 22 52,5 28 0.86 (0,78, 0.91) 0.85 alvin, 2005 MC1 22 37.8 180 0.86 (0,78, 0.91) 0.85 VQ va. 2010a, 2012 Dementia 29 9.4 160 0.82 (0,75, 0.87) 0.87 va. 1997 Dementia 28 14.3 370 0.84 (0.80, 0.88) 0.94							
alvin, 2005 MCl ≥2 37.8 180 → 0.86 (0.78, 0.91) → 0.74 VQ Luz-Orduna, 2012 Dementia ≥9 9.4 160 → 0.82 (0.75, 0.87) → 0.87 VQ, va, 1997 Dementia ≥8 14.3 370 → 0.44 (0.80, 0.88) → 0.94							0.88 (0.85, 0.90
Q uz-Orduna, 2012 Dementia ≥9 9.4 160							0.85 (0.77, 0.90
uz-Orduna, 2012 Dementia ≥9 9.4 160 $$	Ilvin, 2005	MCI	≥2	37.8	180	0.86 (0.78, 0.91)	0.74 (0.62, 0.83
va, 1997 Dementia ≥8 14.3 370 � 0.84 (0.80, 0.88) ➡ 0.94	Q						
va, 1997 Dementia ≥8 14.3 370 � 0.84 (0.80, 0.88) ➡ 0.94	uz-Orduna, 2012	Dementia	≥9	9.4	160	• 0.82 (0.75, 0.87) • • • • • •	0.87 (0.62, 0.96
							0.94 (0.85, 0.98
	ruz-Orduna, 2012	Cognitive Impairment	≥2	56.3	160	0.73 (0.61, 0.82)	0.73 (0.63, 0.81
						• • • • • • • • • • • • • • • • • • •	5.10 (0.00, 0.01

Abbreviations: AD8 = 8-item informant interview; CDT = Clock Drawing Test; CI = confidence interval; FAQ = Functional Activities Questionnaire; KQ = key question; MCI = mild cognitive impairment; MIS/MIS-T = Memory Impairment Screen/Memory Impairment Screen by Telephone; MSQ/SPMSQ = Mental Health Status Questionnaire/Short Portable Mental Status Questionnaire; NR = not reported.

* MIS-T.

† MSQ.

‡ Informant target.

Figure 3. Test Accuracy of Very Brief Screening Tests Reported in One Study (KQ 2)

Test name	Author, year	Refid	Target condition	Cutoff	% with condition	Total	Sensitivity (95% CI)	Specificity (95% CI
3-Word	Kuslansky, 2002	1943	Dementia	0	11.7	240	0.65 (0.46, 0.79) +	0.85 (0.79, 0.89)
HVLT	Donnelly, 2008	1935	MCI	1 SD	20	100	0.55 (0.32, 0.77)	0.43 (0.32, 0.54)
nformant memory report	Ayalon, 2011	1964	Dementia	>2	31.8	647 🔶	0.96 (0.92, 0.98)	0.52 (0.47, 0.56)
nformant memory report	Ayalon, 2011	1964	Cognitive Impairment	>2	60.4	647 🔶	0.89 (0.85, 0.92) 🔶	0.75 (0.70, 0.80)
nformant memory report	Ayalon, 2011	1964	MCI	>2	42	441 🔶	0.81 (0.75, 0.86)	0.75 (0.70, 0.80)
atz ADL	Juva, 1997	1953	Dementia	≥2	13.3	437	0.81 (0.69, 0.89)	0.83 (0.79, 0.87)
awton IADL	Juva, 1997	1953	Dementia	≤4	13.2	424	0.91 (0.81, 0.96) 🔶	0.86 (0.82, 0.89)
/I@T - Cued recall	Ozer, 2016	11254	MCI	<9	26.3	152	0.80 (0.65, 0.90)	0.78 (0.69, 0.84)
/@T - Encoding	Ozer, 2016	11254	MCI	<9	26.3	152	0.58 (0.42, 0.71)	0.88 (0.81, 0.93)
M@T - Free recall	Ozer, 2016	11254	MCI	<6	26.3	152	0.90 (0.77, 0.96)	0.77 (0.68, 0.84)
1@T - Orientation	Ozer, 2016	11254	MCI	<5	26.3	152	0.38 (0.24, 0.53)	0.83 (0.75, 0.89)
1@T - Semantic	Ozer, 2016	11254	MCI	<14	26.3	152	0.85 (0.71, 0.93)	0.54 (0.44, 0.63)
1F-2	Holsinger, 2012	2168	Dementia	Both yes	3.3	630	0.38 (0.20, 0.60)	0.87 (0.84, 0.89)
IF-2	Holsinger, 2012	2168	Cognitive Impairment	Both yes	42.5	630 🔶	0.24 (0.19, 0.29)	0.93 (0.90, 0.95)
MC	Fillenbaum, 1990	1938	Dementia	≥11	16.4	159	1.00 (0.87, 1.00)	0.58 (0.49, 0.66)
TMS	Cummings-Vaughn, 2014	1405	MCI	≤32	52.8	108	0.68 (0.56, 0.79)	0.76 (0.63, 0.86)
elf-report	Fuchs, 2012	2148	Dementia	NA	5	423	0.89 (0.76, 1.00)	0.46 (0.41, 0.51)
weet 16	Fong, 2011	1967	Dementia	<14	11.8	729	0.99 (0.97, 1.00)	0.72 (0.68, 0.77)
мт	Heun, 1998	1942	Dementia	≤40	12.9	287	0.81 (0.66, 0.91)	0.71 (0.65, 0.76)
MT A	Donnelly, 2008	1935	MCI	1 SD	20	100	0.30 (0.12, 0.54)	0.90 (0.81, 0.96)
MT B	Donnelly, 2008	1935	MCI	1 SD	20	100	0.43 (0.18, 0.71)	0.86 (0.76, 0.93)
YM - Calculation	Ozer, 2016	11254	MCI	<4	26.3	152	0.40 (0.26, 0.55)	0.73 (0.64, 0.81)
YM - Copying	Ozer, 2016	11254	MCI	<1	26.3	152 🔶	0.05 (0.01, 0.17)	0.99 (0.95, 1.00)
YM - Fluency	Ozer, 2016	11254	MCI	<4	26.3	152	0.73 (0.57, 0.84)	0.66 (0.57, 0.74)
YM - Free recall	Ozer, 2016	11254	MCI	<3	26.3	152	0.50 (0.35, 0.65)	0.93 (0.87, 0.96)
YM - Help	Ozer, 2016	11254	MCI	<4	26.3	152	0.13 (0.05, 0.26)	0.93 (0.87, 0.96)
YM - Naming	Ozer, 2016	11254	MCI	<5	26.3	152	0.13 (0.05, 0.26)	0.96 (0.91, 0.99)
YM - Orientation	Ozer, 2016	11254	MCI	<10	26.3	152	0.30 (0.18, 0.45)	0.83 (0.75, 0.89)
YM - Semantic	Ozer, 2016	11254	MCI	<2	26.3	152	0.40 (0.26, 0.55)	0.91 (0.84, 0.95)
YM - Similarities	Ozer, 2016	11254	MCI	<4	26.3	152	0.53 (0.37, 0.67)	0.68 (0.59, 0.76)
YM - Visuospatial 1	Ozer, 2016	11254	MCI	<1	26.3	152 -	0.13 (0.05, 0.26)	0.94 (0.88, 0.97)
YM - Visuospatial 2	Ozer, 2016	11254	MCI	<4	26.3	152 -	0.15 (0.07, 0.29)	0.90 (0.83, 0.94)
	Fuchs, 2012	2148	Dementia	7/8	5	423	0.95 (0.86, 1.00)	0.96 (0.94, 0.98)

Abbreviations: 3-Word = 3-Word Memory Test; ADL = activities of daily living; CI = confidence interval; HVLT = Hopkins Verbal Learning Test; IADL = instrumental activities of daily living; KQ = key question; M@T = Memory Alteration Test; MCI = mild cognitive impairment; MCI = mild cognitive impairment; MF-2 = 2-item functional memory screen; NA = not applicable; OMC = Orientation Memory Concentration; SD = standard deviation; STMS = Short Test of Mental Status; TMT = Trail Making Test; TYM = Test Your Memory; VAT = Visual Association Test

Author, year	Target condition	Screened Group	Cutoff	Total	Sensitivity (95% CI)	Specificity (95% C
7MS						
Del Ser, 2006	Dementia	All	NR	416	→ 1.00 (0.93, 1.00)	0.95 (0.92, 0.97)
Solomon, 2000	Dementia	All-extrapolated	≥0.7	137	→ 1.00 (0.77, 1.00)	0.96 (0.91, 0.98)
AMT						
Hooijer, 1992	Dementia	All	≤7	358		0.95 (0.93, 0.97)
Rait, 2000	Dementia	Gujarati	≤5	101		0.95 (0.86, 0.99)
Rait, 2000	Dementia	Pakistani	≤8	101		0.87 (0.68, 0.96)
Rait, 2000	Dementia	All	≤7	96	→ 1.00 (0.54, 1.00)	0.83 (0.76, 0.91)
MoCA						
Chan, 2016	Dementia	60 years or older	≤16	309	→ 0.84 (0.71, 0.92)	0.89 (0.85, 0.92)
lsu, 2015	Dementia	All	23.5	276	→ 0.78 (0.51, 0.90)	0.94 (0.90, 0.96)
.ee, 2008	Dementia	All	≤22	196	-+ 0.98 (0.88, 1.00)	0.66 (0.59, 0.73)
Markwick, 2012	Dementia	All	≤25	107	→ 1.00 (0.68, 1.00)	0.65 (0.55, 0.73)
Cummings-Vaughn, 2014	Cognitive Impairment	All	≤24	136		0.75 (0.61, 0.84)
.ee, 2008	Cognitive Impairment	All	≤22	196	→ 0.94 (0.86, 0.97)	0.84 (0.77, 0.90)
Markwick, 2012	Cognitive Impairment	All	≤25	107		0.76 (0.65, 0.84)
Cummings-Vaughn, 2014	MCI	All	≤24	108	→ 0.72 (0.59, 0.82) →	0.75 (0.61, 0.84)
_ee, 2008	MCI	All	≤22	152	0.89 (0.75, 0.96)	0.84 (0.77, 0.90)
Markwick, 2012	MCI	All	≤25	99	→ 0.80 (0.58, 0.92) →	0.76 (0.65, 0.84)
SLUMS						
Fariq, 2006	Dementia	Less than HS edu	≤22.5	214	→ 1.00 (0.88, 1.00)	0.69 (0.62, 0.75)
Fariq, 2006	Dementia	HS edu or more	≤24.5	488	• 0.98 (0.90, 1.00)	0.65 (0.61, 0.70)
ariq, 2006	Cognitive Impairment	Less than HS edu	≤22.5	214		0.86 (0.79, 0.91)
ariq, 2006	Cognitive Impairment	HS edu or more	≤24.5	488	 0.89 (0.84, 0.93) 	0.87 (0.83, 0.90)
Cummings-Vaughn, 2014	MCI	All	≤26	108		0.65 (0.51, 0.76)
Fariq, 2006	MCI	Less than HS edu	≤23.5	187	→ 0.92 (0.81, 0.97)	0.81 (0.74, 0.87)
ariq, 2008	MCI	HS edu or more	≤25.5	433	◆ 0.95 (0.90, 0.98)	0.76 (0.71, 0.80)
TICS/TICS-M						
.ipton, 2003	Dementia	All-extrapolated	28	300	→ 0.74 (0.55, 0.87) ◆	0.93 (0.89, 0.95)
Manly, 2011	Dementia	All	≤22	377	→ 0.88 (0.77, 0.95) ◆	0.87 (0.83, 0.90)
Manly, 2011	Cognitive Impairment	All	≤26	377	→ 0.73 (0.64, 0.80)	0.77 (0.71, 0.82)
/ercambre, 2010	Cognitive Impairment	All	31	120		0.83 (0.74, 0.89)
Cook, 2009	MCI	All	34	71	→ 0.82 (0.59, 0.94)	0.87 (0.76, 0.94)
				0	.2.4.6.81 0.2.4.6.8	1

Abbreviations: 7MS = 7-Minute Screen; AMT = Abbreviated Mental Test; CI = confidence interval; HS edu = high school education; KQ = key question; MCI = mild cognitive impairment; NR = not reported; SLUMS = Saint Louis University Mental Status Examination; TICS/TICS-M = Telephone Instrument for Cognitive Status/Telephone Interview for Cognitive Status modifie

Test	Author,	Target	Screened					
name	year	condition	Group	Cutoff	Total		Sensitivity (95% CI)	Specificity (95% CI)
FCR	Del Ser, 2006	Dementia	All	NR	416	-+	1.00 (0.93, 1.00)	0.87 (0.83, 0.90)
FOME-abbreviated	Rideaux, 2012	Cognitive Impairment	White	≤20	380	+	0.55 (0.50, 0.60)	0.93 (0.91, 0.96)
FOME-abbreviated	Rideaux, 2012	Cognitive Impairment	Black	≤21	87		0.65 (0.55, 0.75)	0.74 (0.64, 0.83)
FOME-abbreviated	Rideaux, 2012	Cognitive Impairment	Latino	≤24	55	-+	0.93 (0.77, 0.98)	0.57 (0.39, 0.73)
Immediate Recall	Fuchs, 2012	Dementia	All	≤14	423		1.00 (0.85, 1.00)	0.83 (0.79, 0.87)
Kendrick Cognitive Tests	Fillenbaum, 1990	Dementia	All	NA	159		0.65 (0.46, 0.81)	0.95 (0.90, 0.97)
Labyrinth Test - mistakes	Heun, 1998	Dementia	All	≤3	287	-	0.88 (0.75, 0.96)	0.60 (0.54, 0.66)
Labyrinth Test - seconds	Heun, 1998	Dementia	All	≤80	287		0.56 (0.41, 0.71)	0.84 (0.79, 0.88)
M@T	Ozer, 2016	MCI	All	<40	152	-	0.85 (0.71, 0.93)	0.84 (0.76, 0.90)
MMblind	Resichies, 1997	Dementia	85-95+ years	16/17	243	-	0.73 (0.63, 0.82)	0.78 (0.71, 0.84)
MMblind	Resichies, 1997	Dementia	All	17/18	491	+	0.85 (0.77, 0.91)	0.82 (0.78, 0.86)
MMblind	Resichies, 1997	Dementia	70-84 years	18/19	248		0.81 (0.60, 0.92)	0.89 (0.85, 0.93)
от	Del Ser, 2006	Dementia	All	NR	416	-+	0.96 (0.86, 0.99)	0.86 (0.82, 0.89)
SMMSE	Stein, 2015	Dementia	Follow-up 1	≤4	2657	+	0.98 (0.92, 0.99)	0.73 (0.71, 0.75)
SMMSE	Stein, 2015	Dementia	Follow-up 2	≤4	2274	-	0.94 (0.88, 0.97)	0.71 (0.69, 0.73)
Storandt Battery	Fillenbaum, 1990	Dementia	All	≥0	159	-+	1.00 (0.87, 1.00)	0.56 (0.48, 0.65)
ТҮМ	Ozer, 2016	MCI	All	<43	152	_	0.63 (0.47, 0.76)	0.87 (0.79, 0.92)
Word List Learning - immediate recall	Heun, 1998	Dementia	All	≤3	287		0.82 (0.66, 0.91)	0.77 (0.72, 0.82)
Word List Learning - immediate recognition false alarm	sHeun, 1998	Dementia	All	≤1	287 -		0.23 (0.13, 0.40)	0.77 (0.72, 0.82)
Word List Learning - immediate recognition hit	Heun, 1998	Dementia	All	⊴8	287		0.57 (0.41, 0.71)	0.71 (0.65, 0.76)
Word List Recognition	Fuchs, 2012	Dementia	All	≤16	423		0.71 (0.49, 0.92)	0.93 (0.91, 0.96)

 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

Abbreviations: CI = confidence interval; FCR = Free and Cued Recall; FOME = Fuld Object Memory Evaluation; MMblind = MMSE version for persons with visual impairment; KQ = key question; MCI = mild cognitive impairment; NR = not reported; SLUMS = Saint Louis University Mental Status Examination; TICS/TICS-M = Telephone Instrument for Cognitive Status/Telephone Interview for Cognitive Status modified

				%		
Author,	Screened			with		
year	Group	Cutoff	Total	condition	Sensitivity (95% CI)	Specificity (95% C
Brodaty, 2002	All	≤24	283	10.2	→ 0.81 (0.62, 0.90) →	0.76 (0.70, 0.81)
Cullen, 2005	All	≤23	1115	3.9	0.91 (0.79, 0.96)	0.87 (0.85, 0.89)
Fillenbaum, 1990	All	≤23	159	16.4	↔ 1.00 (0.87, 1.00) →	0.77 (0.70, 0.84)
Fong, 2011	All	≤23	709	12.1	0.87 (0.78, 0.95)	0.89 (0.86, 0.92)
Gagnon, 1990	All	24	2730	3.7	◆ 1.00 (0.96, 1.00)	0.78 (0.77, 0.80)
Grut, 1993	All	≤23	1810	16.8	• 0.87 (0.83, 0.90)	♦ 0.92 (0.91, 0.93)
Heun, 1998	All	≤23	287	12.9	→ 0.84 (0.69, 0.92)	♦ 0.99 (0.97, 1.00)
Hooijer, 1992	All	≤23	358	3.6	••••••••••••••••••••••••••••••••••••••	0.96 (0.94, 0.98)
Kahle-Wrobleski, 2007	Age 90-93 HS edu or less	23	49	30.6		➡ 0.94 (0.81, 0.98)
Kahle-Wrobleski, 2007	Age 94-96 HS edu or less	23	35	57.1	0.90 (0.70, 0.97)	✤ 0.93 (0.70, 0.99)
Kahle-Wrobleski, 2007	Age 97 or over college grad	23	49	36.7	0.89 (0.67, 0.97)	• 0.90 (0.75, 0.97)
Kay, 1985	All	≤24	274	14.2	→ 0.85 (0.70, 0.93) →	0.81 (0.75, 0.85)
Kirby, 2001	All	≤23	648	6.3	─ ◆ 0.88 (0.74, 0.95)	0.88 (0.85, 0.90)
Ranson, 2018	All	≤23	824	35.3	◆ 0.93 (0.90, 0.96)◆	0.71 (0.67, 0.75)
Resichies, 1997	All	≤23	449	19.4	→→ 0.78 (0.68, 0.86)	0.88 (0.84, 0.91)
Stein, 2015	All	≤24	2657	3.2	↓ 0.93 (0.86, 0.97)	0.96 (0.95, 0.97)
Waite, 1998	All	≤23	360	27.5	→ 0.84 (0.75, 0.90)	0.88 (0.84, 0.92)
Overall					0.89 (0.85, 0.92)	0.89 (0.85, 0.93)

Abbreviations: CI = confidence interval; HS edu = high school education; KQ = key question; MMSE = Mini-Mental State Examination

Figure 7. Test Accuracy of the MMSE at Other Cut-Offs (KQ 2)

Author,	Screened				
/ear	Group	Cutoff	Total	Sensitivity (95% CI)	Specificity (95% 0
Dementia					
Chan, 2016	60 years or older	≤20	309	→ 0.75 (0.61, 0.85)	♦ 0.94 (0.90, 0.96)
Cruz-Orduna, 2012	All	≤18	160 -	◆ 0.80 (0.55, 0.93)	➡ 0.86 (0.80, 0.91)
Hsu, 2015	All	28.5	276	0.38 (0.18, 0.61)	♦ 0.92 (0.88, 0.95)
Jeong, 2004	All	≤18	235	→ 0.91 (0.79, 0.98)	→ 0.76 (0.69, 0.82)
Kahle-Wrobleski, 2007	Age 90 to 93 some college	22	57	→ 0.92 (0.65, 0.99)	→ 0.96 (0.85, 0.99)
Kahle-Wrobleski, 2007	Age 97 or over HS edu or less	22	32 -	0.80 (0.55, 0.93)	0.76 (0.53, 0.90)
Kahle-Wrobleski, 2007	Age 94 to 96 some college	25	43	0.88 (0.66, 0.97)	0.80 (0.66, 0.90)
Kahle-Wrobleski, 2007	Age 90 to 93 college grad	25	63		0.85 (0.66, 0.94)
Kaufer, 2008	All	≤26	146	→ 0.82 (0.69, 0.91)	— 0.67 (0.56, 0.77)
Vao, 2018	All	20.5	8805	♦ 0.89 (0.86, 0.91)	♦ 0.82 (0.81, 0.83)
Morales, 1997	Rural	20	160	0.83 (0.63, 0.93)	— 0.74 (0.66, 0.80)
Rait, 2000	Gujarati	≤23	62	→ 1.00 (0.16, 1.00)	→ 0.95 (0.86, 0.99)
Rait, 2000	All	≤25	96	→ 0.83 (0.76, 0.91)	— 0.78 (0.69, 0.86)
Rait, 2000	Pakistani	≤26	39	→ 1.00 (0.66, 1.00)	0.77 (0.57, 0.89)
Resichies, 1997	70-84 years	≤26	236	0.80 (0.58, 0.92)	→ 0.82 (0.77, 0.87)
Fariq, 2006	Less than HS edu	≤27.5	214	→ 0.85 (0.68, 0.94)	→ 0.72 (0.65, 0.78)
Fariq, 2006	HS edu or more	≤28.5	488	→ 0.95 (0.85, 0.98)	✤ 0.69 (0.65, 0.73)
Cognitive Impairment					
Cruz-Orduna, 2012	All	≤23	160	→ 0.77 (0.67, 0.84)	— 0.70 (0.58, 0.79)
Cullen, 2005	All	≤23	1115	→ 0.72 (0.63, 0.80)	♦ 0.89 (0.87, 0.91)
leong, 2004	All	≤20	235	→ 0.82 (0.73, 0.89)	→ 0.79 (0.71, 0.86)
Kaufer, 2008	All	≤26	146 🔶	- 0.56 (0.47, 0.64)	0.87 (0.62, 0.96)
Rideaux, 2012	Black	≤22	87	→ 0.67 (0.53, 0.79)	— 0.71 (0.55, 0.83)
Rideaux, 2012	Latino	≤24	55	→ 0.93 (0.86, 1.00)	0.71 (0.60, 0.83)
Rideaux, 2012	White	≤25	380 -	- 0.58 (0.50, 0.66)	➡ 0.86 (0.81, 0.90)
Fariq, 2006	Less than HS edu	≤27.5	214 -	0.60 (0.49, 0.70)	→ 0.79 (0.71, 0.85)
ariq, 2006	HS edu or more	≤28.5	488 -	► 0.60 (0.53, 0.67)	 ➡ 0.76 (0.70, 0.80)
101					
Donnelly, 2008	All	1 SD	100	0.20 (0.06, 0.44)	→ 0.93 (0.84, 0.97)
Kaufer, 2008	All	≤27	91	0.47 (0.36, 0.59)	0.73 (0.45, 0.92)
Saxton, 2009	All	28	524 🔶	0.45 (0.39, 0.52)	
ariq, 2006	Less than HS edu	≤28.5	187	0.60 (0.46, 0.72)	→ 0.65 (0.57, 0.72)
Fariq, 2006	HS edu or more	_20.0 ≤29.5	433	→ 0.75 (0.67, 0.82) -	 ← 0.48 (0.42, 0.53)
		-20.0			
					<u> </u>

Abbreviations: CI = confidence interval; HS edu = high school education; KQ = key question; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination

Figure 8. Test Accuracy of Longer, Self-Administered Tests (KQ 2)

Target condition	Author, year	Cutoff	Total		Sensitivity (95% CI)		Specificity (95% Cl
CAMCI							
MCI	Saxton, 2009	NA	524	+	0.86 (0.83, 0.92)	•	0.94 (0.90, 0.96)
CAST							
Dementia	Swearer, 2002	≤33	46	+	0.88 (0.53, 0.98)	-•	0.95 (0.83, 0.99)
CIDS/SCIDS							
Dementia	Waite, 1998	≥7	360	-+	0.89 (0.81, 0.94)	+	0.89 (0.84, 0.92)
Dementia	Waite, 1998	≥4	360	+	0.83 (0.74, 0.89)	+	0.87 (0.82, 0.91)
IQCODE/Short IQCOE	DE						
Dementia	Cruz-Orduna, 2012	≥3.7	160		0.80 (0.55, 0.93)	-+	0.77 (0.69, 0.83)
Dementia	Morales, 1997	3.3	160		0.83 (0.63, 0.93)	+	0.83 (0.76, 0.89)
Dementia	Tokuhara, 2006	≥3.5	230		0.88 (0.64, 0.97)	+	0.91 (0.87, 0.94)
Dementia	Ayalon, 2011*	>3	647	+	0.88 (0.83, 0.92)	+	0.51 (0.46, 0.55)
Cognitive Impairment	Cruz-Orduna, 2012	≥3.4	160	-	0.71 (0.61, 0.79)	-+-	0.74 (0.63, 0.83)
Cognitive Impairment	Tokuhara, 2006	≥3.5	230		0.74 (0.54, 0.87)	+	0.92 (0.88, 0.95)
Cognitive Impairment	Ayalon, 2011*	>3	647	+	0.82 (0.77, 0.85)	+	0.69 (0.63, 0.74)
MCI	Ayalon, 2011*	>3	441	+	0.75 (0.68, 0.80)	+	0.69 (0.63, 0.74)
-							
			0.	1 2 .4 .6 .8 1	0	.2 .4 .6 .8 1	

Abbreviations: CAMCI = Computer Assessment of Mild Cognitive Impairment; CAST = Cognitive Assessment Screening Test; CI = confidence interval; CIDS = Concord Informant Dementia Scale; IQCODE = Informant Questionnaire on Cognitive Decline in the Elderly; IQCODE-Short = Informant Questionnaire on Cognitive Decline in the Elderly - short version; MCI = mild cognitive impairment; NA = not applicable; SCIDS = Short Concord Informant Dementia Scale

* Short IQCODE

Figure 9. Pooled Analysis of Change in Global Cognitive Function (Measured by ADAS-Cog-11) (KQ 4), AchEls, and Memantine Compared With Placebo, by Medication Type

Donepezil Black, 2003 10 mg 6 Burns, 1999 10 mg 6 Petersen, 2005 10 mg 36 Tune, 2003 10 mg 6 Subtotal (I-squared = 64.4% , p = 0.015) Galantamine Auchus, 2007 16-24 mg 6 Auchus, 2007 16-24 mg 6 Produkt, 2007 16-24 mg 6 Auchus, 2007 16-24 mg 6 Produkt, 2007 16-24 mg 6 Auchus, 2007 16-24 mg 6 Produkt, 2000 24 mg 6 Produkt, 2008 3-12 mg 6 Produkt, 2008 3-12 mg 6 Produkt, 2008 20 mg 6 Produkt,	% CI) Weight	IG Mean Chg (95% CI) from BL	IG n	CG Mean Chg (95% CI) from BL	CG n
Burns, 1999 10 mg 6 Petersen, 2005 10 mg 36 Rogers, 1998 10 mg 3 Tune, 2003 10 mg 6 Subtotal (I-squared = 64.4%, p = 0.015) Galantamine Auchus, 2007 16-24 mg 6 Auchus, 2007 16-24 mg 6 Frikinjuntti, 2002 24 mg 6 Crockwood, 2001 24-32 mg 3 Rockwood, 2001 24-32 mg 3 Rockwood, 2001 24-32 mg 3 Rockwood, 2001 24-32 mg 3 Auchus, 2000 24 mg 6 Tariot, 2000 24 mg 6 Subtotal (I-squared = 65.9%, p = 0.003) Rivastigmine Ballard, 2008 3-12 mg 6 Fidman, 2007 9.6 mg 6 Feldman, 2007 9.6 mg 6 Feldman, 2007 9.6 mg 6 Corey-Bloom, 1998 6-12 mg 6 Subtotal (I-squared = 81.9%, p = 0.000) Corey-Bloom, 1998 6-12 mg 6 Feldman, 2007 9.6 mg 6 Corey-Bloom, 1998 6-12 mg 6 Corey-Bloom, 1998 6-12 mg 6 Corey-Bloom, 1998 6-12 mg 6 Corey-Bloom, 1998 6-12 mg 6 Feldman, 2007 9.6 mg 6 Corey-Bloom, 1998 6-12 mg 6 Corey-Bloom					
Petersen, 2005 10 mg 36 Rogers, 1998 10 mg 3 Tune, 2003 10 mg 6 Wilkinson, 2003 10 mg 6 Subtotal (I-squared = 64.4%, p = 0.015) Galantamine Auchus, 2007 16-24 mg 6 Erkinjunti, 2002 24 mg 6 Auchus, 2007 16-24 mg 6 Erkinjunti, 2002 24 mg 6 Auchus, 2001 24-32 mg 3 Rockwood, 2001 24-32 mg 3 Tariot, 2000 24 mg 5 Wilkinson, 2001 24 mg 6 -2.80 (-3.76, -1 -2.70 (-3.95, -1 Rockwood, 2001 24-32 mg 3 -1.70 (-2.79, -0 Rockwood, 2001 24-32 mg 3 -1.70 (-2.79, -0 Rockwood, 2001 24 mg 6 -3.10 (-4.18, -2 Wilcock, 2000 24 mg 6 -1.00 (-2.05, 0.1 Corey-Bloom, 1998 6-12 mg 6 -1.00 (-2.05, 0.1 Corey-Bloom, 1998 6-12 mg 6 -1.00 (-2.05, 0.1 -2.13 (-2.82, -1) Memantine Bakchine, 2008 20 mg 6 -1.60 (-2.70, -0 Subtotal (I-squared = 81.9%, p = 0.000) - Memantine Bakchine, 2008 20 mg 6 -1.60 (-2.70, -0 Subtotal (I-squared = 81.9%, p = 0.000) - - Memantine Bakchine, 2008 20 mg 6 -1.60 (-2.70, -0 Subtotal (I-squared = 81.9%, p = 0.000) - - Memantine Bakchine, 2008 20 mg 6 -1.60 (-2.70, -0 Subtotal (I-squared = 81.9%, p = 0.000) - - Memantine Bakchine, 2008 20 mg 6 -1.37 (-2.28, -1) - Memantine Bakchine, 2008 20 mg 6 -1.37 (-2.28, -1) - Memantine Bakchine, 2008 20 mg 6 -1.37 (-2.28, -1) - Memantine Bakchine, 2008 20 mg 6 -1.37 (-2.28, -1) - - Memantine Bakchine, 2008 20 mg 6 -1.37 (-2.28, -1) - - - Memantine Bakchine, 2008 20 mg 6 - - - - - - - - - - - - -		-1.5 (-2.3, -0.7)	186		188
Rogers, 1998 10 mg 3		-1.3 (-2.0, -0.6)		1.7 (1.0, 2.4)	274
Tune, 2003 10 mg 6 -2.09 (-4.96, 0.1) Wilkinson, 2003 10 mg 6 -2.09 (-4.96, 0.1) Subtotal (I-squared = 64.4%, p = 0.015) -2.09 (-4.96, 0.1) . . -2.09 (-4.96, 0.1) . . -2.09 (-4.96, 0.1) . . . -2.09 (-4.96, 0.1) Galantamine . . . Auchus, 2007 16-24 mg 6 . Brodaty, 2005 16-24 mg 6 Raskind, 2000 24 mg 6 . . Nockwood, 2001 24 mg . . . Nilcock, 2000 24 mg . . . Wilcock, 2000 24 mg Nuiteson, 2001 24 mg Wilcock, 2000 24 mg <		3.7 (2.8, 4.6)		3.7 (2.8, 4.7)	193
Wilkinson, 2003 10 mg 6 -2.09 (-3.24, -0. Subtotal (I-squared = 64.4%, p = 0.015) -2.13 (-3.01, -1. Galantamine	· · · · · · · · · · · · · · · · · · ·	-2.7 (-3.5, -1.9)		0.4 (-0.4, 1.2)	150 13
Subtotal (I-squared = 64.4%, p = 0.015) Galantamine Auchus, 2007 16-24 mg 6 Brodaty, 2005 16-24 mg 6 -2.80 (-3.76, -1) Erkinjunti, 2002 24 mg 6 -2.80 (-3.76, -1) -2.80 (-3.76, -1) -1.70 (-2.79, -0) -3.10 (-2.79, -0) -3.10 (-4.18, -2) -3.00 (-5.23, -0) -3.00 (-2.05, 0.0) -2.28 (-3.64, -0) -2.28 (-3.64, -0) -2.00 (-3.55, -0) -2.00 (-0.50) (-0, -0) -2.00 (-0, -0, -0) -2.00 (-0, -0, -	· · · · · · · · · · · · · · · · · · ·	-3.7 (-6.3, -1.0)	14	-1.6 (-2.7, -0.4)	13
Auchus, 2007 16-24 mg 6 -1.40 (-2.28, -0. Brodaty, 2005 16-24 mg 6 -2.80 (-3.76, -1. Erkinjunti, 2002 24 mg 6 -2.70 (-3.95, -1. Raskind, 2000 24 mg 6 -0.10 (-1.23, 1.1. Rockwood, 2001 24-32 mg 3 -1.70 (-2.79, -0. Rockwood, 2001 24 mg 5 -3.10 (-4.18, -2. Wilcock, 2000 24 mg 6 -2.90 (-4.15, -1. Wilcock, 2000 24 mg 3 -3.00 (-5.23, -0. Subtotal (I-squared = 65.9%, p = 0.003) -2.13 (-2.82, -1. · - - Rivastigmine -4.40 (-5.0.3. Ballard, 2008 3-12 mg 6 -4.40 (-5.50.9. · -2.28 (-3.64, -0. Winblad, 2007 12 mg 6 -2.40 (-5.50.9. · -2.28 (-3.64, -0. -2.88 (-3.64, -0. Winblad, 2007 12 mg 6 -4.40 (-5.50.9. · -2.28 (-3.64, -0. -2.28 (-3.64, -0. · -2.28 (-3.64, -0. -2.28 (-3.64, -0. Winblad, 2007 12 mg 6 -2.28 (-3.64, -0. · -2.28 (-3.64, -0. -2.28 (-3.64, -0. · -2.28 (-		-2.2 (-3.1, -1.3)	194	-0.1 (-0.9, 0.7)	100
Auchus, 2007 16-24 mg 6 -1.40 (-2.28, -0. Brodaty, 2005 16-24 mg 6 -2.80 (-3.76, -1. Erkinjunti, 2002 24 mg 6 -2.70 (-3.95, -1. Raskind, 2000 24 mg 6 -0.10 (-1.23, 1.1. Rockwood, 2001 24-32 mg 3 -1.70 (-2.79, -0. Rockwood, 2001 24 mg 5 -3.10 (-4.18, -2. Wilcock, 2000 24 mg 6 -2.90 (-4.15, -1. Wilcock, 2000 24 mg 3 -3.00 (-5.23, -0. Subtotal (I-squared = 65.9%, p = 0.003) -2.13 (-2.82, -1. . - - Rivastigmine -4.40 (-5.00, -2.05, 0.1. Ballard, 2008 3-12 mg 6 -4.40 (-5.50, 0.1. Corey-Bloom, 1998 6-12 mg 6 -2.90 (-4.24, -1. Winblad, 2007 12 mg 6 -2.28 (-3.64, -0. Winblad, 2007 12 mg 6 -2.28 (-3.64, -0. Winblad, 2007 12 mg 6 -2.28 (-3.64, -0. Subtotal (I-squared = 81.9%, p = 0.000) -2.43 (-3.67, -1. . -2.28 (-3.64, -0. -2.60 (-2.20, 0.2. Choi, 20111 20 mg 4 -0.66 (-2.81, 1.4. Dysken, 2014 20 mg 12 -0.97 (-2					
Brodaty, 2005 16-24 mg 6 Erkinjunti, 2002 24 mg 6 Raskind, 2000 24 mg 6 Rockwood, 2001 24-32 mg 3 Tariot, 2000 24 mg 5 Tariot, 2000 24 mg 5 Tariot, 2000 24 mg 6 Tariot, 2000 20 mg 6 Tariot,	52) 13.79	-1.7 (-2.3, -1.1)	388	-0.3 (-0.9, 0.3)	379
Erkinjunti, 2002 24 mg 6 -2.70 (-3.95, -1. Raskind, 2000 24 mg 6 -0.10 (-1.23, 1./ Rockwood, 2001 24-32 mg 3 -1.70 (-2.79, -0. Rockwood, 2006 16-24 mg 4 -1.93 (-3.82, -0. Tariot, 2000 24 mg 6 -2.90 (-4.15, -1. Wilcock, 2000 24 mg 3 -3.10 (-4.18, -2. Wilcock, 2000 24 mg 3 -3.00 (-5.23, -0. Subtotal (I-squared = 65.9%, p = 0.003) -2.13 (-2.82, -1. -3.00 (-5.23, -0. . . -3.00 (-5.23, -0. -2.13 (-2.82, -1. -2.90 (-4.15, -1. -2.90 (-4.15, -1. -2.90 (-4.15, -1. <td></td> <td>-1.6 (-2.3, -0.9)</td> <td></td> <td>1.2 (0.6, 1.8)</td> <td>296</td>		-1.6 (-2.3, -0.9)		1.2 (0.6, 1.8)	296
Raskind,2000 24 mg 6 -0.10 (-1.23, 1.4) Rockwood, 2001 24.32 mg 3 -1.70 (-2.79, -0) Rockwood, 2006 16-24 mg 4 -1.93 (-3.82, -0) Tariot, 2000 24 mg 5 -3.10 (-4.18, -2) Wilcock, 2000 24 mg 3 -3.00 (-5.23, -0) Subtotal (I-squared = 65.9%, p = 0.003) -2.13 (-2.82, -1) -3.00 (-5.23, -0) . Rivastigmine -1.00 (-2.05, 0.1) -2.290 (-4.15, -1) Ballard, 2008 3-12 mg 6 -4.40 (-5.50, -3) . . -2.90 (-4.24, -1) -2.90 (-4.24, -1) Rosler, 1999 6-12 mg 6 -4.40 (-5.50, -3) Vinblad, 2007 12 mg 6 -2.90 (-4.24, -1) Subtotal (I-squared = 81.9%, p = 0.000) -2.28 (-3.6h, -1) -2.90 (-4.24, -1) . . . -1.60 (-2.70, -0) Bakchine, 2008 20 mg 6 -0.66 (-2.81, 1 <t< td=""><td></td><td>-1.7 (-2.5, -0.9)</td><td></td><td>1.0 (0.0, 2.0)</td><td>162</td></t<>		-1.7 (-2.5, -0.9)		1.0 (0.0, 2.0)	162
Rockwood, 2006 16-24 mg 4 -1.93 (-3.82, -0. Tariot, 2000 24 mg 5 -3.10 (-4.18, -2. Wilcock, 2000 24 mg 6 -2.90 (-4.15, -1. Wilkinson, 2001 24 mg 3 -3.00 (-5.23, -0. Subtotal (I-squared = 65.9%, p = 0.003) -2.13 (-2.82, -1. -3.00 (-5.23, -0. · Rivastigmine -1.00 (-2.05, 0.1. -2.00 (-4.15, -1. Ballard, 2008 3-12 mg 6 -4.40 (-5.50, 0.1. Corey-Bloom, 1998 6-12 mg 6 -4.40 (-5.50, 0.1. Feldman, 2007 9.6 mg 6 -2.90 (-4.24, -1. Rosler, 1999 6-12 mg 6 -2.28 (-3.64, -0. Winblad, 2007 12 mg 6 -2.28 (-3.64, -0. · Nostotal (I-squared = 81.9%, p = 0.000) -2.43 (-3.67, -1. · - -0.66 (-2.81, 1.4. Dysken, 2014 20 mg 6 -0.85 (-2.20, 0.1. Choi, 20111 20 mg 6 -2.00 (-3.55, -0. Peskind, 2006 20 mg 6 -2.00 (-3.55, -0. Peskind, 2006 20 mg 6 -0.70 (-1.65, 0.	· · · · · · · · · · · · · · · · · · ·	1.9 (1.2, 2.6)		2.0 (1.1, 2.9)	207
Rockwood, 2006 16-24 mg 4 -1.93 (-3.82, -0. Tariot, 2000 24 mg 5 -3.10 (-4.18, -2. Wilcock, 2000 24 mg 6 -2.90 (-4.15, -1. Wilkinson, 2001 24 mg 3 -3.00 (-5.23, -0. Subtotal (I-squared = 65.9%, p = 0.003) -2.13 (-2.82, -1. -3.00 (-5.23, -0. Rivastigmine Ballard, 2008 3-12 mg 6 -4.40 (-5.50, -3. Feldman, 2007 9.6 mg 6 -2.90 (-4.24, -1. Rosler, 1999 6-12 mg 6 Winblad, 2007 12 mg 6 -4.40 (-5.50, -3. -2.28 (-3.64, -0. -2.28 (-3.64, -0. Winblad, 2007 12 mg 6 -4.40 (-5.50, -3. -2.28 (-3.64, -0. -2.28 (-3.64, -0. Winblad, 2007 12 mg 6 -4.40 (-5.50, -3. -2.28 (-3.64, -0. -2.28 (-3.64, -0. -2.28 (-3.64, -0. -2.28 (-3.64, -0. -2.28 (-3.64, -0. -2.28 (-3.64, -0. -2.28 (-3.64, -0. -2.28 (-3.64, -0. -2.43 (-3.67, -1. -2.28 (-3.64, -0. -2.28 (-3.64, -0. -2.43 (-3.67, -1. -2.28 (-3.64, -0. -2.43 (-3.67, -1. -2.09 (-3.55, -0. -2.43 (-3.67, -1. -2.09 (-3.55, -0. -2.00 (-3.55, -0.	.61) 12.29	-1.1 (-1.7, -0.5)		0.6 (-0.3, 1.5)	120
Wilcock, 2000 24 mg 6 -2.90 ($-4.15, -1.$ Wilkinson, 2001 24 mg 3 -3.00 ($-5.23, -0.$ Subtotal (I-squared = 65.9% , p = 0.003) -2.13 ($-2.82, -1.$ -3.00 ($-5.23, -0.$ Rivastigmine Ballard, 2008 $3-12 \text{ mg}$ 6 -4.40 ($-5.50, -3.$ Feldman, 2007 9.6 mg 6 -4.40 ($-5.50, -3.$ Feldman, 2007 9.6 mg 6 -2.90 ($-4.24, -1.60$) Winblad, 2007 12 mg 6 -2.90 ($-4.24, -1.60$) Winblad, 2007 12 mg 6 -1.60 ($-2.70, -0.$ Subtotal (I-squared = 81.9% , p = 0.000) -2.43 ($-3.67, -1$ -2.86 ($-3.64, -0.$ Winblad, 2007 12 mg 6 -0.66 ($-2.81, 1$ Subtotal (I-squared = 81.9% , p = 0.000) -2.43 ($-3.67, -1$ -1.60 ($-2.70, -0$ Vinblad, 2007 12 mg 6 -0.66 ($-2.81, 1$ Dysken, 2014 20 mg 4 -0.66 ($-2.81, 1$ Orgogozo, 2002 20 mg 6 -1.37 ($-2.28, -0$ Peters, 2015# 20 mg 20 mg -0.70 ($-1.65, 0$ <		-1.6 (-2.9, -0.3)	62	0.3 (-1.0, 1.6)	65
Wilkinson, 2001 24 mg 3 -3.00 (-5.23, -0. Subtotal (I-squared = 65.9%, p = 0.003) -2.13 (-2.82, -1. Rivastigmine Ballard, 2008 3.12 mg -4.00 (-2.05, 0.0 Ballard, 2008 3.12 mg -4.40 (-5.50, -3. Feldman, 2007 9.6 mg -4.40 (-5.50, -3. Feldman, 2007 9.6 mg -2.90 (-4.24, -1. Rosler, 1999 6.12 mg -2.90 (-4.24, -1. Subtotal (I-squared = 81.9%, p = 0.000) -2.28 (-3.64, -0. . . . Memantine . Bakchine, 2008 20 mg Bakchine, 2008 20 mg Bakchine, 2008 20 mg Bakchine, 2008 02) 12.37	-1.4 (-2.2, -0.6)	253	1.7 (0.9, 2.5)	255
Subtotal (I-squared = 65.9%, p = 0.003) -2.13 (-2.82, -1. Rivastigmine -1.00 (-2.05, 0.1 Ballard, 2008 3-12 mg 6 -4.40 (-5.50, -3 Corey-Bloom, 1998 6-12 mg 6 -2.90 (-4.24, -1 Rosler, 1999 6-12 mg 6 -2.28 (-3.64, -0 Winblad, 2007 12 mg 6 -2.28 (-3.64, -0 Winblad, 2007 12 mg 6 -1.60 (-2.70, -0 Subtotal (I-squared = 81.9%, p = 0.000) -2.43 (-3.67, -1) Memantine -0.85 (-2.02, 0.1) Bakchine, 2008 20 mg 6 -0.85 (-2.20, 0.1) Choi, 2011¶ 20 mg 4 -0.66 (-2.81, 1.4) Dysken, 2014 20 mg 12 -0.97 (-2.99, 1.4) Orgogozo, 2002 20 mg 6 -1.37 (-2.28, 0.2) Peskind, 2006 20 mg 12 -0.26 (0.02, 0.56) Porsteinsson, 2008 20 mg 6 -0.70 (-1.65, 0.2) Wilcock, 2002 20 mg 6 -0.70 (-1.55, 0.2)	.65) 11.23	-0.5 (-1.2, 0.2)	220	2.4 (1.6, 3.2)	215
Rivastigmine Ballard, 2008 3-12 mg 6 Corey-Bloom, 1998 6-12 mg 6 Feldman, 2007 9.6 mg 6 Foldman, 2007 9.6 mg 6 Winblad, 2007 12 mg 6 Subtotal (I-squared = 81.9%, p = 0.000) Memantine Bakchine, 2008 20 mg 6 Choi, 20111 20 mg 4 Oysken, 2014 20 mg 6 Peskind, 2006 20 mg 6 Peskind, 2006 20 mg 6 Peters, 2015# 20 mg 12 Porsteinsson, 2008 20 mg 6 Orosteinsson, 2008 20 mg 6 Wilcock, 2002 20 mg 6	.77) 6.21	-1.4 (-3.2, 0.4)	55	1.6 (0.2, 3.0)	82
Ballard, 2008 3-12 mg 6 Corey-Bloom, 1998 6-12 mg 6 Feldman, 2007 9.6 mg 6 Rosler, 1999 6-12 mg 6 Winblad, 2007 12 mg 6 Subtotal (I-squared = 81.9%, p = 0.000) · Memantine Bakchine, 2008 20 mg 6 Choi, 2011¶ 20 mg 4 Dysken, 2014 20 mg 12 Orgogozo, 2002 20 mg 6 Peters, 2015# 20 mg 12 Porsteinsson, 2008 20 mg 6 Porsteinsson, 2008 20 mg 6 Porsteinsson, 2008 20 mg 6 · Wilcock, 2002 20 mg 6 · Wilcock, 2002 20 mg 6 · · Wilcock, 2002 20 mg 6 · · · · · · · · · · · · ·	.44)‡ 100.00				
Ballard, 2008 3-12 mg 6 Corey-Bloom, 1998 6-12 mg 6 Feldman, 2007 9.6 mg 6 Rosler, 1999 6-12 mg 6 Winblad, 2007 12 mg 6 Subtotal (I-squared = 81.9%, p = 0.000) · Memantine Bakchine, 2008 20 mg 6 Choi, 2011¶ 20 mg 4 Dysken, 2014 20 mg 12 Orgogozo, 2002 20 mg 6 Peters, 2015# 20 mg 12 Porsteinsson, 2008 20 mg 6 Porsteinsson, 2008 20 mg 6 Porsteinsson, 2008 20 mg 6 -1.60 (-2.05, 0.4 -4.40 (-5.50, -3 -2.28 (-3.64, -0 -2.28 (-3.64, -0 -2.28 (-3.67, -1) -2.28 (-3.64, -0 -2.28 (-3.67, -1) -2.28 (-3.67, -1) -2.20 (-3.55, -0 -0.57 (-2.99, 1.4 -0.66 (-2.81, 1.4 -0.97 (-2.99, 1.4 -0.97 (-2.99, 1.4 -0.97 (-2.99, 1.4 -0.97 (-2.99, 1.4 -0.97 (-2.90, 1.4					
Corey-Bloom, 1998 6-12 mg 6 -4.40 (-5.50, -3 Feldman, 2007 9.6 mg 6 -2.90 (-4.24, -1 Rosler, 1999 6-12 mg 6 -2.28 (-3.64, -0 Winblad, 2007 12 mg 6 -1.60 (-2.70, -0 Subtotal (I-squared = 81.9%, p = 0.000) -2.43 (-3.67, -1. -2.43 (-3.67, -1. Memantine -0.66 (-2.81, 1. -0.97 (-2.99, 1.1) Dysken, 2014 20 mg 12 -0.97 (-2.99, 1.1) Orgogozo, 2002 20 mg 6 -1.37 (-2.28, 0.2) Peskind, 2006 20 mg 6 -1.37 (-2.28, 0.2) Porsteinsson, 2008 20 mg 6 -0.70 (-1.65, 0.2) Wilcock, 2002 20 mg 6 -0.70 (-1.65, 0.2)	05) 20.85	-0.7 (-1.4, 0.0)	360	0.4 (-0.3, 1.1)	338
Feldman, 2007 9.6 mg 6 -2.90 (-4.24, -1. Rosler, 1999 6-12 mg 6 -2.28 (-3.64, -0. Winblad, 2007 12 mg 6 -1.60 (-2.70, -0. Subtotal (I-squared = 81.9%, p = 0.000) -2.43 (-3.67, -1. -2.43 (-3.67, -1. Memantine Bakchine, 2008 20 mg 6 -0.85 (-2.02, 0 Choi, 2011¶ 20 mg 4 -0.66 (-2.81, 1. Dysken, 2014 20 mg 12 -0.97 (-2.99, 1.1) Orgogozo, 2002 20 mg 6 -2.20 (-3.55, -0. Peskind, 2006 20 mg 6 -1.37 (-2.28, 0. Peters, 2015# 20 mg 6 -0.70 (-1.65, 0) Wilcock, 2002 20 mg 6 -0.70 (-1.65, 0)		-0.3 (-1.1, 0.5)	231	4.1 (3.3, 4.9)	234
Winblad, 2007 12 mg 6 -1.60 (-2.70, -0. Subtotal (I-squared = 81.9%, p = 0.000) -2.43 (-3.67, -1. Memantine Bakchine, 2008 20 mg 6 Bakchine, 2008 20 mg 6 -0.85 (-2.20, 0.2. Choi, 2011¶ 20 mg 4 -0.66 (-2.81, 1.4. Dysken, 2014 20 mg 6 -2.00 (-3.55, -0.2.9, 1.4. Orgogozo, 2002 20 mg 6 -1.37 (-2.28, -0.2. Petsrs, 2015# 20 mg 12 -0.26 (0.02, 0.50. Porsteinsson, 2008 20 mg 6 -0.70 (-1.65, 0.2. Wilcock, 2002 20 mg 6 -1.75 (-3.02, -0.50.	.56) 19.05	-0.2 (-1.1, 0.7)	227	2.8 (1.8, 3.8)	220
Subtotal (I-squared = 81.9%, p = 0.000) -2.43 (-3.67, -1. Memantine -2.43 (-3.67, -1. Bakchine, 2008 20 mg 6 Choi, 2011¶ 20 mg 4 Dysken, 2014 20 mg 12 Orgogozo, 2002 20 mg 6 Peters, 2015# 20 mg 12 Porsteinsson, 2008 20 mg 6 Wilcock, 2002 20 mg 6 -0.70 (-1.65, 0. -0.70 (-1.65, 0.	.92) 18.96	-0.8 (-1.8, 0.2)	199	1.5 (0.5, 2.3)	225
Memantine -0.85 (-2.02, 0.1) Bakchine, 2008 20 mg 6 -0.66 (-2.81, 1.4) Dysken, 2014 20 mg 12 -0.97 (-2.99, 1.1) Orgogozo, 2002 20 mg 6 -2.00 (-3.55, -0.7) Peskind, 2006 20 mg 6 -1.37 (-2.28, -0.7) Peters, 2015# 20 mg 6 -0.70 (-1.65, 0.1) Wilcock, 2002 20 mg 6 -0.70 (-1.65, 0.1)	.50) 20.56	-0.6 (-1.4, 0.2)	253	1.0 (0.2, 1.8)	281
Bakchine, 2008 20 mg 6 -0.85 (-2.02, 0.3) Choi, 20111 20 mg 4 -0.66 (-2.81, 1.4) Dysken, 2014 20 mg 12 -0.97 (-2.99, 1.1) Orgogozo, 2002 20 mg 6 -2.200 (-3.55, -0.2) Peskind, 2006 20 mg 6 -1.37 (-2.28, -0.2) Peters, 2015# 20 mg 12 0.26 (0.02, 0.55) Porsteinsson, 2008 20 mg 6 -0.70 (-1.65, 0.3) Wilcock, 2002 20 mg 6 -1.75 (-3.02, -0)	.19)§ 100.00				
Choi, 20111 20 mg 4 -0.66 (-2.81, 1.4) Dysken, 2014 20 mg 12 -0.97 (-2.99, 1.4) Orgogozo, 2002 20 mg 6 -2.00 (-3.55, -0.4) Peskind, 2006 20 mg 6 -1.37 (-2.28, -0.4) Peters, 2015# 20 mg 12 0.26 (0.02, 0.55) Porsteinsson, 2008 20 mg 6 -0.70 (-1.65, 0.2) Wilcock, 2002 20 mg 6 -1.75 (-3.02, -0)					
Dysken, 2014 20 mg 12 -0.97 (-2.99, 1.0) Orgogozo, 2002 20 mg 6 -2.00 (-3.55, -0) Peskind, 2006 20 mg 6 -1.37 (-2.28, -0) Peters, 2015# 20 mg 6 -0.70 (-1.65, 0.0) Porsteinsson, 2008 20 mg 6 -0.70 (-1.65, 0.0) Wilcock, 2002 20 mg 6 -1.75 (-3.02, -0)	32) 13.11	-1.9 (., .)	268	-1.1 (., .)	135
Orgogozo, 2002 20 mg 6 -2.00 (-3.55, -0. Peskind, 2006 20 mg 6 -1.37 (-2.28, -0. Peters, 2015# 20 mg 12 0.26 (0.02, 0.50 Porsteinsson, 2008 20 mg 6 -0.70 (-1.65, 0.2 Wilcock, 2002 20 mg 6 -1.75 (-3.02, -0.	49) 7.63	-0.7 (-2.1, 0.7)	84	-0.0 (-1.7, 1.6)	74
Peskind, 2006 20 mg 6 -1.37 (-2.28, -0. Peters, 2015# 20 mg 12 0.26 (0.02, 0.50) Porsteinsson, 2008 20 mg 6 -0.70 (-1.65, 0.2) Wilcock, 2002 20 mg 6 -1.75 (-3.02, -0)	05) 8.21	3.3 (1.9, 4.7)	116	4.2 (2.8, 5.7)	106
Peters, 2015# 20 mg 12 ● 0.26 (0.02, 0.50 Porsteinsson, 2008 20 mg 6 -0.70 (-1.65, 0.2 Wilcock, 2002 20 mg 6 -1.75 (-3.02, -0.2	.45) 10.63	-0.4 (., .)	147	1.6 (., .)	141
Porsteinsson, 2008 20 mg 6 -0.70 (-1.65, 0) Wilcock, 2002 20 mg 6 -1.75 (-3.02, -0.)	.46) 14.89	-0.9 (-1.7, -0.2)	196	0.4 (-0.3, 1.2)	198
Wilcock, 2002 20 mg 6 -1.75 (-3.02, -0.	0) 18.46	2.0 (1.8, 2.2)	94	1.7 (1.6, 1.9)	96
	25) 14.62	0.6 (-1.0, 2.2)	214	1.2 (-0.3, 2.7)	213
O_{1}		-0.5 (-1.4, 0.3)	266	-2.3 (-3.2, -1.3)	261
Subtotal (I-squared = 78.1%, p = 0.000) -0.93 (-1.70, -0.	.16) 100.00				
NOTE: Weights are from random effects analysis					
I I					
-5.5 0 5.5					

Favors Intervention Favors Control

* For all analyses, we focused on 6- to 12-month outcomes and included only shorter- or longer-term results when 6- or 12-month outcomes were not available.

[†] Pooled mean difference, -2.13 (95% CI: -3.32 to -0.94); k=6; n=1981; I²=64.4%, based on restricted maximum likelihood method with Knapp-Hartung modification

[‡] Pooled mean difference, -2.13 (95% CI: -2.94 to -1.32); k=9; n=3786; I²=65.9%, based on restricted maximum likelihood method with Knapp-Hartung modification

§ Pooled mean difference, -2.43 (95% CI: -4.10 to -0.75); k=5; n=2618; I²=81.9%, based on restricted maximum likelihood method with Knapp-Hartung modification

Pooled mean difference, -0.88 (95% CI: -1.65 to -0.11); k=8; n=2609; I²=78.1%, based on restricted maximum likelihood method with Knapp-Hartung modification

¶ Both intervention and control groups received 5-10 mg/day rivastigmine plus memantine or placebo

Both intervention and control groups received 24 mg/day galantamine plus memantine or placebo

Abbreviations: AChEIs = acetylcholinesterase inhibitors; ADAS-Cog-11 = Alzheimer's disease assessment scale–cognitive subscale (11-items); BG = between-group; BL = baseline; CG = control group; Chg = change; CI = confidence interval; IG = intervention group; KQ = key question; MD = mean difference; mg = milligrams; n = sample size

Figure 10. Pooled Analysis of Change in Global Cognitive Function (Measured by MMSE) (KQ 4), AchEls, and Memantine Compared With Placebo, by Medication Type

Study	Total dose/day	Followup, months*		BG MD in Change (95% CI)	% Weight	IG Mean Chg (95% CI) from BL	ig n	CG Mean Chg (95% CI) from BL	C n
Donepezil									
Black, 2003	10 mg	6	-	1.10 (0.50, 1.70)	11.33	1.5 (1.1, 1.9)	195	0.4 (-0.1, 0.8)	19
Doody, 2009	5-10 mg	11	+	0.10 (-0.34, 0.54)	12.63	0.1 (-0.1, 0.3)	379	0.0 (-0.4, 0.4)	3
Feldman, 2001	10 mg	6		1.79 (0.85, 2.73)	8.52	1.3 (0.7, 2.0)	131	-0.4 (-1.1, 0.2)	1
Holmes, 2004	10 mg	6	→	1.70 (0.17, 3.23)	5.07	-0.1 (-1.3, 1.1)	41	-1.8 (-2.8, -0.8)	5
lkeda, 2015	10 mg	3		1.60 (0.35, 2.85)	6.48	2.2 (1.4, 3.0)	49	0.6 (-0.4, 1.6)	4
Mazza, 2006	5 mg	6	_	1.20 (-1.20, 3.60)	2.60	1.2 (-3.6, 1.2)	25	-0.3 (-2.2, 2.7)	2
Mori, 2012	10 mg	3		2.40 (0.90, 3.90)	5.21	2.0 (0.9, 3.1)	36	-0.4 (-1.4, 0.6)	3
Petersen, 2005	10 mg	36	-↓←	0.44 (-0.37, 1.25)	9.56	-2.3 (-2.9, -1.7)	161	-2.8 (-3.3, -2.2)	1
Rogers, 1998	10 mg	3	-	1.30 (0.64, 1.96)	10.80	1.3 (0.8, 1.8)	156	0.0 (-0.5, 0.5)	1
Seltzer, 2004	10 mg	6		1.80 (0.72, 2.88)	7.51	1.3 (0.6, 2.0)	91	0.1 (-0.7, 0.9)	5
Wilkinson, 2003	10 mg	6	-	1.15 (0.50, 1.80)	10.88	1.4 (0.9, 1.8)	203	0.2 (-0.2, 0.7)	1
Winblad, 2001	10 mg	12		1.70 (0.87, 2.53)	9.42	-0.5 (-1.2, 0.2)	135	-2.2 (-2.7, -1.7)	1
Subtotal (I-square	d = 65.3%,	p = 0.001)	\diamond	1.24 (0.81, 1.67)	100.00				
Galantamine									
Hager, 2014	24 mg	12	+	0.58 (0.26, 0.90)	100.00	-0.5 (-0.7, -0.3)	874	-1.1 (-1.3, -0.9)	8
Subtotal (I-square	d = .%, p =	.)	◇	0.58 (0.26, 0.90)	100.00				
Rivastigmine									
Agid, 1998	6 mg	3	+ -	0.30 (-0.46, 1.06)	18.03	0.3 (-0.3, 0.9)	103	0.0 (-0.5, 0.5)	1
Ballard, 2008	3-12 mg	6	++-	0.60 (-0.22, 1.42)	16.50	0.4 (-0.3, 1.1)	360	-0.2 (-0.6, 0.2)	3
Feldman, 2007	9.6 mg	6		1.70 (1.06, 2.34)	21.56	0.3 (-0.1, 0.7)	277	-1.4 (-1.9, -0.9)	2
Mok, 2007	6 mg	6	•	 0.70 (-2.98, 4.38) 	1.37	0.6 (-1.7, 2.9)	20	-0.1 (-3.0, 2.8)	1
Rosler, 1999	6-12 mg	6		0.88 (0.14, 1.62)	18.70	0.3 (-0.3, 0.9)	199	-0.5 (-1.0, -0.0)	2
Winblad, 2007	12 mg	6		0.80 (0.23, 1.37)	23.84	0.8 (0.4, 1.2)	256	0.0 (-0.4, 0.4)	2
Subtotal (I-square	d = 44.9%,	p = 0.106)	♦	0.88 (0.45, 1.32)†	100.00				
Memantine									
Choi, 2011§	20 mg	4	-+	-0.40 (-1.29, 0.49)		-0.3 (-0.9, 0.3)	84	0.1 (-0.5, 0.7)	7
Dysken, 2014	20 mg	12	-+-	0.29 (-0.68, 1.26)	16.76	-1.1 (-1.8, -0.4)	115	-1.4 (-2.1, -0.7)	1
Orgogozo, 2002	20 mg	6	→	1.23 (0.23, 2.23)	15.83	1.8 (1.1, 2.4)	105	0.5 (-0.2, 1.3)	1
Porsteinsson, 2008	3 20 mg	6	+	0.50 (-0.10, 1.10)	30.14	-0.2 (-0.8, 0.4)	210	-0.6 (-1.2, 0.0)	1
Wilkinson, 2012	20 mg	12	- + -	0.24 (-0.66, 1.14)		-0.4 (-1.4, 0.5)	103	-0.7 (-1.7, 0.2)	1
Subtotal (I-square	d = 33.2%,	p = 0.200)	\diamond	0.36 (-0.10, 0.83) [‡]	100.00				
NOTE: Weights are	e from rando	om effects analysis							
		1		1					_

* For all analyses, we focused on 6- to 12-month outcomes and included only shorter- or longer-term results when 6- or 12-month outcomes were not available.

[†] Pooled mean difference, 0.88 (95% CI: 0.28 to 1.49); k=6; n=2415; I²=44.9%, based on restricted maximum likelihood method with Knapp-Hartung modification

¹ Pooled mean difference, 0.36 (95% CI: -0.31 to 1.04); k=5; n=1217; I²=33.2%, based on restricted maximum likelihood method with Knapp-Hartung modification

§ Both intervention and control groups received 5-10 mg/day rivastigmine plus memantine or placebo

Abbreviations: AChEIs = acetylcholinesterase inhibitors; BG = between-group; BL = baseline; CG = control group; Chg = change; CI = confidence interval; Intv = Intervention; IG = intervention group; KQ = key question; MD = mean difference; mg = milligrams; MMSE = mini-mental state examination; n = sample size

Figure 11. Pooled Analysis of Risk of Improvement or Maintenance in Global Function (KQ 4), AChEls and Memantine Compared With Placebo, by Medication Type

Study	Total dose/day	Followup, months*		RR (95% CI)	% Weight	Events/N, IG	Events/N, CG
Donepezil							
Black, 2003	10 mg	6	+	1.04 (0.91, 1.18)	15.25	140/195	134/194
Burns, 1999	10 mg	6	+	1.29 (1.11, 1.50)	14.65	172/273	134/274
Feldman, 2001	10 mg	6	-	1.50 (1.20, 1.89)	12.37	88/140	61/146
Mori, 2012	10 mg	3	→	1.93 (1.34, 2.78)	8.72	27/28	15/30
Rogers, 1998	10 mg	3	→	2.12 (1.43, 3.15)	8.00	58/152	27/150
Salloway, 2004	10 mg	6	+	1.00 (0.88, 1.12)	15.46	75/89	93/110
Wilkinson, 2003	10 mg	6	++-	1.29 (0.94, 1.77)	9.87	65/202	47/188
Winblad, 2001	10 mg	12	→	2.74 (1.02, 7.39)	2.12	13/93	5/98
Rogers, 1996	5 mg	3	+	1.12 (0.93, 1.35)	13.57	34/38	32/40
Subtotal (I-squared	= 77.4%, p	= 0.000)	\diamond	1.31 (1.12, 1.53)†	100.00		
Galantamine							
Auchus, 2007	16-24 mg	6	•	1.03 (0.94, 1.12)	17.82	274/363	273/371
Brodaty, 2005	16-24 mg	6	♦	1.19 (1.07, 1.33)	15.60	191/240	173/259
Erkinjuntti, 2002	24 mg	6	+	1.25 (1.08, 1.45)	12.17	213/288	95/161
Raskind,2000	24 mg	6	+	1.29 (1.11, 1.50)	11.82	136/186	111/196
Tariot, 2000	24 mg	5	+	1.31 (1.12, 1.52)	11.52	162/253	128/261
Wilcock, 2000	24 mg	6	+	1.24 (1.04, 1.48)	10.05	127/206	101/203
Wilkinson, 2001	24 mg	3	 ←	1.21 (1.00, 1.46)	9.16	44/53	57/83
Rockwood, 2001	24-32 mg	3	+	1.29 (1.11, 1.50)	11.86	194/240	77/123
Subtotal (I-squared	= 56.2%, p	= 0.025)	0	1.21 (1.12, 1.30)‡	100.00		
Rivastigmine							
Winblad, 2007	12 mg	6	+	1.22 (1.09, 1.38)	31.35	188/253	169/278
Agid, 1998	6 mg	3	⊢ ←	1.43 (1.00, 2.04)	17.30	44/103	35/117
Corey-Bloom, 1998	6-12 mg	6	⊢ •−	1.49 (0.97, 2.30)	13.96	35/145	31/192
Rosler, 1999	6-12 mg	6	→	2.02 (1.47, 2.77)	19.44	78/193	44/220
Feldman, 2007	9.6 mg	6	→	1.62 (1.15, 2.29)	17.95	67/220	40/213
Subtotal (I-squared	= 61.4%, p	= 0.035)	\diamond	1.50 (1.22, 1.85)§	100.00		
Memantine							
Orgogozo, 2002	20 mg	6	↓	1.14 (0.93, 1.40)	40.73	88/147	74/141
Saxton, 2012	20 mg	3	+	1.16 (0.98, 1.37)	59.27	97/133	78/124
Subtotal (I-squared	= 0.0%, p =	0.904)	Þ	1.15 (1.01, 1.31)	100.00		
NOTE: Weights are	from randon	n effects analysis					
<u> </u>		I	- <u> </u>				
		.5	1 2				

* For all analyses, we focused on 6- to 12-month outcomes and included only shorter- or longer-term results when 6- or 12month outcomes were not available.

 \dagger Pooled mean difference, 1.33 (95% CI: 1.07 to 1.66); k=9; n=2440; I²=77.4%, based on restricted maximum likelihood method with Knapp-Hartung modification

¹ Pooled mean difference, 1.21 (95% CI: 1.11 to 1.31); k=8; n=3486; I²=56.2%, based on restricted maximum likelihood method with Knapp-Hartung modification

§ Pooled mean difference, 1.49 (95% CI: 1.13 to 1.98); k=5; n=1934; I²=61.4%, based on restricted maximum likelihood method with Knapp-Hartung modification

| Pooled mean difference, 1.15 (95% CI: 0.49 to 2.69); k=2; n=545; I²=0.0%, based on restricted maximum likelihood method with Knapp-Hartung modification

Abbreviations: AChEIs = acetylcholinesterase inhibitors; CG = control group; CI = confidence interval; IG = intervention group; KQ = key question; RR = risk ratio; mg = milligrams; N = sample size

Figure 12. Pooled Analysis of Change in Global Function (Standardized Mean Difference) (KQ 4), AChEls and Memantine Compared With Placebo, by Medication Type

Study	Total dose/day	Followup, months [*]	Instrument	Hedge's SMD (95%	6 CI)	% Weight	IG, n	CG n
Donepezil								
Black, 2003	10 mg	6	CDR-SB	-0.22 (-0.4	2, -0.02)	12.60	195	194
Petersen, 2005	10 mg	36	CDR-SB	-0.02 (-0.2	3, 0.19)	12.23	161	193
Wilkinson, 2003	10 mg	6	CDR-SB	-0.21 (-0.4	1, -0.01)	12.62	203	18
Burns, 1999	10 mg	6	CIBIC+	-0.36 (-0.5	3, -0.19)	13.77	273	27
Doody, 2009	5-10 mg	11	CIBIC+	0.00 (-0.14		14.77	379	37
Feldman, 2001	10 mg	6	CIBIC+	-0.49 (-0.7	3, -0.26)	11.27	140	14
Rogers, 1998	10 mg	3	CIBIC+	-0.43 (-0.6	6, -0.20)	11.53	152	15
Winblad, 2001	10 mg	12	GDS	-0.25 (-0.4	8, -0.01)	11.22	136	14
Subtotal (I-squared	= 70.7%, p	= 0.001)		-0.24 (-0.3	57, -0.11) [†]	100.00		
Galantamine								
Rockwood, 2006	16-24 mg	4	CIBIC+	-0.46 (-0.8	1, -0.10)	100.00	61	65
Subtotal (I-squared	= .%, p = .)			-0.46 (-0.8	1, -0.10)	100.00		
Rivastigmine								
Mok, 2007	6 mg	6	CDR-SB	0.06 (-0.5	7, 0.68)	7.72	20	19
Ballard, 2008	3-12 mg	6	CIBIC+	-0.08 (-0.2	3, 0.08)	19.06	329	32
Feldman, 2007	9.6 mg	6	CIBIC+	-0.46 (-0.6	5, -0.27)	18.17	222	21
Rosler, 1999	6-12 mg	6	CIBIC+	-0.29 (-0.4	9, -0.10)	18.05	193	22
Winblad, 2007	12 mg	6	CIBIC+	-0.23 (-0.4	0, -0.06)	18.65	253	27
Corey-Bloom, 1998	6-12 mg	6	GDS	0.27 (0.09	, 0.45)	18.35	231	23
Subtotal (I-squared	= 85.7%, p	= 0.000)		-0.14 (-0.3	6, 0.08)‡	100.00		
Memantine								
Choi, 2011 ^{II}	20 mg	4	CDR-SB	0.07 (-0.25	5, 0.38)	13.73	84	74
Peters, 2015 [¶]	20 mg	12	CDR-SB	-0.12 (-0.4	0, 0.17)	15.82	94	96
Orgogozo, 2002	20 mg	6	CIBIC+	-0.20 (-0.4	6, 0.06)	18.02	114	11
Peskind, 2006	20 mg	6	CIBIC+	-0.32 (-0.5	1, -0.12)	25.50	195	19
Porsteinsson, 2008	20 mg	6	CIBIC+	-0.04 (-0.2	3, 0.15)	26.93	214	21
Subtotal (I-squared		= 0.202)		-0.14 (-0.2				
NOTE: Weights are t	from randon	n effects ana	alysis					

* For all analyses, we focused on 6- to 12-month outcomes and included only shorter- or longer-term results when 6- or 12-month outcomes were not available.

[†] Pooled mean difference, -0.24 (95% CI: -0.39 to -0.09); k=8; n=3302; I²=70.7%, based on restricted maximum likelihood method with Knapp-Hartung modification

[‡] Pooled mean difference, -0.14 (95% CI: -0.43 to 0.15); k=6; n=2535; I²=85.7%, based on restricted maximum likelihood method with Knapp-Hartung modification

§ Pooled mean difference, -0.14 (95% CI: -0.33 to 0.05); k=5; n=1396; I²=32.9%, based on restricted maximum likelihood method with Knapp-Hartung modification which resulted to no statistical significance

Both intervention and control groups received 5-10 mg/day rivastigmine plus memantine or placebo

¶ Both intervention and control groups received 24 mg/day galantamine plus memantine or placebo

Abbreviations: AChEIs = acetylcholinesterase inhibitors; BL = baseline; CG = control group; CDR-SB = Clinical Dementia Rating Scale Sum of Boxes; CI = confidence interval; CIBIC+ = Clinician's Interview-Based Impression of Change with caregiver's input; GDS = Global Deterioration Scale; IG = intervention group; KQ = key question; SMD = standardized mean difference; mg = milligrams; n = sample size

Figure 13. Pooled Analysis of Risk of Serious Adverse Events (KQ 5), AChEIs and Memantine Compared With Placebo, by Medication Type

Study	Total dose/day	Followup, months*		RR (95% CI)	% Weight	Events/N, IG	Events/I CG
Donepezil							
Black, 2003	10 mg	6	.	1.45 (0.95, 2.20)	17.15	45/206	30/199
Burns, 1999	10 mg	6		0.96 (0.56, 1.64)	10.54	24/273	25/274
Doody, 2009	5-10 mg	11	_ _	1.16 (0.78, 1.72)	19.55	48/391	41/387
Feldman, 2001	10 mg	6	_ _	1.07 (0.59, 1.95)	8.30	19/144	18/146
keda, 2015	10 ma	3 ←	_	0.31 (0.03, 2.90)	0.61	1/49	3/46
Mohs, 2001	10 mg	12	· .	1.39 (0.79, 2.43)	9.58	26/214	19/217
Mori, 2012	10 mg	3	*	1.84 (0.36, 9.40)	1.13	4/37	2/34
Rogers, 1998	10 mg	3		0.83 (0.29, 2.41)	2.64	6/158	7/153
Salloway, 2004	10 mg	6	`	0.86 (0.27, 2.75)	2.23	5/133	6/137
Seltzer, 2004	10 mg	6		0.99 (0.25, 3.99)	1.55	5/96	3/57
Wilkinson, 2003	10 mg	6		0.87 (0.55, 1.37)	14.60	31/215	32/193
Winblad, 2001	10 mg	12		1.77 (1.08, 2.92)	12.13	35/142	20/144
Subtotal (I-squared =				1.18 (0.99, 1.40)	100.00	33/142	20/144
	0.070, p = 0.0	,50)	r r	1.10 (0.33, 1.40)	100.00		
Galantamine							
Auchus, 2007	16-24 mg	6	+	1.09 (0.82, 1.46)	28.59	80/396	72/390
Brodaty, 2005	16-24 mg	6	+	0.98 (0.20, 4.83)	0.92	3/326	3/320
Hager, 2014	24 mg	24	+	1.05 (0.83, 1.32)	43.72	129/1024	123/102
Rockwood, 2001	24-32 mg	3	+	1.26 (0.57, 2.76)	3.79	21/261	8/125
Rockwood, 2006	16-24 mg	4	—•+	0.52 (0.19, 1.43)	2.26	5/64	10/66
Tariot, 2000	24 mg	5	_ + -	1.18 (0.75, 1.86)	11.35	35/273	31/286
Wilcock, 2000	24 mg	6		1.05 (0.64, 1.73)	9.37	28/220	26/215
Subtotal (I-squared =	0.0%, p = 0.8	379)	Ŷ	1.06 (0.91, 1.24)†	100.00		
Rivastigmine							
Agid, 1998	6 mg	3	↓	4.00 (0.87, 18.49)	2.03	8/133	2/133
Ballard, 2008	3-12 mg	6	·	1.37 (0.93, 2.02)	26.71	55/363	38/344
Feldman, 2007	9.6 mg	6		1.19 (0.78, 1.81)	23.01	40/227	33/222
McKeith, 2000	12 mg	5	_	1.29 (0.55, 3.05)	6.28	10/59	8/61
Rosler, 1999	6-12 mg	6		1.01 (0.69, 1.48)	27.40	44/242	43/239
Winblad, 2007	12 mg	6	_	0.80 (0.46, 1.38)	14.57	21/294	27/302
Subtotal (I-squared =	_	-	ĬQ.	1.15 (0.92, 1.43)‡	100.00	-	
Memantine							
Choi, 2011§	20 mg	4		0.94 (0.24, 3.65)	0.97	4/88	4/83
Dysken, 2014	20 mg	4 48		0.94 (0.24, 3.65)	49.33	4/88 84/155	4/83 95/152
Herrmann, 2013	20 mg	48 6	1		49.33 3.42	18/182	95/152
	-	6		1.68 (0.82, 3.46)	3.42 11.94	38/165	40/156
Orgogozo, 2002	20 mg			0.90 (0.61, 1.32)			
Peskind, 2006	20 mg	6		1.00 (0.56, 1.81)	5.15	20/201	20/202
Peters, 2015	20 mg	12		1.02 (0.52, 1.98)	4.01	15/112	15/114
Porsteinsson, 2008	20 mg	6	, -	0.90 (0.55, 1.45)	7.58	27/217	30/216
Saxton, 2012	20 mg	3		0.29 (0.10, 0.88)	1.49	4/135	13/129
Wilcock, 2002	20 mg	6	-+1	0.76 (0.51, 1.13)	11.20	37/295	47/284
Wilkinson, 2012	20 mg	12		0.92 (0.50, 1.68)	4.91	17/133	20/144
Subtotal (I-squared =			٩	0.88 (0.77, 1.01)	100.00		
NOTE: Weights are fr	om random ef	ffects analysis					

* Followup was at the end of trial.

[†] Pooled mean difference, 1.06 (95% CI: 0.88 to 1.29); k=7; n=4987; I²=0.0%, based on restricted maximum likelihood method with Knapp-Hartung modification

[‡] Pooled mean difference, 1.15 (95% CI: 0.87 to 1.52); k=6; n=2619; 1²=10.4%, based on restricted maximum likelihood method with Knapp-Hartung modification

§ Both intervention and control groups received 5-10 mg/day rivastigmine plus memantine or placebo

Both intervention and control groups received 24 mg/day galantamine plus memantine or placebo

Abbreviations: AChEIs = acetylcholinesterase inhibitors; CG = control group; CI = confidence interval; IG = intervention group; Intv = intervention; KQ = key question; RR = risk ratio; mg = milligrams; N = sample size

Figure 14. Pooled Analysis of Risk of Withdrawals Due to Adverse Events (KQ 5), AChEls and Memantine Compared With Placebo, by Medication Type

itudy	Total dose/day	Followup, months*			RR (95% CI)	% Weight	Events/N, IG	Events/N, CG
Donepezil								
Black, 2003	10 mg	6			1.98 (1.23, 3.17)	14.78	45/206	22/199
Burns, 1999	10 mg	6			1.86 (1.20, 2.88)	16.73	50/273	27/274
Doody, 2009	5-10 mg	11		l <u>→</u>	2.23 (1.50, 3.30)	19.87	72/391	32/387
Feldman, 2001	10 mg	6	_		1.35 (0.59, 3.11)	5.34	12/144	9/148
keda, 2015	10 mg	3 -		<u> </u>	0.38 (0.08, 1.84)	1.54	2/49	5/46
Mohs, 2001	10 mg	12	•		1.69 (0.85, 3.37)	7.57	20/214	12/217
Mori. 2012	10 mg	3			0.69 (0.17, 2.86)	1.91	3/37	4/34
Rogers, 1996	5 mg	3				1.91	3/3/	2/40
	-	-			1.54 (0.27, 8.71)			
Rogers, 1998	10 mg	3			5.16 (1.54, 17.37)	2.60	16/158	3/153
Salloway, 2004	10 mg	6			2.99 (1.52, 5.88)	7.82	29/133	10/137
Seltzer, 2004	10 mg	6	-		1.78 (0.68, 4.64)	4.10	15/96	5/57
Wilkinson, 2003	10 mg	6		→	1.85 (1.07, 3.19)	11.51	35/215	17/193
Winblad, 2001	10 mg	12	_	♦	1.13 (0.47, 2.69)	4.92	10/142	9/144
Subtotal (I-squared = 8	.8%, p = 0.358)			◇	1.88 (1.54, 2.29)	100.00		
Galantamine								
Auchus, 2007	16-24 mg	6			1.97 (1.27, 3.06)	13.37	54/396	27/390
Brodaty, 2005	16-24 mg	6		L ·	1.57 (0.84, 2.94)	9.63	24/326	15/320
Erkiniuntti, 2002	24 mg	6			2.41 (1.45, 4.02)	11.84	78/396	16/196
Hager, 2014	24 mg 24 mg	24			1.31 (0.97, 1.79)	16.60	87/1024	66/1021
•	-							
Raskind,2000	24 mg	6			3.08 (1.81, 5.23)	11.40	49/212	16/213
Rockwood, 2001	24-32 mg	3			6.32 (2.61, 15.30)	6.22	66/261	5/125
Rockwood, 2006	16-24 mg	4	_	•	2.58 (0.52, 12.81)	2.36	5/64	2/66
Tariot, 2000	24 mg	5		+ ◆−	1.41 (0.81, 2.46)	10.95	27/273	20/286
Wilcock, 2000	24 mg	6		⊢ ←	1.59 (0.93, 2.73)	11.24	31/220	19/215
Wilkinson, 2001	24 mg	3		→	1.94 (0.82, 4.62)	6.39	10/56	8/87
Subtotal (I-squared = 5	1.1%, p = 0.031)		\diamond	1.98 (1.52, 2.57)	100.00		
Rivastigmine								
Agid, 1998	6 mg	3			3.20 (1.21, 8.48)	8.66	16/133	5/133
Ballard, 2008	3-12 mg	6		⊥	2.44 (1.47, 4.05)	16.02	49/365	19/345
Corey-Bloom, 1998	6-12 mg	6			3.95 (2.39, 6.52)	16.17	66/231	17/235
Feldman, 2007	-	6				14.93	24/227	20/222
	9.6 mg	-	_		1.17 (0.67, 2.06)			
McKeith, 2000	12 mg	5			1.03 (0.39, 2.77)	8.55	7/59	7/61
Mok, 2007	6 mg	6	_		2.00 (0.58, 6.91)	6.23	6/20	3/20
Rosler, 1999	6-12 mg	6			3.39 (2.00, 5.75)	15.65	55/242	16/239
Winblad, 2007	12 mg	6		+	1.63 (0.87, 3.04)	13.79	24/297	15/302
Subtotal (I-squared = 5	7.0%, p = 0.023))		\diamond	2.21 (1.54, 3.17)†	100.00		
Memantine								
Bakchine, 2008	20 mg	6		→	2.23 (0.94, 5.27)	8.46	28/318	6/152
Choi, 2011§	20 mg	4		.	1.41 (0.41, 4.84)	4.15	6/88	4/83
Herrmann, 2013	20 mg	6	-		1.71 (0.77, 3.81)	9.76	15/182	9/187
Orgogozo, 2002	20 mg	6			0.90 (0.50, 1.62)	18.08	19/165	20/156
Peskind, 2008	20 mg	6	_	1	1.91 (0.91, 4.00)	11.42	19/201	10/202
		-	-					
Porsteinsson, 2008	20 mg	6			0.76 (0.38, 1.53)	12.89	13/217	17/216
Saxton, 2012	20 mg	3			0.71 (0.16, 3.12)	2.87	3/136	4/129
Wilcock, 2002	20 mg	6	-	1	1.30 (0.75, 2.26)	20.34	27/295	20/284
Wilkinson, 2012	20 mg	12	-	! ◆──	1.35 (0.66, 2.78)	12.03	15/133	12/144
Subtotal (I-squared = 0	.0%, p = 0.494)			Þ	1.26 (0.98, 1.62)‡	100.00		
NOTE: Weights are from	n random effects	analysis						

* Followup was at the end of trial.

[†] Pooled mean difference, 2.21 (95% CI: 1.43 to 3.42); k=8; n=3131; I²=57.0% based on restricted maximum likelihood method with Knapp-Hartung modification

[‡] Pooled mean difference, 1.26 (95% CI: 0.94 to 1.70); k=9; n=3288; I²=0.0%, based on restricted maximum likelihood method with Knapp-Hartung modification

§ Both intervention and control groups received 5-10 mg/day rivastigmine plus memantine or placebo

Abbreviations: AChEIs = acetylcholinesterase inhibitors; CG = control group; CI = confidence interval; IG = intervention group; Intv = intervention; KQ = key question; RR = risk ratio; rg = milligrams; N = sample size

Figure 15. Pooled Analysis of Change in Global Cognitive Function (Measured by MMSE) (KQ4), Patient-Level Nonpharmalogic Interventions Compared With Controls, by Intervention Type

Buschert 2011 Dem Sham 26.4 6 Cavalio, 2016 Dem Sham 22.9 6 Cavalio, 2016 Dem WL 20.9 12 Cove, 2014 Dem WL 20.9 12 Cove, 2014 Dem WL 22.6 3 Jelcic, 2012 Dem Sham 24.7 3 Kurz, 2012 Dem UC 25.1 9 Orrell, 2017 Dem UC 25.1 9 Orrell, 2017 Dem UC 25.1 9 Orrell, 2017 Dem UC 21.2 6 Creating, 2016 MCI WL 22.9 12 Buschert, 2011 MCI Sham 26.4 6 Greenaway, 2012 MCI None 26.8 6 Jenditic, 2011 MCI WL 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) Exercise Hoffmann, 2016 Dem UC 23.9 4 Holfmann, 2016 Dem UC 23.9 4 Holfmann, 2016 Dem UC 23.9 4 Holfmann, 2017 MCI UC 26.4 12 Tsolaki, 2011 MCI WL 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) Exercise Hoffmann, 2016 Dem UC 23.9 4 Holfmann, 2017 MCI UC 25.0 4 Holfmann, 2017 MCI UC 25.0 4 Holfmann, 2016 Dem UC 23.9 4 Holfmann, 2017 MCI UC 25.0 4 Holfmann, 2017 MCI UC 25.0 4 Holfmann, 2016 Dem UC 23.9 4 Holfmann, 2017 MCI UC 25.0 4 Holfmann, 2017 MCI UC 25.0 4 Holfmann, 2016 Dem UC 23.9 4 Holfmann, 2017 MCI MCI 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) Exercise Holfmann, 2016 Dem UC 23.9 4 Holfmann, 2017 MCI MCI 25.0 4 Laarou, 2017 MCI AC 25.0 4 Laarou, 2017 MCI AC 25.0 4 Laarou, 2017 MCI MCI 25.0 4 Laarou, 2017 M	(-2.5, 0.7) (-1.1, 0.3) (-4.2, -0.1) (-2.1, 0.5)	-3.6 (-4.9, -2. -0.9 (-2.5, 0.7 -0.4 (-1.1, 0.3										
Buschert 2011 Dem Sham 26.4 6 Cavallo, 2016 Dem Sham 22.9 6 Cavallo, 2016 Dem WL 20.9 12 Cove, 2014 Dem WL 20.9 12 Cove, 2014 Dem WL 22.6 3 Jelcic, 2012 Dem Sham 24.7 3 Neurz, 2012 Dem UC 25.1 9 Orrell, 2017 Dem UC 25.1 9 Orrell, 2017 Dem UC 25.1 9 Orrell, 2017 Dem UC 21.2 6 Greenaway, 2012 MCI None 26.8 6 Cavallo, 2016 MCI WL 25.7 9 Pantoni, 2017 MCI WL 25.7 9 Pantoni, 2017 MCI WL 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) Exercise Hoffman, 2016 Dem UC 23.9 4 Hothorf, 2015 Dem WL 22.0 6 Publich, 2011 MCI WL 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) Exercise Hoffman, 2016 Dem UC 23.9 4 Hothorf, 2015 Dem WL 22.0 6 Subtotal (I-squared = 91.1%, p = 0.000) Exercise Hoffman, 2016 MCI WL 25.7 9 Pantoni, 2017 MCI WL 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) Exercise Hothorf, 2015 Dem WL 22.0 6 Functional MCI WL 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) Exercise Hothorf, 2015 Dem WL 22.0 6 Subtotal (I-squared = 91.1%, p = 0.000) Exercise Hothorf, 2015 Dem WL 22.0 6 Subtotal (I-squared = 81.3%, p = 0.000) Hothorf, 2015 Dem WL 22.0 4 Subtotal (I-squared = 81.3%, p = 0.000) Hothorf, 2015 Dem WL 23.0 5 Multicomponent/other Burgener, 2008 Dem WL 23.0 5 Marshall, 2015 Dem WL 23.0 5 Marshall, 2015 Dem WL 23.0 5 Marshall, 2015 Dem WL 23.0 5 Multicomponent/other Burgener, 2008 Dem WL 23.0 5 Marshall, 2015 Dem WL 23.0 5 Marshall, 2015 Dem WL 23.0 5 Multicomponent/other Burgener, 2008 Dem WL 23.0 5 Multicomponent/other Burgener, 2008 Dem WL 23.0 5 Marshall, 2015 Dem WL 23.0 5 Marshall,	(-2.5, 0.7) (-1.1, 0.3) (-4.2, -0.1) (-2.1, 0.5)	-0.9 (-2.5, 0.7										Cog training
Cavallo, 2016 Dem Sham 22.9 6 Chapman, 2004 Dem WL 20.9 12 Cove, 2014 Dem WL 20.6 3 Jelck, 2012 Dem Sham 24.7 3 Jelck, 2012 Dem UC 25.1 9 Orrell, 2017 Dem UC 25.1 9 Orrell, 2017 Dem UC 21.2 6 Buschert, 2011 MCI Sham 26.4 6 Greenaway, 2012 MCI None 26.8 6 Jelok, 2011 MCI WL 25.7 9 Pantoni, 2017 MCI UC 26.4 12 Formal, 2017 MCI WL 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) Toig 2017 MCI WL 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) Toig 2017 MCI AC 25.9 9 Hoffmann, 2016 Dem WL 22.0 4 Hoffmann, 2016 Dem WL 22.0 4 Hoffmann, 2017 MCI MCI 25.0 4 Subtotal (I-squared = 91.1%, p = 0.000) Lazarou, 2017 MCI MCI 25.0 4 Subtotal (I-squared = 81.3%, p = 0.000) Jaik 2018 MCI UC 25.0 5 Marshall, 2015 Dem WL 23.0 5 Marshall, 2015 Dem WL 23.0 5 Marshall, 2019 Dem WL 2	(-1.1, 0.3) (-4.2, -0.1) (-2.1, 0.5)			2.8 (1.5, 4.0) 16	6.20	6.32 (4.51, 8.13)		12	21.1	Sham	Dem	Bergamaschi, 2013
Chapman, 2004 Dem WL 20.9 12 Cove, 2014 Dem WL 22.6 3 Jelic, 2012 Dem Sham 24.7 3 Julic, 2012 Dem UC 25.1 9 Orrell, 2014 Dem UC 17.8 6 Orrell, 2017 Dem UC 25.1 9 Orrell, 2017 Dem UC 25.1 9 Orrell, 2017 Dem UC 21.2 6 Buschert, 2011 MCI Sham 26.4 6 Greenaway, 2012 MCI None 26.8 6 Greenaway, 2012 MCI WL 25.7 9 Pantoni, 2017 MCI WL 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) Exercise Hoffmann, 2016 Dem UC 23.9 4 Hothoff, 2015 Dem BI 22.0 6 Pitkial, 2017 MCI None 27.2 10 Stubtotal (I-squared = 91.1%, p = 0.000) Exercise Hoffmann, 2017 MCI MI 245 5 Subtotal (I-squared = 81.3%, p = 0.000) Subtotal (I-squared = 81.3%, p = 0.000) Multicomponent/other Burgener, 2008 Dem WL 23.0 5 Marshall, 2015 Dem WL 23.0 15 Multicomponent/other Burgener, 2008 Dem WL 23.0 5 Marshall, 2015 Dem WL 23.0 15 Multicomponent/other Burgener, 2008 Dem WL 23.0 5 Marshall, 2015 Dem WL 23.0 15 Multicomponent/other Burgener, 2008 Dem WL 23.0 5 Marshall, 2009 Dem UC 23.3 12 Multicomponent/Other Burgener, 2008 Dem WL 23.0 5 Marshall, 2009 Dem UC 23.3 12 Multicomponent/Other Burgener, 2008 Dem WL 23.0 5 Marshall, 2005 Dem WL 23.0 15 Multicomponent/Other Burgener, 2008 Dem WL 23.0 15 Multicomponent/Other Burgener, 2008 Dem WL 23.0 15 Multicomponent/Other Burgener, 2008 Dem WL 23.0 12 Multicomponent/Other Burgener, 2008 Dem WL 23.0 15 Marshall, 2015 Dem WL 23.0 12 Multicomponent/Other Burgener, 2008 Dem WL 23.0 15 Marshall, 2015 Dem WL 23.0 15 Marshall, 2015 Dem WL 23.0 15 Marshall, 2015 Dem WL 23.0 12 Multicomponent/Other Burgener, 2008 Dem WL 23.0 15 Marshall, 2015 Dem WL 23.0 15 Marshall, 2015 Dem WL 23.0 15 Multicomponent/Other Burgener, 2008 Dem WL 23.0 15 Multicomponent/Other Burgener, 2008 Dem WL 23.0 15 Multicomponent/Dem ML 23.0 5 Marshall, 2015 Dem WL 23.0 12 Mu	(-4.2, -0.1) (-2.1, 0.5)	-0.4 (-1.1, 0.3	В	0.5 (-1.1, 2.1) 8	5.62	1.40 (-0.85, 3.65)	_++	6	26.4	Sham	Dem	Buschert, 2011
Cove, 2014 Dem WL 22.6 3 Jelcic, 2012 Dem Sham 24.7 3 Julcic, 2012 Dem UC 25.1 9 Orrell, 2014 Dem UC 17.8 6 Orrell, 2017 Dem UC 21.2 6 Buschert, 2011 MCI Sham 24.7 3 Orrell, 2017 Dem UC 21.2 6 Buschert, 2011 MCI Sham 24.4 6 Greenaway, 2012 MCI None 26.8 6 Jeong, 2016 MCI WL 27.7 9 Pantoni, 2017 MCI WL 27.9 6 Sublotal (I-squared = 91.1%, p = 0.000) 1.33 (0.29, 2.37) 100.1 (-0.7, 0.5) 67 Exercise Hoffmann, 2016 Dem UC 23.9 4 Holtifica, 2013 Dem UC 23.9 4 0.50 (0.05, 0.95) 13.48 0.1 (-0.6, 0.8) 102 -0.2 Isolaki, 2011 MCI NL 22.9 4	(-2.1, 0.5)		38	-0.3 (-0.8, 0.2) 38	7.30	0.08 (-0.75, 0.91)	+	6	22.9	Sham	Dem	Cavallo, 2016
Jelcic, 2012 Dem Sham 24.7 3 Kurz, 2012 Dem UC 25.1 9 Orrell, 2014 Dem UC 25.1 9 Orrell, 2017 Dem UC 21.2 6 Buschert, 2011 MCI Sham 24.7 3 Orrell, 2017 Dem UC 21.2 6 Buschert, 2011 MCI None 26.8 6 Buschert, 2011 MCI None 26.8 6 Buschert, 2011 MCI None 26.8 6 Jenon, 2016 MCI WL 25.7 9 Pantoni, 2017 MCI WL 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) Exercise Hoftmann, 2016 Dem UC 23.9 4 <td></td> <td>-2.1 (-4.2, -0.</td> <td>26</td> <td>-1.3 (-2.8, 0.3) 26</td> <td>5.38</td> <td>0.89 (-1.54, 3.32)</td> <td>_++</td> <td>12</td> <td>20.9</td> <td>WL</td> <td>Dem</td> <td>Chapman, 2004</td>		-2.1 (-4.2, -0.	26	-1.3 (-2.8, 0.3) 26	5.38	0.89 (-1.54, 3.32)	_ + +	12	20.9	WL	Dem	Chapman, 2004
Kurz, 2012 Dem UC 25.1 9 Orrell, 2014 Dem UC 17.8 6 Orrell, 2017 Dem UC 21.2 6 Tsantali, 2017 Dem WL 22.9 12 Buschert, 2011 MCI None 26.8 6 Greenaway, 2012 MCI None 26.8 6 Jeong, 2016 MCI VL 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) - - -0.40 (-1.21, 0.41) 7.31 -0.1 (-0.6, 0.8) 102 -0.2 Subtotal (I-squared = 91.1%, p = 0.000) - - - - -0.40 (-1.21, 0.41) 7.31 -0.1 (-0.6, 0.8) 102 -0.2 Hoffmann, 2016 Dem UC 23.9 4 - - - -0.40 (-1.21, 0.41) 7.31 -0.1 (-0.6, 0.8) 102 -0.2 Hoffmann, 2016 Dem UC 23.9 4 - - - - - - - - - - - - - - - - - -	(-2.3, 0.3)	-0.8 (-2.1, 0.5	21	-0.1 (-1.9, 1.6) 21	5.70	0.64 (-1.55, 2.83)	_ + -	3	22.6	WL	Dem	Cove, 2014
Orrell, 2014 Dem UC 17.8 6 Orrell, 2017 Dem UC 21.2 6 Tsantali, 2017 Dem WL 22.9 12 Buschert, 2011 MCI Sham 26.4 6 Buschert, 2011 MCI None 26.8 6 Jeong, 2016 MCI WL 25.7 9 Pantoni, 2017 MCI WL 27.9 6 Subtet, 2011 MCI WL 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) Exercise Hoffmann, 2016 Dem UC 23.9 4 Hoffmoff, 2015 Dem BI 22.0 6 Pitkää 2013 Dem UC 25.9 9 Laarou, 2017 MCI AC 25.9 9 Laarou, 2017 MCI Nci MI 24.5 5 Su, 2018 MCI Nci AC 25.7 12 1.63 (0.73, 2.53) 1.63 (0.7, 3.51) 3.3 1.0 (1.1, 1.1, 1.2) 1.1		-1.0 (-2.3, 0.3	20	2.0 (0.9, 3.1) 20	6.30	3.00 (1.26, 4.74)	→	3	24.7	Sham	Dem	Jelcic, 2012
Orrell, 2017 Dem UC 21.2 6 Tsantali, 2017 Dem WL 22.9 12 Buschert, 2011 MCI Sham 26.4 6 Greenaway, 2012 MCI None 26.8 6 Greenaway, 2013 MCI None 26.8 6 Jeong, 2016 MCI WL 25.7 9 Pantoni, 2017 MCI WL 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) -0.40 (-12.1, 0.41) 7.31 -0.1 (-0.7, 0.5) 67 0.31 Fisciaki, 2011 MCI WL 27.9 6 <td>(-2.9, -1.5)</td> <td>-2.2 (-2.9, -1.</td> <td>83</td> <td>-1.5 (-2.3, -0.7) 83</td> <td>7.09</td> <td>0.74 (-0.32, 1.80)</td> <td>+</td> <td>9</td> <td>25.1</td> <td>UC</td> <td>Dem</td> <td>Kurz, 2012</td>	(-2.9, -1.5)	-2.2 (-2.9, -1.	83	-1.5 (-2.3, -0.7) 83	7.09	0.74 (-0.32, 1.80)	+	9	25.1	UC	Dem	Kurz, 2012
Tsantali, 2017 Dem WL 22.9 12 Buschert, 2011 MCI Sham 26.4 6 Greenaway, 2012 MCI None 26.8 6 Jeong, 2016 MCI WL 25.7 9 Pantoni, 2017 MCI UC 26.4 12 Tsolaki, 2011 MCI VL 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) Exercise Hoffmann, 2016 Dem UC 23.9 4 Hoffmoff, 2015 Dem UC 23.9 4 Hoffmoff, 2015 Dem UC 18.0 12 -0.15 (-1.66, 1.36) 8.80 -1.2 (-2.3, 0.1) 51 -1.1 Vreugdenhil, 2012 Dem UC 18.0 12 -0.15 (-1.66, 1.36) 8.80 -1.2 (-2.3, 0.1) 51 -1.1 Vreugdenhil, 2012 Dem WL 22.0 4 -0.015 (-1.66, 1.36) 8.80 -1.2 (-2.3, 0.1) 51 -1.1 Lazarou, 2017 MCI AC 25.9 9 -0.65 (-0.24, 1.54) 11.71 0.3 (0.4, 1.0) 55 -0.4	(-4.4, -0.2)	-2.3 (-4.4, -0.2	123	-1.5 (-3.5, 0.6) 123	7.00	0.85 (-0.29, 1.99)	++-	6	17.8	UC	Dem	Orrell, 2014
Buschert, 2011 MCI Sham 26.4 6 Greenaway, 2012 MCI None 26.8 6 Jeong, 2016 MCI WL 25.7 9 Pantoni, 2017 MCI UC 26.4 12 Tsolaki, 2011 MCI WL 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) Exercise Hoffmann, 2016 Dem UC 23.9 4 Hoffmohf, 2015 Dem BI 22.0 6 Pitkälä, 2013 Dem UC 18.0 12 Vreugdenhil, 2012 Dem WL 22.0 4 Di, 2017 MCI None 27.2 10 Subtotal (I-squared = 81.3%, p = 0.000) Subtotal (I-squared = 81.3%, p = 0.000) Multicomponent/other Burgener, 2008 Dem WL 24.0 5 Marshall, 2015 Dem WL 23.0 5 Subtotal (I-squared = 81.3%, p = 0.000) Richard, 2009 Dem UC 22.3 12	(-1.3, -0.1)	-0.7 (-1.3, -0.	134	-1.0 (-1.5, -0.5) 134	7.34	-0.47 (-1.25, 0.31)	-	6	21.2	UC	Dem	Orrell, 2017
Greenaway, 2012 MCI None 26.8 6 Jeong, 2016 MCI WL 25.7 9 Pantoni, 2017 MCI UC 26.4 12 Tsolaki, 2011 MCI WL 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) -0.40 (-1.21, 0.41) 7.31 -0.1 (-0.7, 0.5) 67 0.3 Lexercise Hoffmann, 2016 Dem UC 23.9 4 -0.40 (-1.81, 1.01) 6.70 -0.9 (-0.2, 2.0) 104 -0.5 Hoffmann, 2016 Dem UC 23.9 4 -0.15 (-1.66, 1.36) 8.80 -1.2 (-2.3, 0.1) 51 -1.1 Vreugdenhil, 2012 Dem UC 25.9 9 -0.15 (-1.66, 1.36) 8.80 -1.2 (-2.3, 0.1) 51 -1.1 Vreugdenhil, 2010 MCI None 27.2 10 <td>(-2.1, -0.9)</td> <td>-1.5 (-2.1, -0.</td> <td>17</td> <td>3.8 (3.1, 4.5) 17</td> <td>7.21</td> <td>5.30 (4.37, 6.23)</td> <td></td> <td>12</td> <td>22.9</td> <td>WL</td> <td>Dem</td> <td>Tsantali, 2017</td>	(-2.1, -0.9)	-1.5 (-2.1, -0.	17	3.8 (3.1, 4.5) 17	7.21	5.30 (4.37, 6.23)		12	22.9	WL	Dem	Tsantali, 2017
Jeong, 2016 MCI WL 25.7 9 Pantoni, 2017 MCI UC 26.4 12 Tsolaki, 2011 MCI WL 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) Exercise Hoffmann, 2016 Dem UC 23.9 4 Hothoff, 2015 Dem BI 22.0 6 Pitkälä, 2013 Dem UC 18.0 12 Vreugdenhil, 2012 Dem WL 22.0 4 Doi, 2017 MCI AC 25.9 9 Laar, 2011 MCI Nice 27.2 10 Siu, 2018 MCI UC 25.0 4 Lazarou, 2017 MCI None 27.2 10 Subtotal (I-squared = 81.3%, p = 0.000) 1.63 (0.73, 2.53) 1.67 0.4 (-0.2, 1.0) 66 -1.2 Venturelli, 2010 MCI + Dem VC 25.0 4	(-2.9, -1.5)	-2.2 (-2.9, -1.	10	-1.3 (-2.2, -0.4) 10	6.97	0.90 (-0.27, 2.07)	↓	6	26.4	Sham	MCI	Buschert, 2011
Pantoni, 2017 MCI UC 26.4 12 Tsolaki, 2011 MCI WL 27.9 6 Subtal (I-squared = 91.1%, p = 0.000) Exercise Hoffmann, 2016 Dem UC 23.9 4 Holthoff, 2015 Dem BI 22.0 6 Phikálá, 2011 MCI MCI 42.5 5 Lazarou, 2017 MCI AC 25.9 9 Lazarou, 2017 MCI None 27.2 10 Siu, 2018 MCI UC 25.0 4 Suztal; (I-squared = 81.3%, p = 0.000) Multicomponent/other Burgener, 2008 Dem WL 24.0 5 Marshall, 2015 Dem WL 23.0 15 Marshall, 2015 Dem WL 23.0 1	(-1.4, 0.6)	-0.4 (-1.4, 0.6	18	-0.2 (-0.8, 0.4) 18	6.91	0.20 (-1.03, 1.43)	_ → _	6	26.8	None	MCI	Greenaway, 2012
Tsolaki, 2011 MCI WL 27.9 6 Subtotal (I-squared = 91.1%, p = 0.000) . . 1.44 (0.26, 2.62) 6.97 0.9 (-0.2, 2.0) 104 -0.5 Exercise Hoftmann, 2016 Dem UC 23.9 4 <	(-0.3, 0.9)	0.3 (-0.3, 0.9)	67	-0.1 (-0.7, 0.5) 67	7.31	-0.40 (-1.21, 0.41)	+	9	25.7	WL	MCI	Jeong, 2016
Subtotal (I-squared = 91.1%, p = 0.000) 1.33 (0.29, 2.37) 100.00 Exercise Hoffmann, 2016 Dem UC 23.9 4 Hoffmann, 2016 Dem UC 23.9 4 Hoffmann, 2016 Dem UC 23.9 4 Hoffmann, 2016 Dem UC 18.0 12 Pitkälä, 2013 Dem UC 18.0 12 Vreugdenhil, 2012 Dem WL 22.0 4 Dol, 2017 MCI AC 25.9 9 Lazarou, 2017 MCI None 27.2 10 Silu, 2018 MCI UC 25.0 4 Usuzuki, 2012 MCI AC 26.7 12 Venturelli, 2010 MCI-HDEm UC NR 3 Subtotal (I-squared = 81.3%, p = 0.000) Multicomponent/other Burgener, 2008 Dem WL 24.0 5 Marshall, 2015 Dem VL 23.0 5 <td< td=""><td>(-1.1, 0.5)</td><td>-0.3 (-1.1, 0.5</td><td>21</td><td>-0.7 (-1.9, 0.5) 21</td><td>6.70</td><td>-0.40 (-1.81, 1.01)</td><td></td><td>12</td><td>26.4</td><td>UC</td><td>MCI</td><td>Pantoni, 2017</td></td<>	(-1.1, 0.5)	-0.3 (-1.1, 0.5	21	-0.7 (-1.9, 0.5) 21	6.70	-0.40 (-1.81, 1.01)		12	26.4	UC	MCI	Pantoni, 2017
Exercise Hoffmann, 2016 Dem UC 23.9 4 Hothtoff, 2015 Dem BI 22.0 6 Pitkälä, 2013 Dem UC 18.0 12 Vreugdenhil, 2012 Dem WL 22.0 4 Joi, 2017 MCI AC 25.9 9 Laar, 2011 MCI MI 24.5 5 Lazarou, 2017 MCI None 27.2 10 Siu, 2018 MCI UC 25.0 4 Subtotai (I-squared = 81.3%, p = 0.000) 1.27 (0.49, 2.05) 12.22 1.4 (0.9, 1.9) 80 0.1 (0.00.00) Multicomponent/other Burgener, 2008 Dem WL 23.0 5 -0.4 (-2.2, 0.0) 1.17 (0.45, 1.70) 7.86 -0.5 (-1.8, 0.8) 25 -0.4 Marshall, 2015 Dem WL 24.0 5 -0.3 (-1.76, 1.70) 7.86 -0.5 (-1.8, 0.8) 25 -0.4 Venturelli, 2010 NCI + Dem UC NR 3 -0.00 (-2.93, 4.73) 2.18 0.4 (-1.1	(-1.0, -0.0)	-0.5 (-1.0, -0.	104	0.9 (-0.2, 2.0) 104	6.97	1.44 (0.26, 2.62)	_ → _	6	27.9	WL	MCI	Tsolaki, 2011
Hoffmann, 2016 Dem UC 23.9 4 Hoffmann, 2016 Dem BI 22.0 6 Pitkälä, 2013 Dem UC 18.0 12 Vreugdenhil, 2012 Dem WL 18.0 12 Vreugdenhil, 2012 Dem WL 22.0 4 Doi, 2017 MCI AC 25.9 9 Laaraou, 2017 MCI MI 24.5 5 Juagarou, 2017 MCI None 27.2 10 Siu, 2018 MCI UC 25.0 4 Venturelli, 2010 MCI AC 26.7 12.2 1.4 (0.9, 1.9) 80 0.1 (-0.52, 0.72) 12.83 0.4 (-0.2, 1.0) 66 -1.2 Subtotal (I-squared = 81.3%, p = 0.000) 1.27 (0.49, 2.05) 12.22 1.4 (0.9, 1.9) 80 0.1 (Multicomponent/other					100.00	1.33 (0.29, 2.37)	\diamond))	= 0.000	l = 91.1%, p	Subtotal (I-squared
Hoffmann, 2016 Dem UC 23.9 4 Hoffmann, 2016 Dem BI 22.0 6 Pitkälä, 2013 Dem UC 18.0 12 Vreugdenhil, 2012 Dem WL 18.0 12 Vreugdenhil, 2012 Dem WL 22.0 4 Doi, 2017 MCI AC 25.9 9 Laaraou, 2017 MCI MI 24.5 5 Juagarou, 2017 MCI None 27.2 10 Siu, 2018 MCI UC 25.0 4 Venturelli, 2010 MCI AC 26.7 12.2 1.4 (0.9, 1.9) 80 0.1 (-0.52, 0.72) 12.83 0.4 (-0.2, 1.0) 66 -1.2 Subtotal (I-squared = 81.3%, p = 0.000) 1.27 (0.49, 2.05) 12.22 1.4 (0.9, 1.9) 80 0.1 (Multicomponent/other												Exercise
Holthoff, 2015 Dem BI 22.0 6 Pitkala, 2013 Dem UC 18.0 12 Vreugdenhil, 2012 Dem WL 22.0 4 Lam, 2011 MCI AC 25.9 9 Lazarou, 2017 MCI AC 25.9 9 Lazarou, 2017 MCI None 27.2 10 Siu, 2018 MCI UC 25.0 4 Suuzuki, 2012 MCI AC 26.7 12 Venturelli, 2010 MCI-Dem UC NR 3 Subtotal (I-squared = 81.3%, p = 0.000) Multicomponent/other Burgener, 2008 Dem WL 24.0 5 Marshall, 2015 Dem WL 23.0 5 Richard, 2009 Dem UC 22.3 12	(-1006)	-0.2 (-1.0, 0.6	102	01(-0608) 102	13 48	0.50 (0.05, 0.95)	•	4	23.9	UC	Dem	
Pitkälä, 2013 Dem UC 18.0 12 Vreugdenhil, 2012 Dem WL 22.0 4 Doi, 2017 MCI AC 25.9 9 Lazarou, 2017 MCI None 27.2 10 Siu, 2018 MCI UC 25.0 4 Suzuki, 2012 MCI AC 25.7 12 Subtotal (I-squared = 81.3%, p = 0.000) Multicomponent/other Burgener, 2008 Dem WL 23.0 5 Marshall, 2015 Dem WL 23.0 5 Marshall, 2015 Dem WL 23.0 5		-1.2 (-2.3, -0.					Ľ.					
Vreugdenhil, 2012 Dem WL 22.0 4 Doi, 2017 MCI AC 25.9 9 Lam, 2011 MCI MI 24.5 5 Lazarou, 2017 MCI None 27.2 10 Siu, 2018 MCI UC 25.0 4 Suzuki, 2012 MCI AC 26.7 12 Siu, 2018 MCI UC 25.0 4 Venturelli, 2010 MCI-Pem UC 26.7 12 Venturelli, 2010 MCI-Pem UC NR 3 Witticomponent/other 81.3%, p = 0.000) - - -0.03 (-1.76, 1.70) 7.86 -0.5 (-1.8, 0.8) 25 -0.4 Multicomponent/other - - - -0.03 (-1.76, 1.70) 7.86 -0.5 (-1.8, 0.8) 25 -0.4 Multicomponent/other -		-1.1 (-2.2, 0.0						12		UC		
Doi, 2017 MCI AC 25.9 9 Lam, 2011 MCI MI 24.5 5 Lazarou, 2017 MCI None 27.2 10 Siu, 2018 MCI UC 25.0 4 Suzuki, 2012 MCI AC 26.7 12 Venturelli, 2010 MCI-Dem UC NR 3 Subtotal (I-squared = 81.3%, p = 0.000)		-1.6 (-2.6, -0.								WL		1
Lam, 2011 MCI MI 24.5 5 Lazarou, 2017 MCI None 27.2 10 Siu, 2018 MCI UC 25.0 4 Suzuki, 2012 MCI AC 26.7 12 Venturelii, 2010 MCI-Dem UC NR 3 Subtotal (I-squared = 81.3%, p = 0.000) Multicomponent/other Burgener, 2008 Dem WL 24.0 5 Richard, 2009 Dem UC 22.3 12 Marshall, 2015 Dem WL 23.0 5 Richard, 2009 Dem UC 22.3 12 Multicomponent UC 22.3 12 Multicompon		-0.4 (-0.9, 0.2										
Lazarou, 2017 MCI None 27.2 10 Siu, 2018 MCI UC 25.0 4 Suzuki, 2012 MCI AC 26.7 12 Venturelli, 2010 MCI-Dem UC NR 3 Subtotal (I-squared = 81.3%, p = 0.000) Multicomponent/other Burgener, 2008 Dem WL 24.0 5 Marshall, 2015 Dem WL 23.0 5 Richard, 2009 Dem UC 22.3 12 → 1.63 (0.73, 2.53) 11.67 0.4 (-0.2, 1.0) 66 -1.2 1.27 (0.49, 2.05) 12.22 1.4 (0.9, 1.9) 80 0.1 (-0.3, 1.7) 12 -4.6 Subtotal (I-squared = 81.3%, p = 0.000) Multicomponent/other Burgener, 2008 Dem WL 24.0 5 Marshall, 2015 Dem WL 23.0 5 Richard, 2009 Dem UC 22.3 12		0.8 (0.4, 1.2)					↓	5	24.5	MI	MCI	Lam. 2011
Siu, 2018 MCI UC 25.0 4 Suzuki, 2012 MCI AC 26.7 12 Venturelli, 2010 MCI+Dem UC NR 3 Ubtotal (I-squared = 81.3%, p = 0.000) Multicomponent/other Burgener, 2008 Dem WL 24.0 5 Marshall, 2015 Dem WL 23.0 5 Richard, 2009 Dem UC 22.3 12 Multicomponent UC 22.3 12 Multicomponent/other Burgener, 2008 Dem WL 24.0 5 Marshall, 2015 Dem WL 23.0 5 -0.45 (-2.06, 1.16) 10.03 -1.1 (-2.7, 0.5) 28 0.01 0.10 (-1.65, 1.85) 8.85 -2.6 (-3.8, -1.4) 57 -2.7		-1.2 (-1.9, -0.						10	27.2	None	MCI	
Suzuki, 2012 MCI AC 26.7 12 Venturelli, 2010 MCI+Dem UC NR 3 Subtotal (I-squared = 81.3%, p = 0.000) Multicomponent/other Burgener, 2008 Dem WL 24.0 5 Marshall, 2015 Dem WL 23.0 5 Richard, 2009 Dem UC 22.3 12		0.1 (-0.5, 0.7)					↓	4	25.0	UC	MCI	
Venturelli, 2010 MCI+Dem UC NR 3 Subtotal (I-squared = 81.3%, p = 0.000) Multicomponent/other Burgener, 2008 Dem WL 24.0 5 Marshall, 2015 Dem WL 23.0 5 Richard, 2009 Dem UC 22.3 12 Marshall, 2015 Dem WL 24.0 5 Richard, 2009 Dem UC 22.3 12 Multicomponent/other Burgener, 2008 Dem WL 24.0 5 -0.45 (-2.06, 1.16) 10.03 -1.1 (-2.7, 0.5) 28 0.01 0.10 (-1.65, 1.85) 8.85 -2.6 (-3.8, -1.4) 57 -2.7		-0.4 (-1.7, 0.9						12	26.7	AC	MCI	
Subtotal (I-squared = 81.3%, p = 0.000) 1.17 (0.45, 1.90) 100.00 Multicomponent/other 0.90 (-2.93, 4.73) 2.18 0.4 (-1.1, 1.9) 19 -0.5 Marshall, 2015 Dem WL 23.0 5 -0.45 (-2.06, 1.16) 10.03 -1.1 (-2.7, 0.5) 28 0.0 Richard, 2009 Dem UC 22.3 12 -0.10 (-1.65, 1.85) 8.85 -2.6 (-3.8, -1.4) 57 -2.7		-4.6 (-5.7, -3.										
Burgener, 2008 Dem WL 24.0 5 0.90 (-2.93, 4.73) 2.18 0.4 (-1.1, 1.9) 19 -0.5 Marshall, 2015 Dem WL 23.0 5 -0.45 (-2.06, 1.16) 10.03 -1.1 (-2.7, 0.5) 28 0.0 Richard, 2009 Dem UC 22.3 12 - - 0.10 (-1.65, 1.85) 8.85 -2.6 (-3.8, -1.4) 57 -2.7							♦))	= 0.000	l = 81.3%, p	
Burgener, 2008 Dem WL 24.0 5 0.90 (-2.93, 4.73) 2.18 0.4 (-1.1, 1.9) 19 -0.5 Marshall, 2015 Dem WL 23.0 5 -0.45 (-2.06, 1.16) 10.03 -1.1 (-2.7, 0.5) 28 0.0 Richard, 2009 Dem UC 22.3 12 - - 0.10 (-1.65, 1.85) 8.85 -2.6 (-3.8, -1.4) 57 -2.7											er	Multicomponent/oth
Marshall, 2015 Dem WL 23.0 5 -0.45 (-2.06, 1.16) 10.03 -1.1 (-2.7, 0.5) 28 0.0 Richard, 2009 Dem UC 22.3 12	(-4.0, 3.0)	-0.5 (-4.0, 3.0	19	0.4 (-1.1, 1.9) 19	2.18	0.90 (-2.93, 4.73)	+	5	24.0	WL		
Richard, 2009 Dem UC 22.3 12 0.10 (-1.65, 1.85) 8.85 -2.6 (-3.8, -1.4) 57 -2.7		0.0 (-1.3, 1.3)										2
		-2.7 (-4.0, -1.					—					
Bae, 2019 MCI AC 26.9 6 -0.86 (-1.99, 0.27) 16.73 -0.5 (-1.4, 0.3) 41 0.3 (0.3 (-0.4, 1.1)		-0.5 (-1.4, 0.3) 41			_ → [6	26.9	AC	MCI	Bae, 2019
		-0.8 (-1.2, -0.					` ♠					
		0.7 (-1.9, 3.3)					+	-				
		-1.0 (-1.8, -0.					· · ·					
		-2.4 (-4.2, -0.										
Subtotal (I-squared = 30.3%, p = 0.186)	(4.2, 0.0)	2.4(4.2, 0.					•					
NOTE: Weights are from random effects analysis							[s analysis	m effect	from rando	NOTE: Weights are
-8.13 0 8.13						13	0	-8.13				

* For all analyses, we focused on 6- to 12-month outcomes and included only shorter- or longer-term results when 6- or 12-month outcomes were not available.

[†] Pooled mean difference, 0.26 (95% CI: -0.54 to 1.00); k=8; n=1238; I²=30.3%, based on restricted maximum likelihood method with Knapp-Hartung modification which resulted to no statistical significance

Abbreviations: AC = attention control; BI = brief intervention; BG = between-group; BL = baseline; CG = control group; Chg = change; CI = confidence interval; Dem = dementia; Intv = Intervention; IG = intervention group; KQ = key question; MCI = mild cognitive impairment; MD = mean difference; MI = minimal intervention; MMSE = mini-mental state examination; n = sample size; NR = not reported; Pop = population; UC = usual care; WL = waitlist

Figure 16. Pooled Analysis of Change in Global Cognitive Function (Measured by ADAS-Cog-11) (KQ 4), Patient-Level Nonpharmalogic Interventions Compared With Controls, by Intervention Type

Study	Pop. category	Intv Type	ADAS-cog11 BL mean	Followup, months [*]	BG MD in Change (95% CI)	% Weight	IG Mean Chg (95% CI) from BL	IG n	CG Mean Chg (95% CI) from BL	CG n
Cog training										
Buschert, 2011	Dem	Sham	14.1	6	-0.70 (-6.03, 4.63)	2.15	-0.7 (-4.6, 3.2)	8	0.0 (-3.6, 3.6)	7
Chapman, 2004	Dem	WL	NR	12	-0.73 (-3.73, 2.27)	6.79	4.9 (2.7, 7.1)	26	5.6 (3.4, 7.8)	28
Cove, 2014	Dem	WL	18.0	3	-0.66 (-4.88, 3.56)	3.43	1.8 (-1.4, 4.9)	21	2.4 (-0.4, 5.2)	23
Kallio, 2018	Dem	UC	21.4	9 -	-0.30 (-1.93, 1.33)	23.05	2.0 (0.9, 3.1)	76	2.3 (1.1, 3.5)	71
Orrell, 2014	Dem	UC	32.1	6	-0.65 (-3.71, 2.41)	6.50	4.8 (0.1, 9.6)	123	2.1 (-2.8, 6.9)	113
Orrell, 2017	Dem	UC	20.6	6 🔶	-0.55 (-2.00, 0.90)	29.06	0.3 (-0.6, 1.3)	134	1.2 (0.3, 2.2)	139
Buschert, 2011	MCI	Sham	9.3	6	-3.30 (-6.72, 0.12)	5.21	-1.4 (-3.3, 0.5)	10	1.9 (-1.0, 4.8)	12
Fiatarone Singh, 2014	MCI	Sham	8.4	6	-0.53 (-2.13, 1.07)	23.81	-1.5 (-2.6, -0.3)	24	-1.0 (-2.1, 0.2)	27
Subtotal (I-squared =	0.0%, p = 0	.925)		0	-0.66 (-1.44, 0.12)†	100.00				
Exercise										
Lamb, 2018	Dem	UC	21.5	12 🔶	-1.40 (-2.60, -0.20)	18.59	3.8 (2.5, 5.1)	278	2.0 (0.4, 3.6)	137
Liu-Ambrose, 2016	Dem	UC	10.9	12 -	-0.63 (-2.33, 1.07)	15.33	-1.1 (-2.3, -0.0)	35	-0.5 (-1.8, 0.7)	35
Vreugdenhil, 2012	Dem	WL	24.7	4	-7.00 (-10.49, -3.51)	7.28	-4.9 (-7.1, -2.7)	20	2.1 (-0.6, 4.8)	20
Lam, 2011	MCI	MI	13.5	5	0.70 (-0.27, 1.67)	20.01	2.0 (1.3, 2.7)	135	1.3 (0.8, 1.8)	194
Lautenschlager, 2008	MCI	AC	NR	12 🔶	-0.59 (-1.53, 0.35)	20.23	-0.6 (-1.1, 0.2)	85	0.0 (-0.7, 0.6)	85
Suzuki, 2012	MCI	AC	6.6	6 +	-1.10 (-2.30, 0.10)	18.56	-1.2 (-2.1, -0.3)	24	-0.1 (-1.0, 0.8)	23
Subtotal (I-squared =	77.4%, p =	0.000)		\diamond	-1.05 (-2.18, 0.08)‡	100.00				
Multicomponent/other										
Fiatarone Singh, 2014	MCI	Sham	8.1	6 +	-0.81 (-2.36, 0.74)	37.77	-1.8 (-2.9, -0.7)	27	-1.0 (-2.1, 0.2)	27
Train the Brain, 2017	MCI	None	NR	7 🔶	-2.17 (-2.99, -1.35)	62.23	-1.4 (-2.0, -0.8)	55	1.1 (0.7, 1.6)	58
Subtotal (I-squared =	56.5%, p =	0.130)		\diamond	-1.66 (-2.95, -0.36) [§]	100.00				
NOTE: Weights are fro	m random	effects a	nalysis							
				-10.5 0	l 10.5					

* For all analyses, we focused on 6- to 12-month outcomes and included only shorter- or longer-term results when 6- or 12-month outcomes were not available.

[†]Pooled mean difference, -0.66 (95% CI: -1.60 to 0.29); k=8; n=842; I²=0.0%, based on restricted maximum likelihood method with Knapp-Hartung modification

⁺ Pooled mean difference, -1.05 (95% CI: -3.49 to 1.10); k=6; n=1071; I²=77.4%, based on restricted maximum likelihood method with Knapp-Hartung modification

§ Pooled mean difference, -1.66 (95% CI: -10.03 to 6.72); k=2; n=167; I²=56.5%, based on restricted maximum likelihood method with Knapp-Hartung modification

Abbreviations: AC = attention control; ADAS-Cog-11 = Alzheimer's disease assessment scale–cognitive subscale (11-items); BI = brief intervention; BG = between-group; BL = baseline; CG = control group; Chg = change; CI = confidence interval; Dem = dementia; Intv = Intervention; IG = intervention group; KQ = key question; MCI = mild cognitive impairment; MD = mean difference; MI = minimal intervention; n = sample size; NR = not reported; Pop = population; UC = usual care; WL = waitlist

Figure 17. Pooled Analysis of Change in Caregiver Burden (Standardized Mean Difference) (KQ 4), Caregiver and Caregiver-Patient Dyad Interventions Compared With Controls, by Intervention Type

		Followup,	Burden	Group	Baseline		Hedge's g	%	IG	
Study	Subgroup	months *	Instrument	Category	MMSE		SMD (95% CI)	Weight	n	1
sychoeducation										
Sitlin, 2008		4	Zarit-10	WL	11.6	+	-0.00 (-0.52, 0.52)	2.91	27	
Sitlin, 2003		6	RMBPC (total burden)	UC	12.2	•	-0.29 (-0.58, -0.01)	5.26	89	
Berwig, 2017		9	Zarit-22	UC	12.4	→	-0.62 (-1.13, -0.11)	3.01	31	
/artin-Carrasco, 2014		4	Zarit-22	UC	12.9	+	-0.04 (-0.30, 0.21)	5.66	115	
Burgio, 2003		6	RMBPC (total burden)	BI	13.0	+	-0.03 (-0.43, 0.36)	4.02	47	
Sitlin, 2010		6	Zarit-12	None	13.0	+	-0.15 (-0.41, 0.12)	5.52	114	
eri, 2005		6	RMBPC (total burden)	UC	13.6	+	-0.15 (-0.64, 0.33)	3.22	32	
allagher-Thompson, 2003	Hispanic	6	RMBPC (average burden)	MI	13.7	-+	-0.39 (-1.03, 0.24)	2.25	32	
allagher-Thompson, 2003	White	6	RMBPC (average burden)	MI	13.7	+	-0.08 (-0.63, 0.48)	2.71	41	
allagher-Thompson, 2008	Hispanic	6	RMBPC (average burden)	MI	14.1	+	0.01 (-0.41, 0.43)	3.80	47	
allagher-Thompson, 2008	White	6	RMBPC (average burden)	MI	14.1	→	-0.38 (-0.78, 0.03)	3.90	50	
Nartindale-Adams, 2013		12	Zarit-12	BI	15.4	+	0.06 (-0.26, 0.38)	4.89	77	
Vang, 2011		6	FCBI	UC	17.4	_ ∔ [-0.58 (-1.03, -0.13)	3.51	40	
lepburn, 2005		12	Zarit-22	WL	17.7	•	-0.29 (-0.66, 0.09)	4.24	91	
ristancho-Lacroix, 2015		6	Zarit-22	WL	18.7		0.12 (-0.44, 0.68)	2.67	25	
Aartin-Carrasco, 2009		10	Zarit-22	UC	18.7	→ [-0.60 (-1.04, -0.15)	3.55	44	
Aartin-Cook, 2005		4	NPI-10	WL	19.4	- <u>-</u> -	-0.05 (-0.62, 0.53)	2.60	24	
e Rotrou, 2011		6	Zarit-22	WL	NR	1	-0.14 (-0.51, 0.23)	4.25	55	
ung, 2002		4	NPI-12	UC	NR	_ _]	-0.43 (-0.98, 0.12)	2.73	28	
Ballagher-Thompson, 2010		4	RMBPC (average burden)	AC	NR	X	-0.59 (-1.07, -0.11)	3.25	38	
itlin, 2001		3	MBPC (average)	UC	NR	1	-0.10 (-0.40, 0.20)	5.07	93	
lebert, 2003		4	Zarit-22	UC	NR	1	-0.18 (-0.55, 0.18)	4.33	60	
wok. 2013		3	Zarit-22 Zarit-22	BI	NR	_	-0.63 (-1.29, 0.02)	2.15	18	
Stwald, 1999		5	Zarit-22 Zarit-22	WL	NR		-0.39 (-0.81, 0.04)	3.73	60	
Roberts, 1999		12	Psychosocial Adj Illness	UC	NR	1	0.10 (-0.41, 0.62)	2.98	29	
Steffen, 2016		9	RMBPC (total burden)							
remont, 2015		6	Zarit-22	MI MI	NR -		-1.93 (-2.60, -1.26)	2.07 5.74	22 133	
ubtotal (I-squared = 50.2%,	p = 0.002)	0	Zant-22	MI	NR	0	-0.07 (-0.32, 0.18) -0.24 (-0.36, -0.13)	5.74 100.00	100	
Care/Case Mgmt										
hien, 2008		12	FCBI	MI	17.4	+	-1.16 (-1.62, -0.71)	11.95	44	
allahan, 2008		12	NPI-12	MI	18.0	1	-0.24 (-0.57, 0.08)	13.59	84	
amus, 2014		18	Zarit-12	MI	19.1	7	-0.19 (-0.43, 0.05)	14.56	106	
hyrian, 2017		12	BIZA-D	UC	22.8	. 1	-0.18 (-0.40, 0.05)	14.70	291	
chien, 2011		12	FCBI	MI	NR	≁ [-1.28 (-1.73, -0.83)	11.99	48	
ortinsky, 2009		12	Zarit-22	UC	NR	. +	0.09 (-0.40, 0.58)	11.45	44	
lavandadi, 2017		6	RMBPC (total burden)	UC	NR	+	-0.90 (-1.46, -0.35)	10.63	25	
(iao, 2016 Subtotal (I-squared = 82.9%,	p = 0.000)	12	NPI-10	UC	NR	*	-0.65 (-1.17, -0.14) -0.54 (-0.85, -0.22)†	11.13	31	
Other										
lirano, 2011		3	Zarit-22	MI	18.3		-3.22 (-4.33, -2.11)	13.35	17	
rick, 2015		6	RMBPC (total burden)	BI	21.0]•	0.47 (0.09, 0.85)	21.73	57	
onnell, 2009		12	RMBPC (total burden)	None	NR	•	-0.04 (-0.39, 0.30)	22.04	69	
ing, 2002		12	RMBPC (total burden)	AC	NR	†	0.11 (-0.32, 0.54)	21.25	45	
Vinter, 2008		6	Zarit-22	None	NR	.	0.08 (-0.31, 0.47)	21.63	53	
ubtotal (I-squared = 89.6%,						9	-0.30 (-0.91, 0.32)‡	100.00		
IOTE: Weights are from rand	iom effects a	analysis								
						_				-

* For all analyses, we focused on 6- to 12-month outcomes and included only shorter- or longer-term results when 6- or 12-month outcomes were not available.

[†] Pooled mean difference, -0.54 (95% CI: -0.96 to -0.12); k=8; n=1215; I²=82.9%, based on restricted maximum likelihood method with Knapp-Hartung modification

 \ddagger Pooled mean difference, -0.45 (95% CI: -2.26 to 1.36); k=5; n=459; 1²=89.6%, based on restricted maximum likelihood method with Knapp-Hartung modification

Abbreviations: AC = attention control; BI = brief intervention; BIZA-D = Berlin Inventory of Caregivers' Burden with Dementia; BG = between-group; BL = baseline; CG = control group; CI = confidence interval; Dem = dementia; FCBI = Family Caregiving Burden Inventory; IG = intervention group; KQ = key question; MCI = mild cognitive impairment; MBPC = Memory and Behavior Checklist; Mgmt = management; MI = minimal intervention; MMSE = mini-mental state examination; n = sample size; NPI-10 = Neuropsychiatric Inventory-10 item; NPI-12 = Neuropsychiatric Inventory-12 item; NR = not reported; Psychosocial Adj Illness = Psychosocial Adjustment to Illness scale; RMBPC = Revised Memory and Behavior Checklist; SMD = standardized mean difference; UC = usual care; WL = waitlist; Zarit-10 = Zarit Burden Interview-10 item; Zarit-22 = Zarit Burden Interview-22 item

Figure 18. Pooled Analysis of Change in Caregiver Depression (Standardized Mean Difference) (KQ 4), Caregiver and Caregiver-Patient Dyad Interventions Compared With Controls, by Intervention Type

Study	Subgroup	Followup, months*	Depression Instrument	Control Group Category	Baseline MMSE		Hedge's SMD (95% CI)	% Weight	IG n	CG n
Psychoeducation										
Gitlin, 2008		4	CES-D	WL	11.6	-+-	-0.25 (-0.78, 0.27)	2.33	27	29
Gitlin, 2003		6	CES-D	UC	12.2	+	-0.03 (-0.29, 0.22)	3.30	116	117
Berwig, 2017		9	PHQ-4	UC	12.4		-0.16 (-0.65, 0.34)	2.43	31	31
Mariott, 2000		12	BDI	None	12.5	→	-0.86 (-1.66, -0.07)	1.56	13	14
Joling, 2012		12	CES-D	UC	12.6	-	-0.19 (-0.47, 0.10)	3.21	96	96
Burgio, 2003		6	CES-D	BI	13.0	→	-0.53 (-0.89, -0.17)	2.93	60	61
Teri, 2005		6	CES-D	UC	13.6	_ → -	-0.53 (-1.02, -0.04)	2.45	32	34
Gallagher-Thompson, 2003	Hispanic	6	CES-D	MI	13.7	_ →	0.64 (0.06, 1.23)	2.14	38	17
Gallagher-Thompson, 2003	White	6	CES-D	MI	13.7	_ →	-0.31 (-0.80, 0.17)	2.48	53	24
Kurz, 2010		15	MADRS	UC	13.9	+	-0.11 (-0.37, 0.16)	3.28	115	106
Gallagher-Thompson, 2008	Hispanic	6	CES-D	MI	14.1	-	-0.15 (-0.56, 0.27)	2.72	47	42
Gallagher-Thompson, 2008	White	6	CES-D	MI	14.1	-+	-0.27 (-0.68, 0.13)	2.77	50	45
Coon, 2003		6	MAACL	WL	14.2 ++++	- 1	-2.52 (-3.09, -1.94)	2.17	41	44
Martindale-Adams, 2013		12	CESD-10	BI	15.4	+	-0.06 (-0.38, 0.25)	3.10	77	77
Cristancho-Lacroix, 2015		6	BDI-II	WL	18.7	_ b	0.15 (-0.41, 0.71)	2.22	25	24
Graff, 2006		3	CES-D	WL	19.0	- + I	-1.02 (-1.39, -0.66)	2.92	67	65
Martin-Cook, 2005		4	GDS-15	WL	19.4	· · +	0.05 (-0.53, 0.62)	2.18	23	24
Voigt-Radloff, 2011		12	CES-D	MI	20.4	∔	0.07 (-0.32, 0.47)	2.80	52	46
Bruvik, 2013		12	GDS	BI	21.2	∔	0.00 (-0.28, 0.28)	3.22	93	102
Judge, 2013		3	CES-D	BI	23.0	-	-0.23 (-0.59, 0.13)	2.93	59	59
Waldorff, 2012		12	GDS	BI	24.1	· •	0.22 (-0.02, 0.46)	3.36	128	143
Brennan, 1995		12	CES-D	BI	NR	-	-0.23 (-0.63, 0.17)	2.78	47	49
Chang, 1999		3	DS.BSI	MI	NR		-0.45 (-0.94, 0.04)	2.45	31	34
De Rotrou, 2011		6	MADRS	WL	NR	1	-0.15 (-0.52, 0.22)	2.90	56	57
Gallagher-Thompson, 2010		4	CES-D	AC	NR		-0.13 (-0.60, 0.34)	2.53	38	34
Garand, 2014	AD	12	CES-D	AC	NR	`	-0.67 (-1.42, 0.07)	1.68	13	17
Garand, 2014	MCI	12	CES-D	AC	NR		-1.10 (-1.75, -0.45)	1.95	23	20
Livingston, 2013		12	HADS-D	UC	NR	· •	-0.20 (-0.49, 0.10)	3.18	138	67
Losada, 2010		3	CES-D	UC	NR	–	-0.33 (-0.70, 0.03)	2.91	68	50
Mittelman, 2004		12	GDS	UC	NR	ě.	-0.25 (-0.45, -0.06)	3.50	203	203
Nunez-Naveira, 2016		3	CES-D	None	NR		-0.20 (-0.70, 0.30)	2.41	30	31
Ostwald, 1999		5	CES-D	WL	NR	- -	-0.30 (-0.73, 0.12)	2.70	60	34
Steffen, 2016		9	BDI-II	MI	NR		0.75 (0.18, 1.32)	2.19	22	30
Tremont, 2015		6	CES-D	MI	NR	▲ ¹	-0.33 (-0.58, -0.08)	3.33	133	117
Williams, 2010		6	CES-D	WL	NR	_ → `	-0.89 (-1.30, -0.47)	2.74	48	51
Wilz, 2016		6	CES-D	BI	NR	· 🔶	-0.12 (-0.49, 0.25)	2.89	98	39
Wilz, 2018		12	CES-D	UC	NR	4	0.05 (-0.19, 0.29)	3.37	139	134
Subtotal (I-squared = 76.9%,	p = 0.000)					•	-0.26 (-0.39, -0.13)	100.00		
Care/Case Mgmt										
Callahan, 2006		12	PHQ-9	MI	18.0	-	-0.18 (-0.50, 0.15)	23.28	84	69
Samus, 2014		18	GDS	MI	19.1	+	-0.02 (-0.26, 0.22)	42.77	106	183
Bass, 2003		12	CES-D	UC	NR	-	-0.26 (-0.58, 0.06)	23.84	94	63
Fortinsky, 2009		12	CES-D	UC	NR		-0.20 (-0.69, 0.29)	10.11	44	25
Subtotal (I-squared = 0.0%, p	o = 0.665)					9	-0.13 (-0.29, 0.02)†	100.00		
Other										
Prick, 2015		6	CES-D	BI	21.0	↓	0.31 (-0.07, 0.68)	19.13	57	54
Charlesworth, 2008		6	HADS-D	UC	NR		0.11 (-0.16, 0.38)	25.28	104	113
Connell, 2009		13	CES-D	None	NR	_ →	-0.25 (-0.59, 0.10)	20.62	69	61
King, 2002		12	BDI	AC	NR	- + -	0.16 (-0.27, 0.58)	16.68	45	40
Winter, 2008		6	CES-D	None	NR	_ →	-0.34 (-0.73, 0.05)	18.29	53	49
Subtotal (I-squared = 53.7%,	p = 0.071)					•	-0.00 (-0.23, 0.23)‡	100.00		
NOTE: Weights are from rand	lom effects an	alysis								
					-3.09	0	3.09			
					Favors Interve	ention Fa	avors Control			
					. arors more	10				

* For all analyses, we focused on 6- to 12-month outcomes and included only shorter- or longer-term results when 6- or 12-month outcomes were not available.

[†] Pooled mean difference, -0.13 (95% CI: -0.39 to 0.12); k=4; n=668; I²=0.0%, based on restricted maximum likelihood method with Knapp-Hartung modification

[‡] Pooled mean difference, -0.0 (95% CI: -0.34 to 0.34); k=5; n=645; I²=53.7%, based on restricted maximum likelihood method with Knapp-Hartung modification

Abbreviations: AC = attention control; AD = Alzheimer's disease; BDI = Beck Depression Inventory; BDI-II = Beck Depression Inventory – Second Edition; BI = brief intervention; BG = between-group; BL = baseline; CES-D = Center for Epidemiologic Studies – Depression; CES-D-10 = 10-item Center for Epidemiologic Studies – Depression; CG = control group;

Figure 18. Pooled Analysis of Change in Caregiver Depression (Standardized Mean Difference) (KQ 4), Caregiver and Caregiver-Patient Dyad Interventions Compared With Controls, by Intervention Type

CI = confidence interval; Dem = dementia; DS, BSI = Brief Symptom Inventory – Depression subscale; GDS = Geriatric Depression Scale; GDS-15 = Geriatric Depression Scale-15 item; HADS-D = Hospital Anxiety and Depression Scale; IG = intervention group; KQ = key question; MAACL = Multiple Affect Adjective Checklist; MADRS = Montgomery Asberg Depression Rating Scale; MCI = mild cognitive impairment; Mgmt = management; MCI = mild cognitive impairment; MI = minimal intervention; MMSE = mini-mental state examination; n = sample size; NR = not reported; PHQ-9 = Patient Health Questionnaire-9; SMD = standardized mean difference; UC = usual care; WL = waitlist

Organization	Year	Recommendation Statement
U.S. Department of Veterans Affairs ⁹⁷	2016	Recommends against routine screening for cognitive impairment in persons of any age. Veteran's Health Administration clinicians should use dementia warning signs to prompt assessment of cognitive function. If warning signs are present, patients should be evaluated further.
Canadian Task Force on Preventive Health Care (CTFPHC) ⁹⁴	2016	Recommends against screening asymptomatic older adults (age ≥65 years) for cognitive impairment (Strong recommendation, low-quality evidence)
Gerontological Society of America (GSA) ⁹⁹	2015	Recommends that primary care providers routinely ask beneficiaries about any noticeable changes in memory or cognition that have occurred since previous office visits during the Medicare Annual Wellness Visit (AWV). Additionally, primary care providers should use their clinical judgment and observational skills to determine whether any changes in memory or cognition since previous encounters with beneficiaries are noticeable during the Medicare AWV.
of Gerontology and Geriatrics (IAGG) ⁴⁵⁸	2015	Recommends screening to identify early cognitive impairment among individuals with known risk factors for dementia (e.g., subjective cognitive concerns or family history of dementia)
Alzheimer's Association ^{98,}	2013	 Recommends screening for cognitive impairment among: Individuals with memory concerns or other cognitive complaints. Non-memory triggers include personality change, depression, deterioration of chronic disease without explanation, and falls or balance issues Informant reports of cognitive impairment, with or without patient concurrence Medicare beneficiaries, as part of the Annual Wellness Visit
National Institute for Health Care and Excellence (NICE) ⁴⁵⁹	2011	Recommends against screening for dementia in general population.
	2012	Found no evidence of benefit from screening for dementia in adults over age 65 without symptoms. Symptoms and signs of dementia should be detected opportunistically and assessed using questions addressed to the person and/or their caregiver.
European Federation of Neurological Societies (EFNS) ⁹⁵	2010	No recommendations for general, asymptomatic populations.

Author, year Quality	Country; recruitment setting	N Screened	Dem, %	MCI, %	Age, mean (range)	Female, %	Race/ Ethnicity, %	SES	Diagnostic Criteria	Reference Standard
Ayalon, 2011 ¹²⁶ Fair	US; Community- based	647	32	29	79 (≥70)	51	NR		Dementia: NA MCI: Defined as functional impairment per respondent or informant report that did not meet criteria for dementia on neuropsychological measures that was below expectations and ≥1.5 SD below published norms	Neuropsychological battery, self-report depression measure, standardized neurologic examination, physiological testing, and genetic testing
Ball, 2001 ¹²⁷ Fair	US; Community- based	170 (53 in analysis)	9	NR	76 (≥65)	100	NR	Mean edu, years: 13.6	Dementia: NINCDS- ADRDA MCI: NA	Short Blessed Test, clinical examination, and neuropsychological test battery
Borson, 2006 ¹²⁸ Fair	US; Community- based	371	42	21	NR (NR)	NR	White: 7 Black: 17 Asian: 48 Hispanic: 7 Other: 6	NR	Dementia: CDR≥1 MCI: CDR=0.5	Neuropsychological test battery, informant interview, medical history and examination
Brodaty, 2002* ¹²⁹ Fair	AUS; Primary care	283	29	NR	80 (56-94)	59	NR	,	Dementia: DSM-IV MCI: NA	Neuropsychological testing
Buschke, 1999 ¹³⁰ Fair	US; Community- based, Primary care	483	10	NR	80 (≥65)	64	White: 80.7 Black: 16.2 Other: 2.7		Dementia: DSM-III-R MCI: NA	Neuropsychological test battery
Callahan, 2002 ¹³¹ Fair	US; Community- based	344	4	22	74 (65-99)	59	Black: 100	Mean (range) edu, years: 10.4 (0-16)		Physical examination and neurologic examination
Chan, 2016 ^{132†} Fair	SGP; Primary care	309	24	NR	72 (≥60)	54	Asian: 99	7.93	Dementia: DSM-IV, CDR MCI: NA	Clinical assessment and neuropsychological test battery

Author, year Quality	Country; recruitment setting	N Screened		%	Age, mean (range)	%	Race/ Ethnicity, %	SES	Diagnostic Criteria	Reference Standard
Cook, 2009 ^{133‡} Fair	US; Community- based, Other medical	71	0	24	75 (≥65)	56	White: 93	Mean edu, years: 16.1	Dementia: NA MCI: NR	Neuropsychological test battery
Cruz-Orduna, 2012 ^{134‡} Fair	ESP; Primary care	160	9	47	72 (>49)	70	NR		Dementia: Performance <10th percentile in memory and at least one other domain, cognitive deterioration considered the cause of impairment in function, and confusion state not present. MCI: Performance <10th percentile in at least 1 test	Neuropsychological test battery
Cullen, 2005 ¹³⁵ Fair	IRL; Primary care	1115	4	5	75 (≥65)	68	NR	Mean edu, years: 9.9	Dementia: NR MCI: NR	GMS-AGECAT (diagnostic interview)
Cummings- Vaughn, 2014 ^{136†} Good	US; Other medical	136	21	42	79 (66-95)	2	NR	Completed HS: 41%	Dementia: CDR MCI: CDR	CDR
Del Ser, 2006 ¹³⁷ Fair	ESP; Community- based	416	12	NR	79 (>65)	52	NR	% No Formal edu: 25	Dementia: NR MCI: NA	Neuropsychological test battery
Donnelly, 2008 ¹³⁸ Fair	US; Primary care	100	NR	20	78 (65-89)		White: 95 Black: 4 Al/AN: 1	Mean edu, years: 12.9	Dementia: NA MCI: ≥1 SD below the normative mean	Dementia Rating Scale
Ehreke, 2009 ¹⁴⁰ Fair	DEU; Primary care	3198	0	14	80 (≥75)	65	NR	Level of edu: % Low: 61.8 % Middle: 27.5 % High: 10.7	Dementia: NA MCI: Winblad	SIDAM

Author, year Quality	Country; recruitment setting	N Screened	Dem, %	MCI, %	Age, mean (range)	Female, %	Race/ Ethnicity, %	SES	Diagnostic Criteria	Reference Standard
Ehreke, 2011 ¹³⁹ Fair	DEU; Community- based	428	0	14	83 (≥75)	73	NR		Dementia: NA MCI: International Working Group on MCI (Winblad, 2004) - (a) absence of dementia according to DSM-IV or ICD-10; (b) evidence of cognitive decline: subjective cognitive impairment (measured by self-rating or informant report)	SIDAM
Erkinjuntti, 1987 ¹⁴¹ Fair	FIN; Community- based	119	2	NR	73 (65-84)	65	NR	% Grade school or less: 85 % Assisted Living/Residential Care: 4	Dementia: NR MCI: NA	Neuropsychological test battery and medical history
Fillenbaum, 1990 ¹⁴² Fair	² US; Community- based	164	16	NR	NR (≥65)	58	White: 49.4 Black: 50.6	NR	Dementia: DSM-III and NINCDS/ADRDA MCI: NA	Semi-structured interview, including a modified physical and neurological examination
Fong, 2011 ¹⁴³ Fair	US; Community- based	709	12	NR	79 (≥70)	60	White: 91	NR	Dementia: DSM-III MCI: NA	Functional status, health information, neuropsychological examination
Fuchs, 2012 ¹⁴⁴ Fair	DEU; Primary care	423	5	NR	82 (75-89)	68	NR	% Low level of edu: 62.2	Dementia: DSM-IV and NINCDS/ADRDA MCI: NA	Neuropsychological test battery, medical and family history, drug inventory, SES, lifestyle, and GDS
Gagnon, 1990 ¹⁴⁵ Fair	FRA; Community- based	2730	4	NR	75 (≥65)	59	NR	% No edu/Grade School: 66	Dementia: DSM-III MCI: NA	Psychometric tests

Author, year Quality	Country; recruitment setting	N Screened	Dem, %	MCI, %	Age, mean (range)	Female, %	Race/ Ethnicity, %	SES	Diagnostic Criteria	Reference Standard
Galvin, 2005 ¹⁴⁶ Fair	US; Community- based, Primary care, Other medical	236	24	29	78 (55-102)	53	NR	NR	Dementia: DSM-IV and NINCDS/ADRDA MCI: CDR=0.5	Semistructured interview
Grut, 1993 ¹⁴⁷ Fair	SWE; Community- based	1810	14	NR	NR (≥75)	76	NR	% Elementary edu: 52.9	Dementia: DSM-III-R MCI: NA	Clinical examination, family interview, and laboratory tests
Heun, 1998 ¹⁴⁸ Fair	DEU; Community- based	291	13	NR	77 (60-99)	60	NR	Mean edu, years: 9.5	Dementia: DSM-III-R MCI: NA	CIDI and SIDAM
Holsinger, 2012 ¹⁴⁹ Good	US; Primary care	639	3	39	75 (≥65)	7	White: 73 Black: 26 Hispanic: 1 Other: <1	Mean edu, years: 13.0	Dementia: DSM-IV, NINCDS-ADRDA, NINDS-AIREN MCI: Functional impairment due to cognitive impairment that the participant or informant reported that did not meet criteria for dementia (that was fairly mild), and or performance on neuropsychological measure	Clinical interviews, neuropsychological testing, neurological examination, and review of electronic medical records
Hooijer, 1992 ¹⁵⁰ Fair	NLD; Primary care	358	4	NR	NR	NR	NR	NR	Dementia: GMS, AGECAT MCI: NA	GMS-AGECAT
Hsu, 2015 ^{151†} Good	TWN; Community- based	276	6	NR	68 (≥60)	51	NR	Mean edu, years: 11.4	Dementia: DSM-IV MCI: NA	Neurological examination, function, laboratory tests, imaging
Jeong, 2004 ¹⁵² Good	KOR; Community- based	235	20	23	74 (NR)	66	NR	Median edu, years: 1	Dementia: DSM-IV, NINCDS-ADRDA MCI: DSM-IV (people with cognitive decline	Clinical exam and neuropsychiatric inventory

Author, year Quality	Country; recruitment setting	N Screened	Dem, %	MCI, %	Age, mean (range)	Female, %	Race/ Ethnicity, %	SES	Diagnostic Criteria	Reference Standard
									who did not meet DSM- IV criteria for dementia)	
Jorm, 1996 ¹⁵³ Fair	AUS; POWs/ex- servicemen	144	NR	NR	73 (66-83)	0	NR	NR	Dementia: ICD-9 MCI: NR	Neuropsychological test battery
Juva, 1997 ¹⁵⁴ Fair	FIN; Community- based	656	14	NR	80 (75-85)	73	NR	Low edu: 74.4%	Dementia: DSM III-R MCI: NA	CDR followed by a clinical assessment when indicated
Kahle-Wrobleski, 2007 ¹⁵⁵ Fair	US; Community- based	435	36	28	95 (90-104)	74	NR	>12 years of formal edu: 73%	Dementia: DSM-IV MCI: NR	Neurological examination
Kaufer, 2008 ¹⁵⁶ Fair	US; Other medical	146	38	52	83 (≥65)	79	White: 90	12 years of edu or less: 55%	Dementia: DSM-IV MCI: DSM-IV	Neuropsychological testing, physical examination, and neurologic examination
Kay, 1985 ¹⁵⁷ Fair	AUS; Electoral roll	274	14	NR	NR (≥70)	64	NR	NR	Dementia: DSM-III MCI: NA	GMS-6
Kirby, 2001 ¹⁵⁸ Fair	IRL; Primary care	648	6	NR	75 (≥65)	NR	NR	Mean edu, years: 10.8	Dementia: GMS MCI: NA	GMS-AGECAT (diagnostic interview)
Kuslansky, 2002 ¹⁵⁹ Fair	US; Community- based, Other medical	240	12	NR	79 (>70)	64	White: 72 Black: 28	Mean edu, years: 12.5	Dementia: DSM-III-R; DSM-IV; NINCDS- ADRDA MCI: NA	Medical and social history, neurological examination, neuropsychological testing
Lam, 2008 ¹⁶⁰ Fair	HKG; Community- based	459	10	35	71 (NR)	54	Asian: 100	Mean edu, years: 4.8	Dementia: NINCDS- ADRDA MCI: NR	CDR
Lee, 2008 ¹⁶¹ Fair	KOR; Community- based, Hospital	196	22	19	70 (≥65)	65	Asian: 100	<6 years edu: 53.1%	Dementia: NR MCI: NR	Neuropsychological test battery
Lee, 2008 ¹⁶² Fair	KOR; Other medical	465	0	48	71 (≥60)	63	NR	Mean edu, years: 6.1	Dementia: NR MCI: NR	Medical history, physical and neurologic examinations, neuropsychological testing, and dementia- related blood tests

Author, year Quality	Country; recruitment setting	N Screened	Dem, %	MCI, %	Age, mean (range)	Female, %	Race/ Ethnicity, %	SES	Diagnostic Criteria	Reference Standard
Lipton, 2003 ¹⁶³ Fair	US; Community- based, Primary care	300	9	10	79 (≥65)	66	White: 83 Black: 15 Hispanic: 2	12.8	Dementia: DSM-III-R MCI: NR	Clinical assessment and a case conference
Manly, 2011 ¹⁶⁴ Fair	US; Insurance list	377	14	18	81 (≥65)	68	White: 30 Black: 35 Hispanic: 34 Other: 1		Dementia: DSM III-R MCI: NR	Medical history and neurologic and physical examination
Mao, 2018 ⁴⁶⁰ Good	TWN; Community- based	10340	9	NR	76 (NR)	52	NR		Dementia: NIA-AA MCI: NA	Medical history, lifestyle factors, MMSE, AD8, CDR, cognitive and functional status
Markwick, 2012 ¹⁶⁵ Good	GBR; Community- based	107	8	19	76 (NR)	54	NR	23.4%	Dementia: NINCDS- ADRDA, NINCDS- AIREN, Hachinski, DSM-IV MCI: Petersen criteria	Neuropsychological test battery, informant interview, medical history and examination, imaging, blood tests
McDowell, 1997 ¹⁶⁶ Fair	CAN; Community- based	1600	23	30	80 (65-99)	59	NR		Dementia: DSM-III-R MCI: NR	Medical and family history, 3MS, physician's mental status assessment, and physical and neurological examination
Morales, 1997 ¹⁶⁷ Fair	ESP; Community- based	160	13	NR	73 (61-96)	68	NR		Dementia: DSM-III-R MCI: NA	Neurological and neuropsychological assessment
Ozer, 2016 ^{168†} Fair	GBR; Primary care	152	0	26	78 (≥75)	NR	NR		Dementia: NA MCI: Petersen criteria	Neuropsychological test battery, ADL, adult reading test
Rait, 2000 ¹⁶⁹ Fair	GBR; Primary care	101	11	NR	69 (≥60)	52	Asian: 100		Dementia: GMS MCI: NA	GMS-AGECAT
Rait, 2000 ¹⁷⁰ Fair	GBR; Primary care	96	11	NR	69 (60-85)	50	Black: 100		Dementia: GMS MCI: NA	GMS-AGECAT

Author, year Quality	Country; recruitment setting	N Screened	Dem, %	%	Age, mean (range)	Female, %	%	SES	Diagnostic Criteria	Reference Standard
Ranson, 2018 ⁴⁶¹ Good	US; Community- based	824	35	NR	82 (70-110)	58	White: 72.2 Black: 18.0 Hispanic: 9.8	Mean edu, years: 10.1	Dementia: DSM-III-R and DSM-IV MCI: NA	Neuropsychological test battery, clinical examination, depression screen, and informant interview
Resichies, 1997 ¹⁷¹ Fair	DEU; Community- based	516	20	NR	NR (≥70)	NR	NR	NR	Dementia: NR MCI: NA	GMS-A interview and History and Aetiology Schedule interview
Rideaux, 2012 ¹⁷² Fair	US; Community- based	701	26	32	80 (≥70)	55	White: 72 Black: 18 Hispanic: 10	Mean edu, years: 10.3	Dementia: DSM-IV MCI: NR	Medical examination and neuropsychological test battery
Saxton, 2009 ¹⁷³ Good	US; Community- based, Primary care	524	0	44	73 (≥60)	65	White: 94	Mean edu, years: 13.5	Dementia: University of Pittsburgh ADRC MCI: University of Pittsburgh ADRC	Neuropsychological test battery, medical history, depression scale, IADL, subjective memory complaints
Solomon, 2000 ¹⁷⁴ Fair	US; Primary care	137	10	NR	77 (61-88)	67	NR	Mean edu, years: 11.8	Dementia: NINCDS- ADRDA MCI: NA	Medical history, history of cognitive complaints, physical examination, and neuropsychological testing
Stein, 2015 ^{175†} Good	DEU; Primary care	2657	3	NR	81 (≥75)	65	NR	% Level of edu: Low=61 Middle=27 High=12	Dementia: DSM-IV MCI: NA	SIDAM
Swearer, 2002 ¹⁷⁶ Fair	US; Community- based, Primary care	46	17	NR	81 (NR)	65	NR	Mean edu, years: 14.4	Dementia: DSM-IV MCI: NA	Neuropsychological testing
Tariq, 2006 ¹⁷⁷ Fair	US; Primary care	702	12	26	75 (NR)	NR	NR	% HS edu or more: 69.4	Dementia: DSM-IV MCI: DSM-IV	Physical examination, laboratory testing, and mental status examination

Author, year	Country; recruitment	N	Dem,	MCI,	Age, mean	Female,	Race/ Ethnicity,			
Quality	setting	Screened	%	%	(range)	%	%	SES	Diagnostic Criteria	Reference Standard
Tokuhara, 2006 ¹⁷⁸ Fair	US; Primary care	230	7	10	74 (65-96)	66	Asian: 100	Mean edu, years: 12.2	Dementia: Benson and Cummings MCI: CASI<74 and CDR>0	Interview data, cognitive testing, and assessment of function
Vannier-Nitenberg, 2016 ^{179†} Fair	FRA; Primary care	585	1	30	71 (≥65)	47	NR	No schooling/ primary edu: 32% Social deprivation (EPICES score): ≥30: 22% ≤30: 77%	Dementia: NINCDS- ARDA MCI: NINCDS-ARDA (amnestic MCI)	Neuropsychological test battery
Vercambre, 2010 ¹⁸⁰ Fair	FRA; Community- based	120	8	15	79 (NR)	100	NR	NR	Dementia: NR MCI: NR	Neuropsychological test battery
Waite, 1998 ¹⁸¹ Fair	AUS; Community- based	630	28	NR	84 (78-99)	55	NR	Mean edu, years: 10	Dementia: DSM-IV criteria A and B MCI: NA	Medical history, neuropsychological test battery, and detailed medical and neurological examination
Wolf-Klein, 1989 ¹⁸² Good	US; Other medical	312	47	NR	77 (58-99)	70	NR	NR	Dementia: NINCDS- ADRDA MCI: NA	History taking and physical examination

* Required memory problems if aged 50-74 years

† New study

‡ Recruited patients with memory concerns

Abbreviations: 3MS = Modified Mini-Mental State Examination; ADL = activities of daily living; ADRC = Aging and Disability Resource Center; AI/AN = American Indian/Alaskan Native; AUS = Australia; CAN = Canada; CASI = Cognitive Abilities Screening Instrument; CDR = Clinical Dementia Rating; Dem = dementia; DEU = Germany; DSM = Diagnostic and Statistical Manual of Mental Disorders; Edu = education; EPICES = Evaluation of Deprivation and Inequalities in Health Examination Centers; ESP = Spain; FIN = Finland; FRA = France; GBR = Great Britain/United Kingdom; GDS = Global Deterioration Scale; GMS-AGECAT = Geriatric Mental State – Automated Geriatric Examination for Computer Assisted Taxonomy; HKG = Hong Kong; IADL = instrumental activities of daily living; ICD-9 = International Statistical Classification of Diseases and Related Health Problems-9th revision; ICD-10 = International Statistical Classification of Diseases and Related Health Problems-9th revision; IRL = Ireland; KOR = Korea; MCI = mild cognitive impairment; N = number of participants; NA = not applicable; NINCDS/ADRDA = National Institute of Neurological and Communicative Diseases and Stroke/Alzheimer's Disease and Related Disorders Association; NINDS-AIREN = National Institute of Neurological Disorders and Stroke and Association Internationale pour la Recherché et l'Enseignement en Neurosciences; NLD = Netherlands; NR = not reported; SD = standard deviation; SES = socioeconomic status; SGP = Singapore; SIDAM = Structured Interview for the Diagnosis of Dementias of the Alzheimer type and Multi-infarct dementia and dementias of other etiology; SWE = Sweden; TWN = Taiwan

Category	Test name (Target) [*]	Description	Domains
Very brief (5 minutes	3-Word	3-item recall	Memory
or less)		3-item recall plus 3 orientation questions	Memory
	AD8 (informant)	Asks informant about judgment, less interest in hobbies, repeats things,	Memory, Executive
		trouble using tools, forgets month or year, finances, trouble remembering	Functioning, Apraxia,
		appointments or daily things	Agnosia
	Clock Drawing Test, CDT	Clock draw; variety of scoring methods	Executive Functioning,
			Apraxia
	Cognitive Disorders Examination	3-word test, simplified clock test and 5 spatial orientation questions from	Memory, Executive
	test, CoDEx	the MMSE	Functioning, Apraxia
	Dubois five-word test	Recall of 5 word list	Memory
	Functional Activities Questionnaire,	Activities and independent activities of daily living, ability to remember	Memory, Executive
	FAQ (informant)	appointments, ability to keep track of current events, understanding books	Functioning, Apraxia
		Recall, orientation, recent news recall. Patient questionnaire is paired with	
	Cognition, GPCOG (patient and informant)	an informant questionnaire that asks about memory, finances, wordfinding, ADLs	Functioning, Aphasia
	Hopkins Verbal Learning Test, HVLT	Immediate recall of objects	Memory
	Katz Activities of Daily Living, Katz	Activities of daily living	Executive Functioning,
	ADL		Apraxia, Agnosia
	Lawton Instrumental Activities of	Independent activities of daily living	Executive Functioning,
	Daily Living, Lawton IADL		Apraxia, Agnosia
	2-item functional memory screen,	Subjective memory complaints and trouble with executive function Note:	Memory, Executive
	MF-2 (patient and informant)	This test can be completed by the informant or the patient	Functioning
	Mini-Cog	3-item recall plus clock draw	Memory, Executive
			Functioning, Apraxia
	Memory Impairment Screen, MIS	4-item recall, either spontaneous or cued recall	Memory
	Memory Impairment Screen by	4-item recall, either spontaneous or cued recall administered by	Memory
	Telephone, MIS-T	telephone	
	Mental State Questionnaire, MSQ	Memory, orientation, naming, attention	Memory
	Orientation Memory Concentration, OMC	Memory, orientation, concentration	Memory
	Single-item (informant)	Asks about patient memory	Memory
	Short Portable Mental Status Questionnaire, SPMSQ	Orientation, memory, attention	Memory
	Short Test of Mental Status, STMS	Orientation, memory, attention	Memory
	Self-report memory impairment	Yes/No question: Do you feel like your memory is getting worse?	Memory

ategory	Test name (Target)*	Description	Domains
	Sweet 16	Orientation (identification of person, place, time, and situation),	Memory
		registration, digit spans (tests of verbal memory), and recall	
	Trail Making Tests, TMT	Different versions have patients go to different numbers/letters	Executive Functioning
	Visual Association Test, VAT	Visual association and recall	Memory, Apraxia
	Verbal Fluency, VF	Asks participant's name, and asks them to list as many different animals,	Memory, Aphasia,
		first names, or similar objects as possible in 1 min	Executive Function
ief (6-10 minutes)	7-Minute Screen, 7MS	Recall objects from categories, clock, vegetables	Memory, Executive
			Functioning, Aphasia,
			Apraxia, Agnosia
	Abbreviated Mental Test, AMT	Orientation, memory, name objects, attention tests	Memory, Agnosia
	Free and Cued Recall, FCR	Controlled learning of a card with 4 pictures; each with a semantic cue;	Memory
		the patient counts backwards by threes for 20 seconds (as interference	
		for working memory) and then has 3 recall trials without then with the	
		semantic cues	
	Abbreviated Fuld Object Memory	Participants attempt to identify 10 common items concealed in a bag and	Memory
	Evaluation, FOME-abbreviated	are asked to recall the 10 items 3 different times. Each time after	
		identifying the items, participants receive a semantic fluency distractor	
		task for 60, 30, and 30 seconds, respectively	
	Immediate Recall	Evaluator reads a story, then asks patient to remember as many things	Memory
		from story as possible	
	Kendrick Cognitive Tests		Memory
		of 10 digits each. Scoring guidelines permit 2 determinations: distinction	
		between dementia and normal and distinction between dementia,	
		depression, and normal	
	Labyrinth Test - mistakes	Patient is asked to draw a line that successfully navigates through a maze	
	Labyrinth Test - seconds	Patient is asked to draw a line that successfully navigates through a maze	Apraxia
	Memory Alteration Test, M@T	Assesses five cognitive skills: encoding, orientation, semantic memory,	Memory
		free recall, and cued recall	
	MMblind	Excludes items from MMSE requiring vision: naming, reading,	Memory, Aphasia
		comprehension, copying, writing, and instructions to handle a sheet of	
		paper, resulting in a maximum score of 22	
	Mini-Mental State Examination,	Orientation, recall, naming, draw figure, repetition, attention, reading,	Memory, Aphasia,
	MMSE		Apraxia, Agnosia
	Montreal Cognitive Assessment.	Trails B, copy figure, clock, naming, verbal fluency, 5-word recall,	Memory, Executive
	MoCA	similarities, orientation, attention	Functioning, Aphasia,
			Apraxia, Agnosia
	Benton's Orientation Test, OT	Identify month, date, year, day of the week, and time of day	Memory
	Short Blessed Test, SBT	Temporal orientation, attention, and short-term memory test	Memory

Category	Test name (Target)*	Description	Domains
	Saint Louis University Mental Status Examination, SLUMS	Orientation, 5-item recall, math, animals, attention, clock, figures, story	Memory, Executive Functioning, Aphasia, Apraxia, Agnosia
	Storandt Battery	Word fluency and trailmaking	Executive Functioning, Aphasia
		Orientation, repetition, naming, and calculations are some of the items covered	Memory, Executive Functioning
	-	Orientation, repetition, naming, and calculations are some of the items covered	Memory, Executive Functioning
		Orientation, ability to copy a sentence, semantic knowledge, calculation, verbal fluency, similarities, naming, visuospatial abilities, recall of copied sentence	Memory, Executive Functioning, Aphasia, Apraxia
	recall	Immediate recall and recognition tasks. Recognition task is composed of 8 targets and 8 distractors	Memory
	Word List Learning - immediate recognition hit	Immediate recall and recognition tasks. Recognition task is composed of 8 targets and 8 distractors	Memory
		Tests immediate and delayed memory, and learning ability of non- associated verbal material. Patients are asked to recall as many of ten words as possible, immediately after having read them. After 5-10 minutes, patients are again asked to recall as many of the ten words presented before as possible, without seeing them. Finally, patients are asked to recognize the ten words among a list of 20 words.	Memory
Longer, Self- administered	Computer Assessment of Mild Cognitive Impairment, CAMCI	Orientation, figure identification, picture recall, word recall, attention, "virtual environment" (follow directions while driving)	Memory, Executive Functioning, Apraxia
	Test, CAST	Memory, orientation, naming, copy a sentence, copy a figure, addition, fill out a check, clock draw, plus multiple questions about memory complaints, changes in behavior	Memory, Executive Functioning, Aphasia, Apraxia, Agnosia
	CIDS (informant)	Asks informant about changes in patient memory, orientation, judgment and problem solving, community affairs, involvement in home and hobbies, personal care, and language	Memory, Executive Functioning, Aphasia, Agnosia
		Asks informant about changes in cognitive function, physical function, patient personality and behavior	Memory, Executive Functioning, Apraxia, Agnosia
	Short Informant Questionnaire on Cognitive Decline in the Elderly, IQCODE-Short (informant)	Same as full IQCODE, except has 16 rather than 26 questions	Memory, Executive Functioning, Apraxia, Agnosia
If not patient		Questions for informant about perceived changes in memory and ability to find their way around	Memory, Executive Functioning, Agnosia

*If not patient

	Target		Screened	% (n/N) with			Sens	Spec	PPV	NPV	AUC
Test name	condition	Author, year	group	condition	Total n	Cutoff	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)
3-Word	Dementia	Kuslansky, 2002 ¹⁵⁹	All	12 (28/240)	240	0	0.65 (NR)	0.85 (NR)	0.37 (NR)	NR	0.80 (NR)
6-Item Screener	Dementia	Callahan, 2002 ¹³¹	All	4 (15/344)	344	≥3	0.887 (NR)	0.880 (NR)	0.248 (NR)	0.994 (NR)	0.95 (NR)
	Cognitive Impairment	Callahan, 2002 ¹³¹	All	26 (91/344)	344	≥2	0.742 (NR)	0.802 (NR)	0.574 (NR)	0.896 (NR)	0.86 (NR)
AD8	Dementia		60 years or older	24 (113/478)	309	≥4	0.91 (NR)	0.91 (NR)	0.63 (NR)		0.97 (0.95, 0.99)
			75 years or older	24 (113/478)	110	≥4	0.90 (NR)	0.88 (NR)	0.79 (NR)	0.94 (NR)	0.95 (0.91, 0.99)
			79 years or older	24 (113/478)	59	≥4	0.87 (NR)	0.82 (NR)	0.84 (NR)	0.85 (NR)	0.90 (0.81, 0.98)
		Mao, 2018		9 (917/10340)	8805	1.5	0.88 (NR)	0.84 (NR)	NR	NR	0.90 (0.89, 0.92)
			School	NR	NR	1.5	0.84 (NR)	0.87 (NR)	NR	NR	0.90 (0.88, 0.92)
			Edu illiterate		NR		0.92 (NR)	0.74 (NR)	NR	NR	0.89 (0.88, 0.91)
			Edu Jr HS or higher		NR	1.5	0.82 (NR)	0.92 (NR)	NR	NR	0.91 (0.88, 0.95)
			Men	NR	NR		0.87 (NR)	0.87 (NR)	NR	NR	0.91 (0.89, 0.93)
				NR	NR	1.5	0.88 (NR)	0.82 (NR)	NR	NR	0.90 (0.88, 0.91)
	MCI			29 (68/236)	180	≥2	NR	NR	NR	NR	0.834 (NR)
	Cognitive Impairment	2005 ¹⁴⁶	All	53 (124/236)	236	≥2	0.85 (NR)	0.86 (NR)	0.76 (NR)	0.84 (NR)	0.904 (NR)
CDT	Dementia	Ball, 2001 ¹²⁷	All	9 (10/170) (estimated)	53	NR	0.67 (NR)	0.69 (NR)	0.39 (NR)	0.91 (NR)	NR
		Del Ser, 2006 ¹³⁷	All	12 (48/416)	416	NR (Freedman)	0.979 (NR)	0.807 (NR)	0.398 (NR)	0.996 (NR)	0.927 (NR)
		Fuchs, 2012 ¹⁴⁴	All	5 (21/423)	423	≤7 (Sunderland)		,0.837 (0.801, 0.873)	,0.207 (0.120, 0.295)	0.994 (0.986, 1.00)	0.856 (0.733, 0.978)
		Kirby, 2001 ¹⁵⁸	All	6 (41/648)	648	≤5 (Sunderland)	NR	NR	NR	NR	NR (NR)
		Wolf-Klein, 1989 ¹⁸²	All	47 (147/312)	312	Abnormal patterns	NR (NR)	NR (NR)	NR (NR)	NR (NR)	NR (NR)

Test name	Target condition	Author yoor	Screened	% (n/N) with condition	Total n	Cutoff	Sens (95% CI)	Spec (95% CI)	PPV (95% CI)	NPV (95% CI)	AUC (95% CI)
Test name	MCI	Author, year Donnelly,	group All	20 (20/100)	100	1 SD	0.85 (0.62,	0.44 (0.33,	0.27 (0.17,	0.92 (0.79,	0.73 (NR)
	IVICI	2008 ¹³⁸	All	20 (20/100)	100	(Freedman)	0.85 (0.82, 0.97)	0.44 (0.33, 0.55)	0.27 (0.17, 0.40)	0.92 (0.79, 0.98)	0.73 (INK)
		Ehreke,	All-MCI	14 (58/428)	3198	(neeuman) ≤9	0.594 (NR)	0.597 (NR)	NR	NR	0.616 (NR)
		2009 ¹⁴⁰	modified	14 (00/420)	0100	-Sunderland		0.007 (1117)			0.010 (111)
			All-MCI	14 (58/428)	3198	<u>≤</u> 9	, 0.582 (NR)	0.573 (NR)	NR	NR	0.595 (NR)
			original	((Sunderland					
		Ehreke,	All	14 (58/428)	428	≤9	0.69 (NR)	0.63 (NR)	NR	NR	NR
		2009 ¹⁴⁰				(Sunderland)				
			All	14 (58/428)	428	≥2	0.76 (NR)	0.58 (NR)	NR (NR)	NR (NR)	NR
						(Shulman)					
		Lee, 2008 ¹⁶²	All	48 (224/465)	465	1/2	0.430 (NR)	0.853 (NR)	0.245 (NR)	0.784 (NR)	0.656
						(CERAD)					(0.606,
											0.706)
			All	48 (224/465)	465	9/10	0.407 (NR)	0.830 (NR)	0.210 (NR)	0.748 (NR)	0.653
						(Freedman)					(0.604,
			All	48 (224/465)	465	6/6.5 (Todd)		0.813 (NR)	0.209 (NR)	0.716 (NR)	0.701) 0.661
			All	46 (224/405)	400	6/6.5 (1000)	0.444 (NR)	0.013 (INR)	0.209 (NR)	0.7 IO (INR)	(0.613,
											0.710)
			All	48 (224/465)	465	7/8	0.564 (NR)	0.718 (NR)	0.182 (NR)	0.559 (NR)	0.669
			/ \	10 (22 1/ 100)	100	(Rouleau)	0.001 (111)	0.710 (111)	0.102 (111)	0.000 (111)	(0.621,
						(0.717)
CoDEx	Cognitive	Vannier-	All	31 (182/585)	491	NA	0.320 (NR)	0.848 (NR)	0.480 (NR)	0.739 (NR)	NR (NR)
	Impairment	Nitenberg,		· · · · ·			. ,	· · · ·	. ,	, ,	, , ,
Dubois five-	Cognitive	2016* ¹⁷⁹	All	31 (182/585)	554	≤9	0.283 (NR)	0.892 (NR)	0.544 (NR)	0.733 (NR)	NR (NR)
word test	Impairment										
FAQ	Dementia	Cruz-Orduna,	All	9 (15/160)	160	≥9	0.8667 (NR)	0.8207 (NR)	0.3333 (NR)	0.9835 (NR)	0.91 (0.84,
		2011 ¹³⁴									0.96)
	Dementia	Juva, 1997 ¹⁵⁴	All	14 (93/656)	370	≥8	0.94 (NR)	0.84 (NR)	0.50 (NR)	NR (NR)	0.96 (0.92,
											0.98)
	Cognitive	Cruz-Orduna,	All	56 (90/160)	160	≥2	0.7333 (NR)	0.7286 (NR)	0.7765 (NR)	0.68000	0.77 (0.69,
	Impairment	2011 ¹³⁴								(NR)	0.84)
GPCOG	Dementia	Brodaty, 2002 ¹²⁹	All	29 (82/283)	202	≤10	0.82 (NR)	0.83 (NR)	0.67 (NR)	0.92 (NR)	0.91 (0.86, 0.95)
HVLT	MCI	Donnelly,	All	20 (20/100)	100	1 SD	0.55 (0.32,	0.43 (0.32,	0.19 (0.10,	0.79 (0.64,	0.55 (NR)
		2008 ¹³⁸					0.77)	0.54)	0.32)	0.90)	
	Dementia	Ayalon,	All	32 (206/647)	647	>2	NR	NR	NR	NR	NR
	MCI	2011 ¹²⁶	All	29 (185/647)	441	>2	0.811 (NR)	0.753 (NR)	0.246 (NR)	0.188 (NR)	0.85 (NR)

	Target		Screened	% (n/N) with			Sens	Spec	PPV	NPV	AUC
Test name	condition	Author, year	group	condition	Total n	Cutoff	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)
Informant memory report	Cognitive Impairment		All	60 (391/647)	647	>2	NR	NR	NR	NR	NR
Katz ADL	Dementia	Juva, 1997 ¹⁵⁴	All	14 (93/656)	437	≥2	0.81 (NR)	0.83 (NR)	0.42 (NR)	NR (NR)	0.90 (0.80, 0.94)
Lawton IADL		Juva, 1997 ¹⁵⁴	All	14 (93/656)	424	≤4	0.91 (NR)	0.86 (NR)	0.49 (NR)	NR (NR)	0.95 (0.91, 0.98)
		Mao, 2018 ⁴⁶⁰	All	9 (917/10340)	8805	6.5	0.89 (NR)	0.81 (NR)	NR	NR	0.925 (0.915, 0.935)
			Edu Elem School	NR	NR	6.5	0.87 (NR)	0.82 (NR)	NR	NR	0.916 (0.898, 0.934)
	Edu ill	Edu illiterate	NR	NR	6.5	0.89 (NR)	0.75 (NR)	NR	NR	0.913 (0.898, 0.929)	
			Edu Jr HS or higher	NR	NR	6.5	0.94 (NR)	0.88 (NR)	NR	NR	0.947 (0.917, 0.978)
			Men	NR	NR	6.5	0.93 (NR)	0.78 (NR)	NR	NR	0.926 (0.910, 0.942)
			Women	NR	NR	6.5	0.86 (NR)	0.84 (NR)	NR	NR	0.928 (0.915, 0.940)
M@T - Cued recall	MCI	Ozer, 2016* ¹⁶⁸	³ All	26 (40/152)	152	<9	0.80 (NR)	0.78 (NR)	0.29 (NR)	0.97 (NR)	0.86 (0.78, 0.93)
M@T - Encoding	MCI	-	All	26 (40/152)	152	<9	0.58 (NR)	0.88 (NR)	0.35 (NR)	0.95 (NR)	0.79 (0.70, 0.87)
recall	MCI		All	26 (40/152)	152	<6	0.90 (NR)	0.77 (NR)	0.30 (NR)	0.99 (NR)	0.88 (0.82, 0.94)
M@T - Orientation	MCI			26 (40/152)	152	<5	0.38 (NR)	0.83 (NR)	0.20 (NR)	0.92 (NR)	0.61 (0.50, 0.71)
M@T - Semantic	MCI			26 (40/152)	152	<14	0.85 (NR)	0.54 (NR)	0.17 (NR)	0.97 (NR)	0.74 (0.65, 0.83)
MF-2	Dementia	Holsinger, 2012 ¹⁴⁹		3 (21/630)	630	Both yes	0.38 (0.20, 0.60)	0.87 (0.84, 0.89)	NR (NR)	NR (NR)	NR (NR)
	Cognitive Impairment		All	42 (268/630)	630	Both yes	0.24 (0.19, 0.29)	0.93 (0.90, 0.95)	NR (NR)	NR (NR)	NR (NR)

Test name	Target condition	Author, year	Screened group	% (n/N) with condition	Total n	Cutoff	Sens (95% CI)	Spec (95% CI)	PPV (95% CI)	NPV (95% CI)	AUC (95% CI)
Mini-Cog	Dementia	Borson, 2006 ¹²⁸		42 (154/371)	371	≤2	NR	NR	NR	NR	NR
		Fuchs, 2012 ¹⁴⁴	All	5 (21/423)	423	≤1	1.00 (0.824, 1.00)	0.852 (0.841, 0.884)	0.234 (0.153, 0.340)	1.00 (0.989, 1.00)	0.956 (0.931, 0.982)
		Holsinger, 2012 ¹⁴⁹	All	3 (21/630)	630	≤2	0.76 (0.54, 0.90)	0.73 (0.69, 0.76)	NR (NR)	NR (NR)	NR (NR)
		Kaufer, 2008 ¹⁵⁶	All	38 (55/146)	146	0	0.87 (0.76, 0.95)	0.54 (0.43, 0.64)	0.53 (NR)	0.88 (NR)	0.706 (NR)
MC	MCI	-	All	52 (76/146)	91	0	0.50 (0.38, 0.62)	0.73 (0.45, 0.92)	0.90 (NR)	0.22 (NR)	0.617 (NR)
	Cognitive Impairment	Borson, 2006 ¹²⁸	All	62 (231/371)	371	≤2	NR	NR	NR	NR	NR
		Holsinger, 2012 ¹⁴⁹	All	42 (268/630)	630	≤2	0.39 (0.34, 0.45)	0.78 (0.73, 0.82)	NR (NR)	NR (NR)	NR (NR)
		Kaufer, 2008 ¹⁵⁶	All	90 (131/146)	146	0	NR	NR	NR	NR	NR
MIS		Buschke, 1999	All	10 (50/483)	483	4	0.80 (NR)	0.96 (NR)	0.69 (NR)	0.98 (NR)	0.94 (NR)
		Holsinger, 2012 ¹⁴⁹	All	3 (21/630)	630	≤4	0.43 (0.24, 0.64)	0.93 (0.90, 0.95)	NR (NR)	NR (NR)	NR (NR)
		Kuslansky, 2002 ¹⁵⁹	All	12 (28/240)	240	≤4	0.86 (NR)	0.97 (NR)	0.80 (NR)	NR	0.93 (NR)
		Ranson, 2018 ⁴⁶¹	All	35 (291/824)	824	≤4	0.82 (0.77, 0.86)	0.85 (0.82, 0.88)	0.48 (0.42, 0.53)	0.97 (0.96, 0.97)	NR
	Cognitive Impairment	Holsinger, 2012 ¹⁴⁹	All	42 (268/630)	630	≤4	0.17 (0.13, 0.22)	0.98 (0.96, 0.99)	NR (NR)	NR (NR)	NR (NR)
MIS-T	Dementia	Lipton, 2003 ¹⁶³	All- extrapolated	9 (27/300)	300	4	0.78 (NR)	0.93 (NR)	0.52 (NR)	NR (NR)	0.92 (NR)
MSQ	Dementia	Fillenbaum, 1990 ¹⁴²	All	16 (26/159)	159	≤7	NR	NR	NR	NR	NR
		Hooijer, 1992 ¹⁵⁰	All	3.6 (13/358)	358	≤7	0.923 (NR)	0.983 (NR)	0.667 (NR)	NR (NR)	NR (NR)
OMC	Dementia	Fillenbaum, 1990 ¹⁴²	All	16 (26/159)	159	≥11	NR (NR)	NR (NR)	NR (NR)	NR (NR)	NR
Self-report	Dementia	Fuchs, 2012 ¹⁴⁴	All	5 (21/423)	423	NA	0.895 (0.757 1.00)	,0.458 (0.409, 0.506)	0.073 (0.039, 0.506)	0.989 (0.974, 1.00)	NR

Test name	Target condition	Author, year	Screened group	% (n/N) with condition	Total n	Cutoff	Sens (95% CI)	Spec (95% CI)	PPV (95% CI)	NPV (95% CI)	AUC (95% CI)
SPMSQ	Dementia		All	12 (48/416)	416	NR	0.958 (NR)	0.885 (NR)	0.522 (NR)	0.993 (NR)	0.978 (NR)
	Bomonda	2006 ¹³⁷	/ 11	12 (10, 110)			0.000 (111)	0.000 (111)	0.022 (111)	0.000 (1117)	0.070 (111)
	Dementia	Erkinjuntti, 1987 ¹⁴¹	All	2 (3/119)	119	≤7	1.00 (NR)	1.00 (NR)	1.00 (NR)	1.00 (NR)	NR
	Dementia	Fillenbaum, 1990 ¹⁴²	All	16 (26/159)	159	NR	NR (NR)	NR (NR)	NR (NR)	NR (NR)	NR
	Dementia	Hooijer, 1992 ¹⁵⁰	All	3.6 (13/358)	358	≤7	1.0 (NR)	0.968 (NR)	0.542 (NR)	NR (NR)	NR (NR)
STMS	MCI	Cummings- Vaughn,	All	42 (57/136)	108	≤32	0.68 (NR)	0.76 (NR)	0.76 (NR)	0.68 (NR)	0.77 (0.68, 0.86)
	Cognitive Impairment	2014 ^{*136}	All	62 (85/136)	136	≤32	0.78 (NR)	0.76 (NR)	0.85 (NR)	0.67 (NR)	0.84 (0.77, 0.90)
Sweet 16	Dementia	Fong, 2011 ¹⁴³	All	1 (86/709)	729	<14	0.99 (0.97, 1.00)	0.72 (0.68, 0.77)	0.33 (0.28, 0.39)	1.00 (0.99, 1.00)	0.97 (NR)
ТМТ	Dementia	Heun, 1998 ¹⁴⁸	All	13 (37/287)	287	≤40	0.81 (NR)	0.71 (NR)	NR (NR)	NR (NR)	0.836 (0.756, 0.916)
TMT A	MCI	Donnelly, 2008 ¹³⁸	All	20 (20/100)	100	1 SD	0.30 (0.12, 0.54)	0.90 (0.81, 0.96)	0.43 (0.18, 0.71)	0.84 (0.74, 0.91)	0.72 (NR)
ТМТ В	MCI		All	20 (20/100)	100	1 SD	0.43 (0.18, 0.71)	0.86 (0.76, 0.93)	0.35 (0.14, 0.62)	0.89 (0.80, 0.95)	0.66 (NR)
TYM - Calculation	MCI	Ozer, 2016* ¹⁶⁸	All	26 (40/152)	152	<4	0.40 (NR)	0.73 (NR)	0.14 (NR)	0.92 (NR)	0.58 (0.47, 0.69)
TYM - Copying	MCI	Ozer, 2016* ¹⁶⁸	³ All	26 (40/152)	152	<1	0.05 (NR)	0.99 (NR)	0.85 (NR)	0.95 (NR)	0.52 (0.49, 0.67)
TYM - Fluency	MCI		All	26 (40/152)	152	<4	0.73 (NR)	0.66 (NR)	0.19 (NR)	0.96 (NR)	0.72 (0.63, 0.82)
TYM - Free recall	MCI		All	26 (40/152)	152	<3	0.50 (NR)	0.93 (NR)	0.44 (NR)	0.94 (NR)	0.72 (0.62, 0.82)
TYM - Help	MCI		All	26 (40/152)	152	<4	0.13 (NR)	0.93 (NR)	0.17 (NR)	0.91 (NR)	0.53 (0.43, 0.64)
TYM - Naming	MCI	1	All	26 (40/152)	152	<5	0.13 (NR)	0.96 (NR)	0.27 (NR)	0.91 (NR)	0.54 (0.43, 0.65)
TYM - Orientation	MCI	1	All	26 (40/152)	152	<10	0.30 (NR)	0.83 (NR)	0.16 (NR)	0.91 (NR)	0.57 (0.46, 0.67)
TYM - Semantic	MCI	1	All	26 (40/152)	152	<2	0.40 (NR)	0.91 (NR)	0.33 (NR)	0.93 (NR)	0.67 (0.56, 0.77)

Testus	Target	Authorstown	Screened	% (n/N) with	Tatala	0	Sens	Spec	PPV	NPV	AUC
Test name	condition	Author, year		condition	Total n	Cutoff	(95% CI)	(95% CI)	(95% CI)	(95% CI)	(95% CI)
TYM - Similarities	MCI			26 (40/152)	152	<4	0.53 (NR)	0.68 (NR)	0.16 (NR)	0.93 (NR)	0.61 (0.51, 0.72)
TYM - Visuospatial 1	MCI		All	26 (40/152)	152	<1	0.13 (NR)	0.94 (NR)	0.19 (NR)	0.91 (NR)	0.50 (0.40, 0.61)
TYM - Visuospatial 2	MCI		All	26 (40/152)	152	<4	0.15 (NR)	0.90 (NR)	0.14 (NR)	0.91 (NR)	0.53 (0.42, 0.63)
VAT	Dementia	Fuchs, 2012 ¹⁴⁴	All	5 (21/423)	423	7/8	0.952 (0.861, 1.00)	,0.960 (0.941 0.979)	,0.556 (0.393, 0.718)	0.997 (0.992, 1.00)	0.981 (0.963, 0.999)
VFT	Dementia	Del Ser, 2006 ¹³⁷	All	12 (48/416)	416	NR	0.979 (NR)	0.839 (NR)	0.443 (NR)	0.996 (NR)	0.975 (NR)
VFT	Dementia	Fuchs, 2012 ¹⁴⁴	All	5 (21/423)	423	≤12	0.895 (0.757 1.00)	,0.883 (0.851 0.914)	,0.266 (0.157, 0.374)	0.994 (0.987, 1.00)	0.918 (0.833, 1.002)
VFT	Dementia		All- extrapolated	9 (27/300)	300	19	0.68 (NR)	0.88 (NR)	0.36 (NR)	NR (NR)	0.89 (NR)
VFT	Cognitive Impairment	Vannier- Nitenberg, 2016* ¹⁷⁹	All	31 (182/585)	553	NA	0.247 (NR)	0.885 (NR)	0.506 (NR)	0.712 (NR)	NR (NR)
VFT - animals	Dementia	Ranson, 2018 ⁴⁶¹	All	35 (291/824)	824	≤8	0.78 (0.73, 0.83)	0.90 (0.87, 0.92)	0.55 (0.48, 0.61)	0.96 (0.95, 0.91)	0.92 (NR)
VFT - animals and names	Dementia	Heun, 1998 ¹⁴⁸		13 (37/287)	287	≤30	0.84 (NR)	0.81 (NR)	NR	NR	0.902 (0.806, 0.998)
VFT - animals category	Dementia	Heun, 1998 ¹⁴⁸		13 (37/287)	287	≤14	0.81 (NR)	0.83 (NR)	NR (NR)	NR (NR)	0.886 (0.828, 0.942)
VFT - repeated animal names	Dementia	Heun, 1998 ¹⁴⁸	AII	13 (37/287)	287	≤1	0.31 (NR)	0.76 (NR)	NR	NR	0.533 (0.423, 0.643)
VFT - repeated first names * New study	Dementia	Heun, 1998 ¹⁴⁸	All	13 (37/287)	287	≤1	0.32 (NR)	0.70 (NR)	NR	NR	0.512 (0.402, 0.622)

* New study

Abbreviations: 3-Word = 3-Word Memory Test; AD8 = 8-item informant interview; ADL = activities of daily living; AUC = area under the curve; CDT = Clock Drawing Test;

Table 4. Test Performance of Very Brief Screening Instruments, by Instrument and Target Condition (KQ 2)

CERAD = Consortium to Establish a Registry for Alzheimer's Disease; CI = confidence interval; CoDEx = Cognitive Disorders Examination test; FAQ = Functional Activities Questionnaire; GPCOG = General Practitioner Assessment of Cognition; HVLT = Hopkins Verbal Learning Test; IADL = instrumental activities of daily living; KQ = key question; M@T = Memory Alteration Test; MCI = mild cognitive impairment; MCI = mild cognitive impairment; MF-2 = 2-item functional memory screen; MIS/MIS-T = Memory Impairment Screen/Memory Impairment Screen by Telephone; MSQ/SPMSQ = Mental Health Status Questionnaire/Short Portable Mental Status Questionnaire; N = number of participants; NA = not applicable; NPV = negative predictive value; NR = not reported; OMC = Orientation Memory Concentration; PPV = positive predictive value; SD = standard deviation; STMS = Short Test of Mental Status; TMT = Trail Making Test; TYM = Test Your Memory; Sens = sensitivity; Spec = specificity; VAT = Visual Association Test; VFT = Verbal Fluency Test

Sens (95% Test name Target Author, year Screened Percent (n/n) Total Cutoff Spec PPV (95% NPV (95% AUC (95% condition Group with condition (95% CI) CI) CI) n CI) CI) 7MS Dementia Del Ser, 2006¹³⁷ All 12 (48/416) 416 NR 1.00 (NR) 0.951 (NR)0.786 (NR)1.00 (NR) 0.996 (NR) Solomon. All 10 (13/137) 137 ≥0.7 NR NR NR NR NR 2000174 Brodaty, 2002¹²⁹ All AMT 29 (82/283) 269 ≤7 0.42 (NR) 0.93 (NR) 0.71 (NR) 0.80 (NR) 0.78 (0.71, Dementia 0.84) Hooijer, 1992¹⁵⁰ 3.6 (13/358) 358 ≤7 0.923 (NR) 0.954 (NR)0.429 (NR)NR NR All ≤7 NR Rait. 2000¹⁷⁰ All 6 (6/96) 96 0.83 (0.76, NR 1.0 (0.54, NR 0.91) 1.0) Rait. 2000¹⁶⁹ Gujarati 11 (13/120) 62 ≤5 1.0 (0.16, 0.95 NR NR NR 1.0) (0.858, 0.99) Pakistani NR 39 ≤6 1.0 (0.664, 0.867 NR NR NR 1.0) (0.684, 0.956) 12 (48/416) 1.00 (NR) FCR Del Ser, 2006¹³⁷ NR 0.872 (NR)0.505 (NR)1.00 (NR) 0.994 (NR) Dementia All 416 FOME-57 (401/701) Coanitive Rideaux, 2012¹⁷² Black 87 ≤21 0.65 (0.55, 0.74 (0.64, 0.76 (0.67, 0.62 (0.52, NR 0.83) abbreviated Impairment 0.75) 0.85) 0.72) ≤24).93 (NR) 0.57 (NR) NR NR NR _atino 57 (401/701) 55 0.93 (0.91, 0.83 (0.80, 0.80 (0.75, NR 57 (401/701) ≤20 White 380 0.55 (0.50, 0.87) 0.60) 0.96) 0.84) Immediate Dementia Fuchs, 2012¹⁴⁴ All 5 (21/423) 423 ≤14 1.00 (1.00, 0.828 0.207 1.00 (1.00, 0.957 Recall 1.00) (0.790, (0.122, 1.00) (0.927, 0.865) 0.292) 0.987) Kendrick Dementia Fillenbaum, 1990 All 16 (26/159) 159 NA NR NR NR NR NR Cognitive Tests abyrinth Dementia Heun. 1998¹⁴⁸ All 13 (37/287) 287 ≤3 0.88 (NR) 0.60 (NR) NR NR 0.802 Test -(0.716, mistakes 0.888) abyrinth Dementia Heun, 1998¹⁴⁸ All 13 (37/287) 287 ≤80 0.56 (NR) 0.84 (NR) NR NR 0.725 Test -(0.592, 0.858) seconds M@T MCI Ozer. 2016*168 All 26 (40/152) 152 <40 0.84 (NR) 0.37 (NR) 0.98 (NR) 0.85 (NR) 0.91 (0.85, 0.96)

Test name	Target	Author, year	Screened	Percent (n/n)		Cutoff	Sens (95%		PPV (95%	NPV (95%	AUC (95%
	condition			with condition			CI)	(95% CI)	CI)	CI)	CI)
MMblind	Dementia	Resichies,		20 (100/491)	248	18/19	0.812 (NR)	0.894 (NR)	NR	NR	NR
		1997 ¹⁷¹	years								
				20 (100/491)	243	16/17	0.734 (NR)	0.781 (NR)	NR	NR	NR
			years	00 (400 (404)	404	47/40	0.040 (ND)				
	Dementie	Dradaty 2002129			491 283	17/18		0.821 (NR)			NR
MMSE	Dementia			, ,	283	≤24		0.76 (NR)			0.85 (0.80, 0.90)
				4 (15/344)	344	≤24	. ,	()	0.248 (NR)		. ,
				4 (15/344)	344	≤23	· · · ·		0.242 (NR)	. ,	· · ·
			60 years or older	24 (113/478)	309	≤20	0.75 (NR)	0.94 (NR)	0.66 (NR)	0.96 (NR)	0.92 (0.88, 0.97)
			75 years or older	24 (113/478)	110	≤17	0.71 (NR)	0.92 (NR)	0.82 (NR)	0.86 (NR)	0.87 (0.79, 0.94)
			79 years or older	24 (113/478)	59	≤19	0.81 (NR)	0.86 (NR)	0.86 (NR)	0.80 (NR)	0.84 (0.74, 0.95)
		Cruz-Orduna,	All	9 (15/160)	160	≤18	0.8000 (NR)			0.9766	0.89 (0.82,
		2011 ¹³⁴						(NR)	(NR)	(NR)	0.95)
				4 (44/1115)	1115	≤23	· · · ·	0.871 (NR)		NR	NR
		Fillenbaum, 1990 ¹⁴²	All	16 (26/159)	159	≤23	NR	NR	NR	NR	NR
		Fong, 2011 ¹⁴³	All	1 (86/709)	709	≤23		0.89 (0.86, 0.92)	0.52 (0.44, 0.60)	0.98 (0.99, 0.99)	0.95 (NR)
		Gagnon, 1990 ¹⁴⁵	All	4 (10/2730)	2730	24		0.78 (NR)		NR	NR
		Grut, 1993 ¹⁴⁷	All	14 (255/810)	1810	≤23			0.68 (NR)	NR	NR
		Heun, 1998 ¹⁴⁸	All	13 (37/287)	287	≤23	0.84 (NR)	0.99 (NR)	NR	NR	0.988 (0.880, 1.0)
			All	13 (37/287)	287	≤24	0.92 (NR)	0.96 (NR)	NR	NR	0.988 (0.880, 1.0)
	Dementia	Hooijer, 1992 ¹⁵⁰	All	3.6 (13/358)	358	≤23	0.769 (NR)	0.965 (NR)	0.455 (NR)	NR	NR
		Chan, 2016 ^{*132}	13 years edu or more	6 (16/276)	97	27.5	0.63 (NR)	1.00 (NR)	NR	NR	NR
			6 years edu or less	6 (16/276)	61	24.5	0.79 (NR)	0.75 (NR)	NR	NR	0.7965 (0.60, 0.99)
		6	60-69	6 (16/276)	171	25.5	0.85 (NR)	1.00 (NR)	NR	NR	0.8925
			years 70-79	6 (16/276)	91	24.5	0.87 (NR)	0.38 (NR)	NR	NR	(0.83, 0.96) 0.6456
			years	0 (10/2/0)	51	24.0	0.07 (INK)	0.30 (INIX)			(0.44, 0.85)

Test name	Target	Author, year		Percent (n/n)		Cutoff	Sens (95%			NPV (95%	AUC (95%
	condition			with condition			CI)	(95% CI)	CI)	CI)	CI)
			7-12 years	6 (16/276)	118	28.5	0.41 (NR)	0.88 (NR)	NR	NR	0.6290
			edu								(0.45, 0.81)
			80 years or	6 (16/276)	14	28.5	0.27 (NR)	1.00 (NR)	NR	NR	0.5758
			more								(0.19, 0.96)
			All	6 (16/276)	276	28.5	0.38 (NR)	0.92 (NR)	NR	NR	0.6976
											(0.56, 0.83)
			Men	6 (16/276)	136	28.5	0.35 (NR)	1.00 (NR)	NR	NR	0.6717
											(0.51, 0.84)
			Women	6 (16/276)	140	25.5	0.77 (NR)	0.67 (NR)	NR	NR	0.7317
											(0.50, 0.96)
		Jeong, 2004 ¹⁵²	All	20 (46/235)	235	≤18		0.76 (0.69	NR	NR	0.89 (NR)
							0.98)	0.82)			
		Jorm, 1996 ¹⁵³	All		NR	≤26	0.67 (NR)	0.85 (NR)	NR	NR	0.81 (NR)
			Age 90 to	36 (155/435)	63	25	0.82 (NR)	0.80 (NR)	NR	NR	0.90 (NR)
		2007 ¹⁵⁵	93 college								
			grad								
			Age 90 to	36 (155/435)	57	22	0.92 (NR)	0.96 (NR)	NR	NR	0.98 (NR)
			93 some								
			college								
			Age 90-93	36 (155/435)	49	23	0.87 (NR)	0.94 (NR)	NR	NR	0.92 (NR)
			HS edu or								
			less		- 4	0.1					
			Age 94 to	36 (155/435)	74	24	0.85 (NR)	0.80 (NR)	NR	NR	0.92 (NR)
			96 college								
	Demonster		grad	00 (455 (405)	40	05					
	Dementia	Kahle-Wrobleski, 2007 ¹⁵⁵	Age 94 to	36 (155/435)	43	25	0.88 (NR)	0.85 (NR)	NR	NR	0.94 (NR)
		2007100	96 some								
			college	36 (155/435)	35	23	0.90 (NR)	0.93 (NR)		NR	0.94 (NR)
			Age 94-96 HS edu or	30 (155/435)	30	23	0.90 (NR)	0.93 (INK)	INK	INK	0.94 (INR)
			less								
			Age 97 or	36 (155/435)	49	23	0.89 (NR)	0.90 (NR)	NR	NR	0.95 (NR)
			over	30 (135/435)	49	23	0.09 (NR)	0.90 (NR)			0.95 (NR)
			college								
			grad								
			Q	36 (155/435)	32	22	0.80 (NR)	0.76 (NR)	NR	NR	0.93 (NR)
			over HS	00 (100/400)	02		0.00 (111)	0.70 (1117)			0.00 ((11))
			edu or less								

Fest name	Target	Author, year	Screened	Percent (n/n)	Total	Cutoff	Sens (95%	Spec	PPV (95%	NPV (95%	AUC (95%
	condition		Group	with condition	n		CI)	(95% CI)	CI)	CI)	CI)
			Age 97 or over some college	36 (155/435)	33	24	0.94 (NR)	0.88 (NR)	NR	NR	0.93 (NR)
		Kaufer, 2008 ¹⁵⁶	All	38 (55/146)	146	≤26	0.91)	0.77)	. ,		0.854 (NR)
		Kay, 1985 ¹⁵⁷	All	14 (39/274)	274	≤24	0.846 (NR)	0.808 (NR)	NR	NR	NR
		Kirby, 2001 ¹⁵⁸	All		648	≤23	NR	NR	NR	NR	NR
		Lam, 2008 ¹⁶⁰	All	10 (44/459)	459	NR	NR	NR	NR	NR	0.811 (NR
		McDowell, 1997 ¹⁶⁶	All	23 (368/1600)	1600	24	0.63 (NR)	0.89 (NR)	NR	NR	0.89 (NR)
		Mao, 2018 ⁴⁶⁰	All	9 (917/10340)	8805	20.5	0.89 (,)	0.82 (,)	(,)		0.93 (0.92, 0.94)
			Edu Elem School	NR	NR	21.5	0.89 (,)	0.85 (,)	(,)	(,)	0.94 (0.92, 0.95)
			Edu illiterate	NR	NR	15.5	0.89 (,)	0.91 (,)	(,)	(,)	0.95 (0.94 0.96)
			Edu Jr HS or higher	NR	NR	24.5	0.90 (,)	0.80 (,)	(,)	(,)	0.94 (0.92 0.97)
			Men		NR	21.5	0.87 (,)	0.85 (,)	(,)	(,)	0.93 (0.92 0.94)
			Women	NR	NR	17.5	0.84 (,)	0.90 (,)	(,)	(,)	0.94 (0.25 0.95)
		Morales, 1997 ¹⁶⁷	Rural	13 (34/257)	160	20	0.83 (NR)	0.74 (NR)	0.34 (NR)	0.95 (NR)	NR
		Rait, 2000 ¹⁷⁰	All	6 (6/96)	96	≤25	0.83 (0.76, 0.91)	0.78 (0.69, 0.86)	NR	NR	NR
	Dementia	Rait, 2000 ¹⁶⁹	Gujarati		62	≤23	1.0 (0.16, 1.0)	0.95 (0.858, 0.99)	NR	NR	NR
			Pakistani	NR	39	≤26	1.0 (0.664, 1.0)	0.767 (0.573, 0.894)	NR	NR	NR
		Ranson, 2018 ⁴⁶¹	All	35 (291/824	824	≤23	0.931 (0.896, 0.958)	0.713 (0.672, 0.751)	0.344 (0.313, 0.375)	0.985 (0.977, 0.990)	0.94 (NR)
		Resichies, 1997 ¹⁷¹	70-84 years	20 (100/491)	236	≤26	0.80 (NR)	0.824 (NR)		NR	NR
				20 (100/491)	213	≤23	0.851 (NR)	0.753 (NR)	NR	NR	NR
			All	20 (100/491)	449	≤24	0.841 (NR)	0.831 (NR)	NR	NR	NR

est name	Target	Author, year	Screened			Cutoff	Sens (95%				AUC (95%
	condition		Group	with condition			CI)	(95% CI)	CI)	CI)	CI)
		1997 ¹⁷¹	All	· · · · · ·	449	≤23	0.78 (NR)	0.876 (NR)		NR	NR
			All	3 (86/2657)	2657	≤24	0.930 (NR)	0.959 (NR)	0.432 (NR)	0.997 (NR)	0.979 (0.965, 0.993)
		Tariq, 2006 ¹⁷⁷	HS edu or more	12 (82/702)	488	≤28.5	NR	NR	NR	NR	NR
			Less than HS edu	12 (82/702)	214	≤27.5	NR	NR	NR	NR	NR
		Waite, 1998 ¹⁸¹	All	28 (99/360)	360	≤23	0.84 (NR)	0.88 (NR)	NR	NR	0.93 (NR)
	MCI	Donnelly, 2008 ¹³⁸	All	20 (20/100)	100	1 SD	0.20 (0.06, 0.44)	0.93 (0.84, 0.97)	0.40 (0.12, 0.74)	0.82 (0.73, 0.89)	0.72 (NR)
	MCI	Kaufer, 2008 ¹⁵⁶	All	52 (76/146)	91	≤27	0.47 (0.36, 0.59)	0.73 (0.45, 0.92)	0.90 (NR)	0.22 (NR)	0.666 (NR)
	MCI	Saxton, 2009 ¹⁷³	All	44 (228/524)	524	28	0.45 (NR)	0.80 (NR)	NR	NR	NR
	MCI	Tariq, 2006 ¹⁷⁷	HS edu or more	26 (180/702)	433	≤29.5	0.75 (NR)	0.48 (NR)	0.38 (NR)	0.82 (NR)	0.643 (NR)
	MCI		Less than HS edu	26 (180/702)	187	≤28.5	0.60 (NR)	0.65 (NR)	0.38 (NR)	0.82 (NR)	0.671 (NR)
	Cognitive Impairment	Callahan, 2002 ¹³¹	All	26 (91/344)	344	≤25	0.715 (NR)	0.873 (NR)	0.669 (NR)	0.895 (NR)	0.84 (NR)
	Cognitive Impairment	Cruz-Orduna, 2011 ¹³⁴	All	56 (90/160)	160	≤23	0.7667 (NR)	0.7000 (NR)		0.7000 (NR)	0.82 (0.76, 0.88)
	Cognitive Impairment	Cullen, 2005 ¹³⁵	All	9 (97/1115)	1115	≤23	0.722 (NR)	0.894 (NR)	NR	NR	NR
	Cognitive Impairment	Jeong, 2004 ¹⁵²	All	42 (100/235)	235	≤20	0.82 (0.73, 0.89)	0.79 (0.71, 0.86)	NR	NR	0.89 (NR)
	Cognitive Impairment	Jorm, 1996 ¹⁵³	All	NR	NR	NR	NR	NR	NR	NR	0.70 (NR)
	Cognitive Impairment	Kaufer, 2008 ¹⁵⁶	All	90 (131/146)	146	≤26	NR	NR	NR	NR	NR
	Cognitive Impairment	Lam, 2008 ¹⁶⁰	All	45 (206/459)	459	NR	NR	NR	NR	NR	0.961 (NR)
	Cognitive Impairment	McDowell, 1997 ¹⁶⁶	All	53 (848/1600)	1600	NR	NR	NR	NR	NR	0.77 (NR)
	Cognitive Impairment	Rideaux, 2012 ¹⁷²	Black	57 (401/701)	87	≤22	0.67 (NR)	0.71 (NR)	NR	NR	NR

Test name	Target	Author, year	Screened	Percent (n/n)	Total	Cutoff	Sens (95%	Spec	PPV (95%	NPV (95%	AUC (95%
	condition		Group	with condition	n		CI)	(95% CI)	CI)	CI)	CI)
	Cognitive		Latino	57 (401/701)	55	≤24	0.93 (0.86,	0.71 (0.60,	0.93 (0.64,	0.71 (0.83,	NR
	Impairment						1.0)	0.83)	0.87)	0.99)	
	Cognitive		White	57 (401/701)	380	≤25	0.58 (NR)	0.86 (NR)	NR	NR	NR
	Impairment										
	Cognitive	Tariq, 2006 ¹⁷⁷	HS edu or	37 (262/702)	488	≤28.5	NR	NR	NR	NR	NR
	Impairment		more								
	Cognitive			37 (262/702)	214	≤27.5	NR	NR	NR	NR	NR
	Impairment		HS edu								
	Cognitive	Vercambre,	All	23 (28/120)	120	NR	NR	NR	NR	NR	0.72 (NR)
	Impairment	2010 ¹⁸⁰									
MoCA	Dementia	Chan, 2016* ¹³²	60 years or older	24 (113/478)	309	≤16	0.84 (NR)	0.89 (NR)	0.56 (NR)	0.97 (NR)	0.94 (0.92, 0.97)
	Dementia		75 years or older	24 (113/478)	110	≤12	0.76 (NR)	0.88 (NR)	0.76 (NR)	0.88 (NR)	0.88 (0.82, 0.95)
	Dementia		79 years or older	24 (113/478)	59	≤12	0.81 (NR)	0.86 (NR)	0.86 (NR)	0.80 (NR)	0.87 (0.78, 0.96)
	Dementia	Hsu, 2015* ¹⁵¹	13 years edu or more	6 (16/276)	97	22.5	0.92 (NR)	1.00 (NR)	NR	NR	NR
	Dementia	Hsu, 2015* ¹⁵¹	6 years edu or less	6 (16/276)	61	20.5	0.89 (NR)	1.00 (NR)	NR	NR	0.9709 (0.91, 1.00)
	Dementia			6 (16/276)	171	23.5	0.84 (NR)	1.00 (NR)	NR	NR	0.9625
	Dementia		70-79 years	6 (16/276)	91	23.5	0.67 (NR)	0.88 (NR)	NR	NR	0.8244 (0.71, 0.94)
	Dementia		7-12 years edu	6 (16/276)	118	23.5	0.80 (NR)	0.90 (NR)	NR	NR	0.8465 (0.75, 0.94)
	Dementia		80 years or more	6 (16/276)	14	22.0	0.73 (NR)	1.00 (NR)	NR	NR	0.8788 (0.69, 1.00)
	Dementia		All	6 (16/276)	276	23.5	0.78 (NR)	0.94 (NR)	NR	NR	0.8913 (0.83, 0.96)
	Dementia		Men	6 (16/276)	136	22.5	0.84 (NR)	0.88 (NR)	NR	NR	0.8882
	Dementia		Women	6 (16/276)	140	23.5	0.76 (NR)	1.00 (NR)	NR	NR	0.8984 (0.81, 0.99)
	Dementia	Lee, 2008 ¹⁶¹	All	22 (44/196)	196	≤22	NR	NR	NR	NR	NR
	Dementia	Markwick, 2012 ¹⁶⁵		8 (8/107)	107	<26	NR	NR	NR	NR	NR

Test name	Target	Author, year	Screened	Percent (n/n)	Total	Cutoff	Sens (95%	Spec	PPV (95%	NPV (95%	AUC (95%
	condition		Group	with condition	n		CI)	(95% CI)	CÌ)	CÌ)	CÌ)
	MCI	Vaughn, 2014* ¹³⁶	All	42 (57/136)	108	≤24	0.72 (NR)	. ,			0.77 (0.68, 0.86)
	MCI		All	42 (57/136)	108	≤25	0.81 (NR)	. ,			0.77 (0.68, 0.86)
	MCI	Lee, 2008 ¹⁶¹	All	19 (37/196)	152	≤22	0.89 (NR)	0.84 (NR)	0.65 (NR)	· · · ·	0.94 (0.90, 0.98)
	MCI	Markwick, 2012 ¹⁶⁵	All	19 (20/107)	99	<26	NR	NR	NR	NR	NR
	Cognitive Impairment	Cummings- Vaughn, 2014* ¹³⁶	All	62 (85/136)	136	≤24	0.80 (NR)	0.75 (NR)	0.84 (NR)		0.83 (0.77, 0.90)
	Cognitive Impairment		All	62 (85/136)	136	≤25	0.86 (NR)	0.55 (NR)	0.76 (NR)	· · · ·	0.83 (0.77, 0.90)
	Cognitive Impairment	Lee, 2008 ¹⁶¹	All	41 (81/196)	196	≤22	NR	NR	NR	NR	NR
	Cognitive Impairment	Markwick, 2012 ¹⁶⁵	All	26 (28/107)	107	<26	NR	NR	NR	NR	NR
ОТ	Dementia	Del Ser, 2006 ¹³⁷	All	12 (48/416)	416	NR	0.958 (NR)	0.855 (NR)	0.464 (NR)	0.993 (NR)	0.970 (NR)
SBT	Dementia	Ball, 2001 ¹²⁷	All	9 (10/170) (estimated)	53	>8	0.40 (NR)	0.89 (NR)	0.67 (NR)	0.87 (NR)	NR
SLUMS	Dementia	Tariq, 2006 ¹⁷⁷	HS edu or more	12 (82/702)	488	≤24.5	NR	NR	NR	NR	NR
	Dementia		Less than HS edu	12 (82/702)	214	≤22.5	NR	NR	NR	NR	NR
	MCI	Cummings- Vaughn, 2014* ¹³⁶	All	42 (57/136)	108	≤26	0.74 (NR)	0.65 (NR)	0.70 (NR)	· · · ·	0.74 (065, 0.84)
	MCI	Tariq, 2006 ¹⁷⁷	HS edu or more	26 (180/702)	433	≤25.5	0.95 (NR)	0.76 (NR)	0.74 (NR)	0.93 (NR)	0.643 (NR)
	MCI		Less than HS edu	26 (180/702)	187	≤23.5	0.92 (NR)	0.81 (NR)	0.64 (NR)	0.97 (NR)	0.927 (NR)
	Cognitive Impairment	Cummings- Vaughn, 2014* ¹³⁶	All	62 (85/136)	136	≤25	0.72 (NR)	0.75 (NR)	0.82 (NR)	`` '	0.82 (0.75, 0.89)
	Cognitive Impairment	Tariq, 2006 ¹⁷⁷	HS edu or more	37 (262/702)	488	≤24.5	NR	NR	NR	NR	NR
	Cognitive Impairment		Less than HS edu	37 (262/702)	214	≤22.5	NR	NR	NR	NR	NR
SMMSE	Dementia	Stein, 2015* ¹⁷⁵	All	3 (86/2657)	2657	≤4	0.976 (NR)	0.711 (NR)	0.101 (NR)	0.998 (NR)	0.909 (0.884, 0.935)

Test name	Target	Author, year	Screened	Percent (n/n)	Total	Cutoff	Sens (95%	Spec	PPV (95%	NPV (95%	AUC (95%
	condition		Group	with condition	n		CI)	(95% CI)	CI)	CI)	CI)
Storandt Battery	Dementia	Fillenbaum, 1990 ¹⁴²	All	16 (26/159)	159	≥0	NR	NR	NR	NR	NR
TICS	Dementia	Lipton, 2003 ¹⁶³	All	9 (27/300)	300	28	0.74 (NR)	0.93 (NR)	0.34 (NR)	NR	0.86 (NR)
	Dementia	Manly, 2011 ¹⁶⁴	All	14 (53/377)	377	≤22	0.88 (NR)	0.87 (NR)	0.51 (NR)	0.98 (NR)	0.94 (NR)
	Cognitive Impairment		All	32 (121/377)	377	≤26	0.73 (NR)	0.77 (NR)	0.59 (NR)	0.86 (NR)	0.81 (NR)
	Cognitive Impairment	Vercambre, 2010 ¹⁸⁰	All	23 (28/120)	120	NR	NR	NR	NR	NR	0.78 (NR)
TICS-M	MCI	Cook, 2009 ¹³³	All	24 (17/71)	71	34	0.824 (NR)	0.870 (NR)	0.667 (NR)	0.940 (NR)	0.933 (NR)
TICS-M	Cognitive Impairment	Vercambre, 2010 ¹⁸⁰	All	23 (28/120)	120	31	0.71 (NR)	0.83 (NR)	0.56 (NR)	0.90 (NR)	0.83 (NR)
ТҮМ	MCI	Ozer, 2016* ¹⁶⁸	All	26 (40/152)	152	<43	0.63 (NR)	0.87 (NR)	0.35 (NR)	0.95 (NR)	0.80 (0.72, 0.88)
Word List Learning - immediate recall	Dementia	Heun, 1998 ¹⁴⁸	All	13 (37/287)	287	≤3	0.82 (NR)	0.77 (NR)	NR	NR	0.871 (0.814, 0.928)
Word List Learning - immediate recognition false alarms	Dementia		All	13 (37/287)	287	≤1	0.23 (NR)	0.77 (NR)	NR	NR	0.515 (0.401, 0.629)
Word List Learning - immediate recognition hit	Dementia		All	13 (37/287)	287	≤6	0.57 (NR)	0.71 (NR)	NR	NR	0.670 (0.562, 0.778)
Word List Recognition	Dementia	Fuchs, 2012 ¹⁴⁴	All	5 (21/423)	423	≤16	0.706 (0.489, 0.922)	0.933 (0.908, 0.957)	0.308 (0.163, 0.453)	(0.975,	0.881 (0.784, 0.978)

Abbreviations: 7MS = 7 Minute Screen; AMT = Abbreviated Mental Test; AUC = area under the curve; CI = confidence interval; edu = education; FCR = Free and Cued Recall; FOME-abbreviated = Fuld Object Memory Evaluation – abbreviated version; M@T = Memory Alteration Test; MMblind = MMSE version for persons with visual impairment; MMSE = Mini-Mental State Examination; MoCA = Montreal Cognitive Assessment; n = number of participants analyzed; NPV = negative predictive value; NR = not reported; OT = Benton's Orientation Test; PPV = positive predictive value; SBT = Short Blessed Test; Sens = sensitivity; SLUMS = Veterans Affairs Saint Louis University Mental Status; Spec = specificity; TICS = Telephone Instrument for Cognitive Status; TICS-M = Telephone Interview for Cognitive Status modified; TYM = Test Your Memory * New study

	Torget		Sereened	Percent			Song (05%	Space (05%	DDV (05%	NPV (95%	
Test name	Target condition	Author, year	Screened Group	(n/n) with condition	Total n	Cutoff	Sens (95% Cl)	Spec (95% CI)	PPV (95% Cl)	CI)	AUC (95% Cl)
CAMCI	MCI	Saxton, 2009 ¹⁷³	All	44 (228/524)	524	NA	0.86 (NR)	0.94 (NR)	NR	NR	NR
CAST	Dementia	Swearer, 2002176	All	17 (8/46)	46	≤33	0.88 (NR)	0.95 (NR)	NR	NR	NR
CIDS	Dementia	Waite, 1998 ¹⁸¹	All	28 (99/360)	360	6/7	0.89 (NR)	0.89 (NR)	NR	NR	0.91 (NR)
		Cruz-Orduna, 2011 ¹³⁴	All	9 (15/160)	160	95/96	0.8000 (NR)	0.7671 (NR)	0.2609 (NR)	0.9739 (NR)	0.85 (0.76, 0.94)
	Dementia	Jorm, 1996 ¹⁵³	All	NR	NR	3.27/3.30	0.79 (NR)	0.65 (NR)	NR	NR	0.77 (NR)
		Morales, 1997 ¹⁶⁷	Rural	13 (34/257)	160	86	0.83 (NR)	0.83 (NR)	0.45 (NR)	0.97 (NR)	NR
IQCODE		Tokuhara, 2006 ¹⁷⁸	All	7 (16/230)	230	3.5	0.875 (NR)	0.911 (NR)	0.424 (NR)	0.99 (NR)	NR
	Cognitive	Cruz-Orduna, 2011 ¹³⁴	All	56 (90/160)	160	87/88	0.7111 (NR)	0.7429 (NR)	0.7805 (NR)	0.6667 (NR)	0.75 (0.67, 0.82)
	Impairment	Jorm, 1996 ¹⁵³	All	NR	NR	NR	NR	NR	NR	NR	0.75 (NR)
		Tokuhara, 2006 ¹⁷⁸	All	17 (39/230)	230	3.5	0.739 (NR)	0.922 (NR)	0.515 (NR)	0.969 (NR)	0.87 (NR)
	Dementia	Ayalon, 2011 ¹²⁶	All	32 (206/647)	647	>3	NR	NR	NR	NR	NR
IQCODE-	Dementia	Jorm, 1996 ¹⁵³	All	NR	NR	3.31/3.38	0.75 (NR)	0.68 (NR)	NR	NR	0.77 (NR)
Short	MCI	Ayalon, 2011 ¹²⁶	All	29 (185/647)	441	>3	0.748 (NR)	0.690 (NR)	0.309 (NR)	0.251 (NR)	0.77 (NR)
	Cognitive	Ayalon, 2011 ¹²⁶	All	60 (391/647)	647	>3	NR	NR	NR	NR	NR
	Impairment	Jorm, 1996 ¹⁵³	All	NR	NR	NR	NR	NR	NR	NR	0.74 (NR)
SCIDS	Dementia	Waite, 1998 ¹⁸¹	All	28 (99/360)	360	3/4	0.83 (NR)	0.87 (NR)	NR	NR	0.89 (NR)

Abbreviations: AUC = area under the curve; CAMCI = Computer Assessment of Mild Cognitive Impairment; CAST = Cognitive Assessment Screening Test; CI = confidence interval; CIDS = Concord Informant Dementia Scale; IQCODE = Informant Questionnaire on Cognitive Decline in the Elderly; IQCODE-Short = Informant Questionnaire on Cognitive Decline in the Elderly - short version; MCI = mild cognitive impairment; n = number of participants analyzed; NPV = negative predictive value; NR = not reported; PPV = Positive predictive value; SCIDS = Short Concord Informant Dementia Scale

Intervention Type	No. trials*	No. new studies (%)	No. randomized	No. studies (%) good quality	No. studies (%) conducted in U.S. [‡]	Median study duration, months (range)	Mean age, years [†]	No. studies (%) with condition	Mean baseline MMSE	% Female [†]
FDA-approved medication	48	6 (12)	22,431	4 (8) [§]	24 (50)	6 (3-48)	74	MCI: 4 (8) Dem: 44 (92)	19.5	55
Donepezil	18	1 (6)	6,209	0 (0)	11 (61)	6 (3-36)	73	MCI:3 (17) Dem: 15 (83)	22.0	52
Galantamine	10	1 (10)	7,464	0 (0)	5 (50)	6 (3-12)	74	Dem: 10 (100)	19.1	59
Rivastigmine	8	0 (0)	4,569	0 (0)	4 (50)	6 (3-6)	73	Dem: 8 (100)	18.4	57
Memantine	12	4 (33)	4,189	4 (33)	4 (33)	6 (3-48)	76	MCI: 1 (8) Dem: 11 (92)	17.8	49
Other medication or supplement	29	5 (17)	6,489	6 (21)	16 (55)	12 (3-48)	75	MCI: 5 (17) Dem: 23 (79) MCI/Dem: 1 (3)	22.3	52
Antihypertensives	1	1 (100)	385	0 (0)	0 (0)	4 (NA)	81	MCI: 1 (100)	26.0	59
HMG-CoA Reductase Inhibitors	4	0 (0)	1,153	0 (0)	3 (75)	12 (6-18)	74	Dem: 4 (100)	21.2	54
Dietary Supplements	14	3 (21)	3,777	4 (29)	7 (50)	12 (4-48)	75	MCI: 4 (29) Dem: 9 (64) MCI/Dem: 1 (7)	23.0	46
Gonadal Steroids	6	1 (17)	337	1 (17)	4 (67)	6 (3-12)	76	Dem: 6 (100)	20.1	95
NSAIDs	4	0 (0)	837	1 (25)	2 (50)	12 (12-12)	74	Dem: 4 (100)	20.1	56
Patient	61	39 (64)	7,847	13 (21)	13 (21)	6 (3-26)	76	MCI: 25 (41) Dem: 28 (46) MCI/Dem: 8 (13)	23.1	59
Cognitive Training, Stimulation, or Rehabilitation	28	17 (61)	3,212	5 (18)	6 (21)	6 (3-26)	76	MCI: 12 (43) Dem: 14 (50) MCI/Dem: 2 (7)	23.3	57
Exercise Interventions	21	14 (67)	2,831	6 (29)	4 (19)	6 (3-18)	75	MCI: 9 (43) Dem: 9 (43) MCI/Dem: 3 (14)	23.4	62
Multicomponent and Other Interventions	16	12 (75)	2,302	2 (12)	4 (25)	6 (3-24)	76	MCI: 7 (44) Dem: 6 (38) MCI/Dem: 3 (19)	22.8	59
Caregiver	88	33 (38)	14,880	13 (15)	40 (45)	9 (3-144)	78	MCI: 0 Dem: 84 (95) MCI/Dem: 4 (5)	17.6	56
Psychoeducation Interventions	58	24 (41)	9,139	6 (10)	28 (48)	6 (3-144)	78	Dem: 56 (97) MCI/Dem: 2 (3)	16.2	54

Table 7. Trial and Population Characteristics: Summary Across All Intervention Types (KQs 4 and 5)

Intervention Type	No. trials*	No. new studies (%)	No. randomized	No. studies (%) good quality	(%) conducted	Median study duration, months (range)	Mean age, years†	No. studies (%) with condition	Mean baseline MMSE	% Female [†]
Care/Case Management	17	6 (35)	3,039	4 (24)	6 (35)	12 (6-24)	79	Dem: 15 (88) MCI/Dem: 2 (12)	19.8	58
Other Interventions	13	3 (23)	2,702	3 (23)	6 (46)	12 (3-24)	79	Dem: 13 (100)	19.1	57
Total	224	82 (37)	50,265	35 (16)	91 (41)	6 (3-144)	76	MCI: 33 (15) Dem: 178 (79) MCI/Dem: 13 (6)	19.9	56

* Studies can be counted in more than one intervention type.

[†] Values reported for patients (not caregivers)

‡ Including studies that were conducted in multiple countries, of which the US was one country.

§ 27 of these studies originated from a systematic review that was included in the previous review and were not quality rated again. For this table, they were all counted as "fair."

Abbreviations: Dem = dementia; FDA = US Food and Drug Administration; HMG-CoA = β -Hydroxy β -methylglutaryl-CoA; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination; No. = number; NSAIDs = nonsteroidal anti-inflammatory drugs

Intervention Category	Intervention Type	No. Trials*	Summary of Intervention Characteristics	Median (Range) of Intervention Duration, Months	Summary of Control Group Characteristics
	Donepezil	18	Daily dosage ranged from 1 to 10 mg, with most trials using 5 to 10 mg per day.	6 (3-12)	Placebo controlled.
	Galantamine	10	Daily dosage ranged from 8 to 36 mg, with most trials used 16 to 24 mg per day.	6 (4-24)	Placebo controlled.
AChEls and Memantine (k=48)	Rivastigmine	8	Daily dosage of oral rivastigmine ranged from 1 to 12 mg, with considerable variability in daily dosage. Three trials examined the rivastigmine patch, with daily dosages of 9.5 mg, 12 mg and 17.4 mg.	6 (3-6)	Placebo controlled.
	Memantine	12	Daily dosage of 20 mg. In two trials, both intervention and control participants were also given galantamine (24 mg) or rivastigmine (9.5 mg).	6 (3-48)	Placebo controlled, except for one open-label study. Two studies gave all participants an additional AChEI.
	Antihypertensive	1	Discontinuation of antihypertensive medication.	4 (NA)	Usual care consisting of continuation of antihypertensive treatment.
	HMG-CoA Reductase Inhibitors	4	Two studies of Atorvastatin (80 mg daily dosage), and two studies of Simvastatin (daily dosages ranged from 40-80 mg).	14 (6-18)	Placebo controlled, except for one study of Atorvastatin in which participants received 10 mg of Donepezil along with a placebo.
Other Medications and Supplements (k=29)	NSAIDs	4	Four studies of different NSAIDs: One study of Celecoxib (400 mg daily dosage), one study of Ibuprofen (800 mg daily dosage), one study of Indomethacin (100 mg daily dosage) and omeprazole (20 mg daily dosage), and one study of Naproxen (440 mg daily dosage).	12 (12-12)	Placebo controlled, except for one study of Indomethacin that provided control participants with omeprazole (20 mg) along with a placebo, and another study of Ibuprofen that provided control participants with esomeprazole (20 mg).
	Gonadal Steroids	6	Four studies of estrogen (daily dosage ranging from 0.625-120 mg). One study of estrogen and progestin (1.5 mg daily dosage) and one study of testosterone (75 mg daily dosage).	9 (3-12)	Placebo controlled.
	Dietary Supplements	14	Four studies of B vitamins (variable combinations and daily dosages of B vitamins and folic acid). Three studies of vitamin E with daily dosages ranging from 1,000 to 2,000 IU.	10 (4-48)	Placebo controlled, except for four studies: One study of b vitamins provided participants with an AChEI along with a placebo. Two studies of omega-3 fatty acids provided participants with dietary supplements along with or included

Intervention Category	Intervention Type	No. Trials*	Summary of Intervention Characteristics	Median (Range) of Intervention Duration, Months	Summary of Control Group Characteristics
			Six studies of omega-3 fatty acids (variable combinations and doses of DHA, EPA, and LA). One study of multivitamins (daily dosage: mecobalamin [0.5 mg] + multivitamin supplement that contained folic acid, pyridoxine HCI, ferrous [60 mg], nicotinamide [10 mg], calcium carbonate [250 mg], riboflavin [2 mg], thiamine mononitrate [3 mg], calcium pantothenate [1 mg], ascorbic acid [100 mg]).		in the placebo; one placebo containing safflower oil (containing 2.2 g linoleic acid) and the other containing isocaloric oil (1 g corn oil, 0.6 g linoleic acid). One study of vitamin E provided participants with a multivitamin containing 15 IU vitamin E along with a placebo.
Nonpharmacologic Patient-Level Interventions (k=61)	Cognitive Training, Cognitive Stimulation, or Cognitive Rehabilitation	28	Interventions that directly or indirectly targeted cognitive functioning through cognitive stimulation (engaging the person with CI in a range of activities and discussions aimed at general enhancement of cognitive and social functioning), cognitive training (guided practice on a set of standardized tasks designed to reflect particular cognitive functions such as memory, attention, or problem-solving), and/or cognitive rehabilitation (setting personally relevant goals related to performance in everyday life with patient and family and devising strategies to address these). Most cognitive-focused activities were group-based interventions, but the intensity of activities varied considerably from 1 day a week for 6 weeks to 5 days a week for up to two years with most sessions ranging from 45 to 90 minutes per session. Most common interventionists were trained psychologists or neuropsychologists. Four studies tested computer-based cognitive training programs.	3 (1-24)	Highly variable ranging from no intervention or waitlist (11 trials), usual care not including cognitive- focused activities (7 trials), brief interventions including psychoeducation and social support (3 trials), and "sham" cognitive- focused activities (7 trials).
	Exercise Interventions	21	Most exercise interventions included supervised group- based exercise sessions focused on aerobic activities, strength and resistance training, and/or balance training that took place in a community setting and were led by an exercise specialist. Four trials included individualized, supervised exercise sessions in the home or community setting whereas three trials encouraged self- or caregiver-guided exercises at home. Two trials evaluated the effectiveness of a group-based	6 (3-12)	Over half of the trials provided attention control groups including general health education relevant for older adults or brief interventions including supervised "sham" exercise sessions focused on stretching or toning (k=12). In the remaining trials, control groups received usual care with or without

Intervention Category	Intervention Type	No. Trials*	Summary of Intervention Characteristics	Median (Range) of Intervention Duration, Months	Summary of Control Group Characteristics
			ballroom dancing intervention and one trial evaluated the impact of Tai Chi. Most interventions took place for 2-3 days per week for 30 minutes to 2 hours per session.		being offered the intervention at the end of the trial (k=9).
	Multicomponent and Other Interventions	16	Interventions in this group were all unique. Two trials included multicomponent interventions consisting of combined exercise with cognitive training or cognitive behavioral therapy and support groups. Three trials targeted patient well-being through diagnostic support and in-home counseling, group-based psychoeducation, and a self-management program and the remaining trial focused on vascular care through pharmacological and nonpharmacological interventions.	6 (2-24)	Highly variable, ranging from usual care provided by general practitioners (k=4); minimal or sham interventions (k=5); attention-control interventions (k=2); waitlist (k=4); or no intervention (k=1).
Caregiver and Caregiver-Patient Dyad Interventions (k=88)	Psychoeducation Interventions		Wide range of approaches with the most common format consisting of interventionists meeting individually with caregivers, dyads, or families, most commonly in participants' homes; however, a substantial number of interventions took place in group settings or were provided remotely through telephone counseling, computer-based programs or applications, videos, or a combination of these methods. Most interventions provided information about dementia and community resources and also included training in problem solving, communication techniques, and stress management. A variety of additional components were used, including peer or social support, supportive counseling, home safety assessments or information, occupational therapy, and environmental modifications. The interventionists were highly variable, including general educators or counselors, psychologists, nurses, occupational therapists, social workers, and hired and trained research staff. Most interventions involved multiple modes of delivery and included 10-15 sessions, with each session ranging from 30- to 120-minutes.	4 (1-24)	Highly variable, ranging from no intervention or waitlist (k=19); attention-control interventions (k=3); brief interventions (k=12) primarily consisting of basic educational materials about dementia caregiving (k=8), information on local resources (k=2), and some providing additional brief (10-15- min) telephone support calls with research staff or a social worker (k=3); minimal interventions (k=15) that were similar to the brief interventions, but had more intensive (20-60 min) telephone calls offering social support and tips for behavior management; and usual care interventions (k=39) consisting of standard care provided to dementia caregivers, which varied largely by country.
	Care/Case Management	17	Interventions included professional assistance to help arrange, implement, or facilitate services to meet a	12 (3-24)	Minimal interventions (k=5) involving enhanced usual care (k=3)

Intervention Category	Intervention Type	No. Trials*	Summary of Intervention Characteristics	Median (Range) of Intervention Duration, Months	Summary of Control Group Characteristics
			patient's and family's needs and generally all provided assessment, advice and information, individualized treatment planning, caregiver psychoeducation and skills training, ongoing monitoring, and either referral or care coordination with outside social and health care services (such as occupational and physical therapy, respite care, personal care assistance, social, and social work). Interventionists varied, but most often included a nurse or other health provider serving as a "case manager" or "care coordinator."		and in-home visits by occupational therapists and primary care staff (k=2). The remaining control groups received usual care (k=12) consisting of standard care provided to dementia caregivers, which varied largely by country.
	Other Interventions	13	Interventions in this group were all unique. Interventions included: Physical activity counseling for the caregiver (k=3) provided in-person and remotely by educators/counselors or was entirely self-administered. Multicomponent dyadic intervention (k=2) delivered at home by psychologists or home health specialists. Social support only (k=3) delivered at home or community settings by peers and trained research staff. Assessment and treatment planning or multidisciplinary assessment only (k=3) delivered in medical settings by primary care staff. Provider training (k=1) delivered at home by nurses or psychologists. Transcendental meditation (k=1) delivered in community settings by a educators/counselors.	6 (2-24)	Variable, included attention-control (k=1) or no intervention (k=4); usual care (k=5) of standard care provided to dementia caregivers, which varied largely by country; a brief intervention (k=1) monthly mailings of general information and three brief emotional support telephone calls and minimal interventions (k=2), which varied by intervention type (exercise – pedometer provided; multidisciplinary assessment – biweekly telephone contact).

* Studies can be counted in more than one intervention type.

Abbreviations: AChEI = acetylcholinesterase inhibitor; DHA = docosahexaenoic acid; EPA = eicosapentaenoic acid; HMG-CoA = β -Hydroxy β -methylglutaryl-CoA; IU = International Unit; k = number of trials analyzed; LA = linoleic acid; mg = milligrams; No. = number; NSAIDs = nonsteroidal anti-inflammatory drugs

Main intervention			Pooled mean					
category	Intervention type	Outcome	difference in change*	95% CI [†]	k	Ν	l ²	Tau
FDA Medications	Donepezil	GCF – ADAS-Cog	-2.13	-3.32 to -0.94	6	1,981	64.4	0.90
		GCF – MMSE	1.24	0.81 to 1.67	12	3,192	65.3	0.57
		GF (cont)	-0.24	-0.39 to -0.09	8	3,302	70.7	0.15
		GF (dichot)	1.33	1.07 to 1.66	9	2,440	77.4	0.23
		SAEs	1.18	0.99 to 1.40	12	4,045	0.0	0
		Withdrawals	1.88	1.54 to 2.29	13	4,124	8.8	0
	Galantamine	GCF – ADAS-Cog	-2.13	-2.94 to -1.32	9	3,786	65.9	0.84
		GCF – MMSE	NA	NA	1	1,765	NA	NA
		GF (cont)	NA	NA	1	126	NA	NA
		GF (dichot)	1.21	1.11 to 1.31	8	3,486	56.2	0.07
		SAEs	1.06	0.88 to 1.29	7	4,987	0.0	0
		Withdrawals	1.98	1.52 to 2.57	10	6,147	51.1	0.28
	Rivastigmine	GCF – ADAS-Cog	-2.43	-4.10 to -0.75	5	2,618	81.9	1.21
		GCF – MMSE	0.88	0.28 to 1.49	6	2,415	44.9	0.39
		GF (cont)	-0.14	-0.43 to 0.15	6	2,535	85.7	0.25
		GF (dichot)	1.49	1.13 to 1.98	5	1,934	61.4	0.16
		SAEs	1.15	0.87 to 1.52	6	2,619	10.4	0
		Withdrawals	2.21	1.43 to 3.42	8	3,131	57.0	0.38
	Memantine	GCF – ADAS-Cog	-0.88	-1.65 to -0.11	8	2,609	78.1	0.69
		GCF – MMSE	0.36	-0.31 to 1.04	5	1,217	33.2	0.27
		GF (cont)	-0.14	-0.33 to 0.05	5	1,396	32.9	0.09
		GF (dichot)	1.15	0.49 to 2.69	2	545	0.0	0
		SAEs	0.88	0.77 to 1.01	10	3,350	0.0	0
		Withdrawals	1.26	0.94 to 1.70	9	3,288	0.0	0
Nonpharm Patient	Cognitive Stimulation and	GCF – ADAS-Cog	-0.66	-1.60 to 0.29	8	842	0	0
Level	Training	GCF – MMSE	1.33	0.29 to 2.37	15	1,384	91.1	1.91
	Exercise	GCF – ADAS-Cog	-1.05	-3.49 to 1.10	6	1,071	77.4	1.62
		GCF – MMSE	1.17	0.45 to 1.90	10	1,168	81.3	0.98
	Multicomponent and Other	GCF – ADAS-Cog	-1.66	-10.03 to 6.72	2	167	56.5	0.72
	Interventions	GCF – MMSE	0.26	-0.54 to 1.00	8	1,238	30.3	0.55
Caregiver	Psychoeducation Interventions	CGR burden	-0.24	-0.36 to -0.13	27	2,776	50.2	0.20
		CGR depression	-0.26	-0.39 to -0.13	37	4,555	76.9	0.35
	Care or Case Management	CGR burden	-0.54	-0.96 to -0.12	8	1,215	82.9	0.45
		CGR depression	-0.13	-0.39 to 0.12	4	668	0.0	0
	Other Caregiver or Caregiver-	CGR burden	-0.30	-2.26 to 1.36	5	459	89.6	1.36
	Patient Dyad Interventions	CGR depression	-0.00	-0.34 to 0.34	5	645	53.7	0.20

* For dichotomous outcomes, this represents a RR.
† For analyses with <10 studies, the REML method was used to calculate the CI.

Table 9. Meta-Analyses Results: Summary Across All Intervention Types (KQs 4 and 5)

Abbreviations: ADAS-Cog = Alzheimer's Disease Assessment Scale-Cognitive Subscale; CGR = caregiver; CI = confidence interval; cont = continuous; dichot = dichotomous; FDA = US Food and Drug Administration; GCF = global cognitive function; GF = global function; k = number of trials analyzed; MMSE = Mini-Mental State Examination; n = number of participants analyzed; Nonpharm = nonpharmacological; SAEs = serious adverse events

Table 10. AChEls and Memantine: Study Characteristics, by Medication Type (KQs 4 and 5)

Medication	Author, year (Study name)	Quality	Country	N randomized	Population	Baseline MMSE, mean	Age, mean	Female, %
Donepezil			US, GBR, AUS, CAN,		Dem	21.8 [†]	74	45
Donepezii	307 Vascular Dementia	i all-Goou	DEU, IRL	003	Dem	21.0	/4	45
	Study Group)							
Donepezil	Burns, 1999 ¹⁸⁷	Fair-Good	GBR, AUS, BEL,	818	Dem	20	72	57
			CAN, FRA, DEU, IRL,					
			NZL, ZAF					
Donepezil	Doody, 2009 ¹⁸⁸	Fair		821	MCI	27.5	70	46
Donepezil	Feldman, 2001 ¹⁸⁹	Fair-Good	AUS, CAN, FRA	290	Dem	11.8 [‡]	74	61
Donepezil	Holmes, 2004 ¹⁹⁰	Fair-Good	GBR	96	Dem	21	79	62
Donepezil	Ikeda, 2015* ¹⁹¹	Fair	JPN	142	Dem	20.4	78	58
Donepezil	Krishnan, 2003 ¹⁹²	Fair-Good	US	67	Dem	19.3	73	72
Donepezil	Mazza, 2006 ¹⁹³	Fair-Good	ITA	51	Dem	18.7	68	54
Donepezil	Mohs, 2001 ¹⁹⁴	Fair		431	Dem	17.1	75	63
Donepezil	Mori, 2012 ¹⁹⁵	Fair	JPN	140	Dem	19.6	79	66
Donepezil	Petersen, 2005 ¹⁹⁶	Fair	US, CAN	769	MCI	27.3	73	46
Donepezil	Rogers, 1996 ¹⁹⁸	Fair-Good	US	161	Dem	18.8	72	60
Donepezil	Rogers, 1998 ¹⁹⁷	Fair-Good	US	468	Dem	19.5	74	64
	(Donepezil Study Group)							
Donepezil	Salloway, 2004 ¹⁹⁹	Fair-Good	US	269	MCI	27.4	72	42
	(Donepezil 401 MCI Study)							
Donepezil	Seltzer, 2004 ²⁰⁰ (Donepezil	Fair-Good	US	153	Dem	24.2	74	54
	402 Study)							
Donepezil	Tune, 2003 ²⁰¹	Fair-Good		28	Dem	21.1	73	75
Donepezil	Wilkinson, 2003 ²⁰²	Fair-Good	US, GBR, AUS, CAN,	616	Dem	21.8	75	40
	(Donepezil 308 Study)		DEU, IRL					
Donepezil	Winblad, 2001 ²¹³	Fair-Good	DNK, FIN, NLD, NOR,	286	Dem	19.3	72	46
	(Donepezil Nordic Study		SWE					
	Group)							
Galantamine	Auchus, 2007 ²⁰⁴ (GAL- INT-26)	Fair	US	788	Dem	20.3	72	36
Galantamine	Brodaty, 2005 ²⁰⁵ (GAL-	Eair-Good	US, AUS, CAN, NZL,	071	Dem	18	76	64
Galamannie	INT-10)	raii-Guuu	ZAF	571	Dem	10	70	04
Galantamine	,	Fair-Good		592	Dem	20.5	75	47
	INT-6)		FIN, FRA, DEU, IRL,			20.0		''
			ISR, NLD, POL					
Galantamine	Hager, 2014* ²⁰⁷	Fair		2045	Dem	19	73	65
			GRC, ITA, LTU, RUS,			-		

	Author, year					Baseline MMSE,		
Medication	(Study name)	Quality	Country	N randomized	Population	mean	Age, mean	Female, %
			SVK, EST, LVA, SVN, ROU, UKR					
Galantamine	Raskind, 2000 ²⁰⁸ (Galantamine USA - Study Group (GAL-USA-1))	Fair-Good	US	636	Dem	19.3	75	62
Galantamine	Rockwood, 2001 ²¹⁰ (GAL- INT-2)	Fair-Good	US, GBR, AUS, CAN, NZL, ZAF	386	Dem	19.7	75	56
Galantamine	Rockwood, 2006 ²⁰⁹ (Video- Imaging Synthesis of Treated Alzheimer's disease (VISTA))	Fair	CAN	130	Dem	20.3	78	63
Galantamine	Tariot, 2000 ²¹¹ (Galantamine USA - Study Group (GAL-USA-10))	Fair-Good	US	978	Dem	17.8	77	64
Galantamine	Wilcock, 2000 ²¹² (Galantamine International-1-Group Study (GAL-INT-1))	Fair-Good	GBR, CAN, FIN, FRA, DEU, NLD, NOR, SWE	653	Dem	19.3	72	63
Galantamine	Wilkinson, 2001 ²¹³	Fair-Good	GBR	285	Dem	18.6	74	58
Rivastigmine	Agid, 1998 ²¹⁴	Fair-Good	GBR, AUT, BEL, CZE, DNK, FIN, FRA, DEU, IRL, NOR, SVK, SWE, CHE	402	Dem	NR	69	56
Rivastigmine	Ballard, 2008 ²¹⁵ (Vascular Dementia Trial studying Exelon (VantagE))	Fair	US, GBR, AUT, CAN, FRA, DEU, ITA, KOR, RUS, ESP, TWN	710	Dem	19.2	73	38
Rivastigmine	Corey-Bloom, 1998 ²¹⁶	Fair-Good	US	699	Dem	19.7	74	61
Rivastigmine	Feldman, 2007 ²¹⁷ (Study 304)	Fair	GBR, AUS, CAN, IRL, ITA, ZAF	678	Dem	18.6	71	59
Rivastigmine	McKeith, 2000 ²¹⁸	Fair-Good	GBR, ITA, ESP	120	Dem	17.8	74	43
Rivastigmine	Mok, 2007 ²¹⁹	Fair	HKG	40	Dem	13.2	75	60
Rivastigmine	Rosler, 1999 ²²⁰ (B303 Exelon Study)	Fair-Good	US, AUT, CAN, FRA, DEU, CHE	725	Dem	19.9	72	59
Rivastigmine	Winblad, 2007 ²²¹ (Investigation of transDermal Exelon in ALzheimer's disease (IDEAL))	Fair	US, CHL, CZE, DNK, FIN, DEU, GTM, ISR, ITA, KOR, MEX, NOR, PER, POL, PRT, RUS, SVK, SWE, TWN, VEN	1195	Dem	16.5	74	66

	Author, year					Baseline MMSE,		
Medication	(Study name)	Quality	Country	N randomized	Population	mean	Age, mean	Female, %
Memantine	Bakchine, 2008 ²²²	Good	GBR, AUT, BEL, DNK, FIN, FRA, GRC, LTU, NLD, POL, ESP, SWE		Dem	18.7	74	63
Memantine	Choi, 2011*223	Fair	KOR	172	Dem	16.6	75	80
Memantine	Dysken, 2014* ²²⁴ (TEAM- AD VA)	Good	US	613	Dem	21	79	3
Memantine	Ferris, 2007 ²²⁵	Fair	US	60	MCI	28.8	67	65
Memantine	Herrmann, 2013*226	Fair	CAN	369	Dem	11.8	75	58
Memantine	Orgogozo, 2002 ²²⁷ (MMM 300)	Fair-Good	BEL, FRA, CHE	321	Dem	16.9	76	47
Memantine	Peskind, 2006 ²²⁸ (MEM- MD-10)	Fair-Good	US	403	Dem	17.3	78	59
Memantine	Peters, 2015*229	Fair	DEU	226	Dem	22.2	72	64
Memantine	Porsteinsson, 2008 ²³⁰ (MEM-MD-12)	Good	US	433	Dem	16.8	75	52
Memantine	Saxton, 2012 ²³¹ (MEM- MD-71)	Good	AUS, NZL, ZAF	265	Dem	15.8	75	58
Memantine	Wilcock, 2002 ²³² (MMM500)	Fair-Good	GBR	579	Dem	17.6	77	48
Memantine	Wilkinson, 2012 ²³³	Fair	GBR, FRA, DEU, CHE	278	Dem	16.9	74	57
Any AChEI	Gill, 2009 ²³⁴	Good	CAN	81,302	Dem	NR	80	61
Any AChEI	Hernandez, 2009 ²³⁵	Good	US	11,328	Dem	NR	74	4
Any AChEI	Thavorn, 2014 ²³⁶	Fair	CAN	97,446	Dem	NR	82	64

* New Study

† Least squares mean

‡ Standardized MMSE

Abbreviations: AUS = Australia; AUT = Austria; BEL = Belgium; CAN = Canada; CHE = Switzerland; CZE = Czech Republic; Dem = Dementia; DEU = Germany; DNK = Denmark; ESP = Spain; EST = Estonia; FIN = Finland; FRA = France; GBR = Great Britain/United Kingdom; GRC = Greece; GTM = Guatemala; HKG = Hong Kong; IRL = Ireland; ISR = Israel; ITA = Italy; JPN = Japan; KOR = Korea; LEADe = Lipitor's Effect in Alzheimer's; Dementia; LVA = Latvia; LTU = Lithuania; MCI = mild cognitive impairment; MEX = Mexico; MMSE = Mini-Mental State Examination; N = number of participants; NLD = Netherlands; NOR = Norway; NR = not reported; NZL = New Zealand; PER = Peru; POL = Poland; PRT = Portugal; ROU = Romania; RUS = Russia; SVK = Slovakia; SVN = Slovenia; SWE = Sweden; TWN = Taiwan; UKR = Ukraine; VEN = Venezuela; ZAF = South Africa

	Country	Pop cat	Medication (total daily dose)	Duration, weeks	Intervention details	CG description
Author, year Black, 2003 ¹⁸⁶	US, GBR, AUS,	Dem	IG1: Donepezil (10 mg)	24		
Fair-Good	CAN, DEU, IRL	Dem	IGT. Donepezii (To mg)	24	4 weeks	Placebo
Fail-Good	CAN, DEO, IKL		IG2: Donepezil (5 mg)		4 WEEKS	
					IG2: 5 mg qd	
Burns, 1999 ¹⁸⁷	GBR, AUS, BEL,	Dem	IG1: Donepezil (10 mg)	24	IG1: Started with 5 mg gd and increased 10 mg gd after	Placebo
Fair-Good	CAN, FRA, DEU,	20111		- ·	7 days	
	IRL, NZL, ZAF		IG2: Donepezil (5 mg)			
	, ,				IG2: 5 mg qd	
Doody, 2009 ¹⁸⁸	US	MCI	Donepezil (5-10 mg)	48	5 mg qd for 6 weeks followed by 10 mg qd for remainder	Placebo
Fair					of 28 weeks; allowed to reduce down to 5 mg qd if	
					tolerability issues.	
Feldman,	AUS, CAN, FRA	Dem	Donepezil (10 mg)	24	Started with 5 mg qd for first 28 days, then increased	Placebo
2001 ¹⁸⁹			_		dose to 10 mg qd. Study medication could be reduced to	
Fair-Good					5 mg qd at any time during study to improve tolerability	
Holmes, 2004 ¹⁹⁰	GBR	Dem	Donepezil (10 mg)	24	· · · · · · · · · · · · · · · · · · ·	Placebo
Fair-Good					then 10 mg qd for further 6 weeks, then patients	
					randomized to placebo or 10 mg qd for further 12 weeks.	
lkeda, 2015* ¹⁹¹	JPN	Dem	IG1: Donepezil (10 mg)	12	IG1: Treatment began with 3 mg qd for 2 weeks then	Placebo
Fair					dose increased to 5 mg qd, then to 10 mg qd at week 6.	
			IG2: Donepezil (5 mg)			-
					IG2: Started at 3 mg qd for 2 weeks, then dose increased	1
					to 5 mg qd.	.
Krishnan,	US	Dem	Donepezil (10 mg)	24	Started at 5 mg qd for first 28 days, then 10 mg qd	Placebo
2003 ¹⁹²					thereafter	
Fair-Good	17.0	D			F and s	Disasha
Mazza, 2006 ¹⁹³ Fair-Good	ΙΤΑ	Dem	Donepezil (5 mg)	24	5 mg qd	Placebo
Mohs, 2001 ¹⁹⁴	US	Dom	Donepezil (10 mg)	54	Started at 5 mg qd for first 28 days and 10 mg qd	Placebo
Fair	03	Dem	Donepezii (10 mg)	04	thereafter	Placebo
Mori, 2012 ¹⁹⁵	JPN	Dem	IG1: Donepezil (10 mg)	12	IG1: Titrated from 3 mg qd for 2 weeks, 5 mg qd for 4	Placebo
Fair	JEN	Dem	IGT. Donepezii (To Tilg)	12	weeks and then 10 mg qd for 6 weeks.	FIACEDO
			IG2: Donepezil (5 mg)		weeks and then to the quild of o weeks.	
					IG2: Titrated from 3 mg qd for 2 weeks up to 5 mg qd.	
			IG3: Donepezil (3 mg)			
					IG3: 3 mg qd	
Petersen,	US, CAN	MCI	Donepezil (10 mg)	156	Started at 5 mg qd, then increased to 10mg qd after 6	Placebo +
2005 ¹⁹⁶		-			weeks	multivitamin
Fair						containing 15 IU
						Vitamin E

			Medication (total daily	Duration,		
Author, year	Country	Pop cat	dose)	weeks	Intervention details	CG description
Rogers, 1996 ¹⁹⁸ Fair-Good	US	Dem	IG1: Donepezil (5 mg)	12	IG1: 5 mg qd for 12 weeks followed by 2 week placebo washout period	Placebo
			IG2: Donepezil (3 mg)			
			IG3: Donepezil (1 mg)		IG2: 3 mg qd for 12 weeks followed by 2 week placebo washout period	
					IG3: 1 mg qd for 12 weeks followed by 2 week placebo washout period	
Rogers, 1998 ¹⁹⁷ Fair-Good	US	Dem	IG1: Donepezil (10 mg)	15	IG1: Started at 5 mg qd during week 1 and increased to 10 mg qd weeks 2-12, followed by placebo washout	Placebo
			IG2: Donepezil (5 mg)		weeks 13-15	
					IG2: 5 mg qd for 12 weeks followed by placebo washout weeks 13-15	
Salloway, 2004 ¹⁹⁹	US	MCI	Donepezil (10 mg)	24	Started at 5 mg qd and increased to 10 mg qd after 42 days	Placebo
Fair-Good						
Seltzer, 2004 ²⁰⁰ Fair-Good	US	Dem	Donepezil (10 mg)	24	Started at 5 mg and increased to 10 mg qd after 6 weeks	Placebo
Tune, 2003 ²⁰¹ Fair-Good	US	Dem	Donepezil (10 mg)	24	Started at 5 mg qd for first 28 days and then increased to 10 mg qd after 28 days	Placebo
Wilkinson, 2003 ²⁰²	US, GBR, AUS, CAN, DEU, IRL	Dem	IG1: Donepezil (10 mg)	24	IG1: Started at 5 mg qd and increased to 10 mg qd after 28 days	Placebo
Fair-Good			IG2: Donepezil (5 mg)		IG2: 5 mg qd	
Winblad, 2001 ²⁰³ Fair-Good	DNK, FIN, NLD, NOR, SWE	Dem	Donepezil (10 mg)	52	Started on 5 mg qd for 28 days, and then 10 mg qd. If required, a dose reduction to 5 mg qd was permitted.	Placebo
Auchus, 2007 ²⁰⁴ Fair	US	Dem	Galantamine (16-24 mg)	26	4 mg bid for 4 weeks followed by 8 mg bid for 4 weeks; dosage could be maintained or increased to 12 mg bid (after additional 4 weeks, maintained or reduced to 8 mg bid for tolerability). Mean (SD) dose over entire treatment, 16.4 (3.98) mg qd	Placebo
Brodaty, 2005 ²⁰⁵ Fair-Good	US, AUS, CAN, NZL, ZAF	Dem	IG1: Galantamine (16-24 mg)	26	IG1: Run-in period: placebo for 4 weeks; Titrated from initial dosage of 4 mg bid for weeks 1 through 4; weeks 5 through 8 titrated to 8 mg bid; after 8 weeks, 8- or 12-mg	
			IG2: Galantamine (16-24 mg)		bid	
					IG2: Run-in period: placebo for 4 weeks; Titrated from initial dosage of 8 mg qd in morning with placebo in the	

			Medication (total daily	Duration,		
Author, year	Country	Pop cat	dose)	weeks	Intervention details	CG description
					evening for weeks 1 through 4; weeks 5 through 8 titrated to 16 mg qd in morning with placebo in evening; after 8 weeks, 16- or 24-mg qd in morning	
Erkinjuntti, 2002 ²⁰⁶ Fair-Good	GBR, CAN, DNK, FIN, FRA, DEU, IRL, ISR, NLD, POL	Dem	Galantamine (24 mg)	26	After 4 weeks placebo run-in period, started 4 mg qd in the first week, with weekly increments of 4 mg qd until reached 24 mg qd in week 6.	Placebo
Hager, 2014 ^{*207} Fair	CZE, FRA, DEU, GRC, ITA, LTU, RUS, SVK, EST, LVA, SVN, ROU, UKR	Dem	Galantamine (24 mg)	104	12 week titration period started at 8 mg qd, then increased to 16 mg qd, and up to 24 mg qd. Galantamine maintained at stable dose of at least 16 mg qd for next 21 months.	Placebo
Raskind, 2000 ²⁰⁸ Fair-Good		Dem	IG1: Galantamine (24 mg) IG2: Galantamine (32 mg)	26	IG1: Following a 4-week run-in period, started at 8 mg qd for the first week, followed by 16 mg qd in the second and 24 mg qd in the third week. In the fourth week, continued to receive the 24 mg qd dose for an additional 5 months. IG2: Following a 4-week run-in period, started at 8 mg qd for the first week, followed by 16 mg qd in the second and 24 mg qd in the third week. In the fourth week, dose was increased to 32 mg qd dose for an additional 5 months.	
Rockwood, 2001 ²¹⁰ Fair-Good	US, GBR, AUS, CAN, NZL, ZAF	Dem	Galantamine (24-32 mg)	12	Started at 4 mg bid for 1 week, increased to 8 mg bid for the 2nd week and 12 mg bid for the 3rd week; during week 4 increased to 16 mg bid at the discretion of the investigator based on tolerance and by the end of the 4th week, the investigator could red	
Rockwood, 2006 ²⁰⁹ Fair	CAN	Dem	Galantamine (16-24 mg)	16	16 to 24 mg qd; 1 tablet bid with food. Titrated from 8 mg qd (4 mg bid) for 4 weeks; 16 mg qd for another 4 weeks At end of 8 weeks, dose could be increased to 24 mg qd depending on tolerability. At 12 weeks, dose could be reduced to 16 mg qd.	Placebo
Tariot, 2000 ²¹¹ Fair-Good	US	Dem	IG1: Galantamine (24 mg) IG2: Galantamine (16 mg)	21	IG1: Started at 4 mg bid for 4 weeks, then 8 mg bid for 4 weeks, and then maintenance dose at 12 mg bid from weeks 9 to 21	Placebo
			IG3: Galantamine (8 mg)		IG2: Started at 4 mg bid for 4 weeks followed by 8 mg bid for 17 weeks	

			Medication (total daily	Duration,		
Author, year	Country	Pop cat	dose)	weeks	Intervention details	CG description
Wilcock, 2000 ²¹² Fair-Good	GBR, CAN, FIN, FRA, DEU, NLD, NOR, SWE	Dem	IG1: Galantamine (24 mg) IG2: Galantamine (32 mg)	26	IG3: Started at 4 mg bid for 4 weeks followed by 8 mg bid for 17 weeks IG1: Started at 4 mg bid for one week, increasing to 8 mg bid for second week, and in the third week increased to 12 mg bid which was continued for rest of the study (5	Placebo
			ioz. Galanianine (52 mg)		months). IG2: Started at 4 mg bid for one week, increasing to 8 mg bid for second week, increasing to 12 mg bid for the third week, and in the fourth week increased to 16 mg bid which was continued rest of the study (5 months).	
Wilkinson, 2001 ²¹³ Fair-Good	GBR	Dem	IG1: Galantamine (24 mg) IG2: Galantamine (36 mg)	12	IG1: After a 2-week washout period, started at 4 mg bid; increased progressively at 2- to 3-day intervals until the target dosage level of 8 mg tid was achieved after 8 days	
			IG3: Galantamine (18 mg)		- then followed by 10 weeks of continuous fixed medication.	
					IG2: After a 2-week washout period, started 4 mg bid; increased progressively at 2- to 3-day intervals until the target dosage level of 12 mg tid was achieved after 14 days - then followed by 10 weeks of continuous fixed medication.	
					IG3: After a 2-week washout period, started at 4 mg bid; increased progressively at 2- to 3-day intervals until the target dosage level of 6 mg tid was achieved after 5 days - then followed by 10 weeks of continuous fixed medication.	
Agid, 1998 ²¹⁴ Fair-Good	GBR, AUT, BEL, CZE, DNK, FIN, FRA, DEU, IRL, NOR, SVK, SWE, CHE	Dem	IG1: Rivastigmine (6 mg) IG2: Rivastigmine (4 mg)	13	IG1: Started at 1 mg bid and titrated to 2.5 mg bid for 3 weeks, then maintained 3 mg bid for 10 weeks. IG2: Started at 1 mg bid and titrated to 1.5 mg bid for 1 week, then maintained 2 mg bid for 12 weeks.	Placebo
Ballard, 2008 ²¹⁵ Fair	US, GBR, AUT, CAN, FRA, DEU, ITA, KOR, RUS, ESP, TWN	Dem	Rivastigmine (3-12 mg)	24	Treatment began with 1.5 mg bid and doses were increased by 1.5 mg bid at every 4 week interval over 16 weeks. The highest well-tolerated dose was maintained for the duration of the study. Mean dose by the end of the study was 9.6 mg qd.	Placebo

			Medication (total daily	Duration,		
Author, year	Country	Pop cat	dose)	weeks	Intervention details	CG description
Corey-Bloom, 1998 ²¹⁶ Fair-Good	US	Dem	IG1: Rivastigmine (6-12 mg)		IG1: Started at 3 mg bid and dose was titrated weekly to 6 mg bid during weeks 1-7; and during flexible dose maintenance phase weeks 8-26, doses increased within the assigned range (6-12 mg qd) until maximum dose or maximum tolerated dose was achieved. IG2: Started at 0.5 mg bid and dose was titrated weekly to 2 mg bid during weeks 1-7; and during flexible dose maintenance phase weeks 8-26, doses increased within	
					the assigned range (1-4 mg qd) until maximum dose or maximum tolerated dose was achieved.	
Feldman, 2007 ²¹⁷	GBR, AUS, CAN, IRL, ITA, ZAF	Dem		26	IG1: 2-12 mg qd given tid, mean 9.6 mg qd	Placebo
Fair			IG2: Rivastigmine (8.9 mg)		IG2: 2-12 mg qd given bid, mean 8.9 mg qd	
McKeith, 2000 ²¹⁸ Fair-Good	GBR, ITA, ESP	Dem	Rivastigmine (12 mg)	20	Started with 1.5 mg bid rivastigmine or placebo; doses escalated by 1.5 mg bid for a max of 2 weeks at each dose until 6 mg bid or maximum well tolerated maintenance dose reached. Titration lasted up to 8 weeks.	Placebo
Mok, 2007 ²¹⁹ Fair	HKG	Dem	Rivastigmine (6 mg)	26	Started at 1.5 mg bid and increased to 3 mg bid after 4 weeks	Placebo
Rosler, 1999 ²²⁰ Fair-Good	US, AUT, CAN, FRA, DEU, CHE	Dem	IG1: Rivastigmine (6-12 mg) IG2: Rivastigmine (1-4 mg)	26	IG1: Dosages increased weekly in steps of up to 1.5 mg qd during weeks 1-12; must be within target range by week 7. Decreases were not permitted during the first 12 weeks. Mean dose 10.4 mg qd by the end of the study. IG2: Dosages increased weekly in steps of up to 1.5 mg qd during weeks 1-12; must be within target range by week 7. Decreases were not permitted during the first 12 weeks. Mean dose 3.7 mg qd by the end of the study.	
Winblad, 2007 ²²¹ Fair	US, CHL, CZE, DNK, FIN, DEU, GTM, ISR, ITA, KOR, MEX, NOR, PER, POL, PRT, RUS, SVK, SWE, TWN, VEN	Dem	IG1: Rivastigmine (12 mg) IG2: Rivastigmine (17.4 mg) IG3: Rivastigmine (9.5 mg)	24	IG1: 12 mg qd capsule titrated from 3 mg qd to maximum 12 mg qd in 4-week steps over 16 weeks. IG2: 20 square centimeter patch (17.4 milligrams/24 hours), titrated in 5 square cm patches to the target dose in 4-week steps over 16 weeks. Patients maintained at their highest tolerated dose.	Placebo

			Medication (total daily	Duration,		
Author, year	Country	Pop cat	dose)	weeks	Intervention details	CG description
					IG3: 10 square centimeter patch (9.5 milligrams/24 hours), titrated in 5 square cm patches to the target dose in 4-week steps over 16 weeks. Patients maintained at their highest tolerated dose.	
Bakchine, 2008 ²²² Good	GBR, AUT, BEL, DNK, FIN, FRA, GRC, LTU, NLD, POL, ESP, SWE	Dem	Memantine (20 mg)	24	Three week up titration then 21 weeks of 20 mg qd (10 mg bid)	Placebo
Choi, 2011* ²²³ Fair	KOR		Memantine (20 mg) + Rivastigmine (9.5 mg)	16	Starting at baseline (end of run-in period for rivastigmine, considered as week 0, titrated in 5 mg weekly increments from a starting dose of 5 mg qd to 20 mg qd at week 4. Memantine use concurrent with 10 cm ² (9.5 mg qd) Rivastigmine patch.	
Dysken, 2014* ²²⁴ Good	US	Dem	Memantine (20 mg)	208	Titrated over 4 weeks to maintenance dosage of 10 mg bid.	Placebo
Ferris, 2007 ²²⁵ Fair	US	MCI	Memantine (20 mg)	12	Titrated from 10 mg (5 mg bid) to 20 mg (10 mg bid) daily over a 1 month period.	Placebo
Herrmann, 2013* ²²⁶ Fair	CAN	Dem	Memantine (20 mg)	24	Titrated in 5 mg weekly increments from starting dose of 5 mg qd to 20 mg qd beginning at Week 4	Placebo
Orgogozo, 2002 ²²⁷ Fair-Good	BEL, FRA, CHE	Dem	Memantine (20 mg)	28	2-week placebo run-in period. Started at 5 mg qd at week 1, 10 mg qd at week 2, and 15 mg qd at week 3; patients received 20mg qd of memantine for remainder of followup	Placebo
Peskind, 2006 ²²⁸ Fair-Good	US	Dem	Memantine (20 mg)	24	After 7-14 day single-blind placebo lead-in, started at 5 mg qd and titrated in 5-mg weekly increments to final dose of 20 mg qd (administered as two 5-mg tablets bid) on day 22	Placebo
Peters, 2015 ^{*229} Fair	DEU	Dem	Memantine (20 mg)	52	Memantine titrated over 4 weeks in steps of 5 mg qd up to 20 mg qd.	Placebo + Galantamine (24 mg qd)
Porsteinsson, 2008 ²³⁰ Good	US	Dem	Memantine (20 mg)	24	20 mg qd (four 5 mg tablets qd at bedtime); initial dose of 5 mg qd titrated in 5 mg weekly increments until reached final dose on day 22. Transient-dose adjustments permitted during weeks 3-8 for subjects with tolerability issues	Placebo
Saxton, 2012 ²³¹ Good	AUS, NZL, ZAF	Dem	Memantine (20 mg)	12	Titrated in weekly increments of 5 mg reaching maximum target dose of 10 mg bid by week 4.	Placebo

Table 11. AChEIs and Memantine: Interventions Characteristics, by Medication Type (KQs 4 and 5)

			Medication (total daily	Duration,		
Author, year	Country	Pop cat	dose)	weeks	Intervention details	CG description
Wilcock, 2002 ²³²	GBR	Dem	Memantine (20 mg)	28	Single blind run-in using placebo only for 2 weeks and	Placebo
Fair-Good					double-blind treatment phase after randomization (28	
					weeks). Patients titrated up to daily dose of 20 mg	
					starting at 5 mg daily with weekly increments of 5 mg,	
Wilkinson, 2012	GBR, FRA, DEU,	Dem	Memantine (20 mg)	52	20 mg qd. Titrated up from 5 mg qd to target dose of 20	Placebo
Fair ²³³	СНЕ				mg qd (increased 5 mg qd once a week during a 4 week	
					dose escalation period); mean memantine dose ranging	
					from 8.7-21.6	

* New Study

Abbreviations: AUS = Australia; AUT = Australia; BEL = Belgium; bid = twice a day; CAN = Canada; CG = control group; CHE = Switzerland; cm^2 = square centimeter; CZE = Czech Republic; Dem = Dementia; DEU = Germany; DNK = Denmark; ESP = Spain; EST = Estonia; FIN = Finland; FRA = France; GBR = Great Britain/United Kingdom; GRC = Greece; GTM = Guatemala; HKG = Hong Kong; IG = intervention group; IRL = Ireland; ISR = Israel; ITA = Italy; IU = International Unit; JPN = Japan; KOR = Korea; LVA = Latvia; LTU = Lithuania; MCI = mild cognitive impairment; MEX = Mexico; mg = milligram; MMSE = Mini-Mental State Examination; N = number of participants; NLD = Netherlands; NOR = Norway; NZL = New Zealand; PER = Peru; POL = Poland; PRT = Portugal; Pop cat = population category; qd = once a day; ROU = Romania; RUS = Russia; SVK = Slovakia; SVN = Slovenia; SWE = Sweden; tid = three times a day; TWN = Taiwan; UKR = Ukraine; VEN = Venezuela; ZAF = South Africa

Medication	Author, year Quality	Pop cat	N rand	Age, mean	FU (mo.)	Global Function	Global Cognitive Function	Domain-specific Cognitive Function	Physical Function	Neuro Symptoms	Other
Donepezil	Black, 2003 ¹⁸⁶ Fair-Good		603	74		↑ (CDR-SB) IG2: ↔ (CIBIC+[D]), ↔ (CDR-SB)	IG1: ↑ (ADAS-Cog), ↑ (MMSE) IG2: ↑ (ADAS-Cog), ↑ (MMSE)	NR	IG1: ↔ (ADL/IADL), ↔ IADL IG2: ↔ (ADL/IADL), ↑ IADL	NR	NR
Donepezil	Burns, 1999 ¹⁸⁷ Fair-Good		818	72			IG1: ↑ (ADAS-Cog) IG2: ↑ (ADAS-Cog)	NR	IG1: ↑ (ADL/IADL) IG2: ↑ (ADL/IADL)	NR	NR
Donepezil	Doody, 2009 ¹⁸⁸ Fair	MCI	821	70	11	↔ (CIBIC+), ↔ (CDR-SB)	↑ (ADAS-Cog), ↔ (MMSE)	↔ (Attention)	NR	\leftrightarrow	NR
Donepezil	Feldman, 2001 ¹⁸⁹ Fair-Good	Dem	291	74	6	↑ (CIBIC+[D])	↑ (MMSE)	NR	↑ (ADL/IADL), ↑ (ADL), ↑ (IADL)	↑	NR
Donepezil	Holmes, 2004 ¹⁹⁰ Fair-Good	Dem	96	79	3	NR	↑ (MMSE)	NR	NR	↑	↑ (CGR Burden)
Donepezil	lkeda, 2015* ¹⁹¹ Fair	Dem	142	78	3	NR	IG1: ↑ (MMSE) IG2: ↔ (MMSE)	NR	NR	IG1: ↔ IG2: ↔	IG1: ↔ (CGR Burden) IG2: ↔ (CGR Burden)
Donepezil	Krishnan, 2003 ¹⁹² Fair-Good	Dem	67	73	6	NR	↑ (ADAS-Cog)	NR	NR	NR	NR
Donepezil	Mazza, 2006 ¹⁹³ Fair-Good	Dem	76	68	6	↑ (CGI Item 2)	↔ (MMSE)	↑ (Attention)	NR	NR	NR
Donepezil	Mohs, 2001 ¹⁹⁴ Fair	Dem	431	75	12	↑ (CDR/ADL/IADL[D])	NR	NR	NR	NR	NR
Donepezil	Mori, 2012 ¹⁹⁵ Fair	Dem	140	79	3	IG1: ↑ (CIBIC+[D]) IG2: ↔ (CIBIC+[D]) IG3: ↔ (CIBIC+[D])		IG1: ↔ (Attention), ↑ (EF), ↔ (Language) IG2: ↑ (Attention), ↑ (EF), ↔ [‡] (Language)	NR	IG1: ↑ IG2: ↑ IG3: ↔	IG1: ↑ (CGR Burden) IG2: ↔ (CGR Burden) IG3: ↔ (CGR Burden)

Medication	Author, year Quality	Pop cat	N rand	Age, mean	FU (mo.)	Global Function	Global Cognitive Function	Domain-specific Cognitive Function	Physical Function	Neuro Symptoms	Other
								$\begin{array}{l} IG3:\uparrow(Attention),\leftrightarrow\\ (EF),\leftrightarrow(Language) \end{array}$			
Donepezil	Petersen, 2005 ¹⁹⁶ Fair	MCI	769	73	36	↔ (CDR-SB), ↔ [†] (GDS)	↔ (ADAS-Cog), ↔ (MMSE)	↔ (EF), ↔ [‡] (Language), ↔ [‡] (Memory)	↔ (IADL)	NR	↑ (Dementia Incidence)
Donepezil	Rogers, 1996 ¹⁹⁸ Fair-Good	Dem	161	72	3	IG1: ↔ (CDR-SB) IG2: ↔ (CDR-SB) IG3: ↔ (CDR-SB)	IG1: ↑ (ADAS-Cog), ↔ (MMSE) IG2: ↑ (ADAS-Cog), ↔ (MMSE) IG3: ↔ (ADAS-Cog), ↔ (MMSE)	NR	IG1: ↔ (ADL) IG2: ↔ (ADL) IG3: ↔ (ADL)	NR	NR
Donepezil	Rogers, 1998 ¹⁹⁷ Fair-Good	Dem	468	74		IG1: ↑ (CIBIC+[D]), ↔ (CDR-SB) IG2: ↑ (CIBIC+[D]), ↔ (CDR-SB)	IG1: ↑ (ADAS-Cog), ↑ (MMSE) IG2: ↑ (ADAS-Cog), ↑ (MMSE)	NR	NR	NR	NR
Donepezil	Salloway, 2004 ¹⁹⁹ Fair-Good	MCI	270	72	6	↔ (CGIC-MCI [D])	↑ (ADAS-Cog), ↔ (ADAS-Cog [D])	↔ (Attention), ↔ (Memory)	NR	NR	NR
Donepezil	Seltzer, 2004 ²⁰⁰ Fair-Good	Dem	153	74	6	NR	↑ (ADAS-Cog), ↑ (ADAS-Cog [D]), ↑ (MMSE)	↔ (Memory)	NR	NR	NR
Donepezil	Tune, 2003 ²⁰¹ Fair-Good	Dem	28	73	6	NR	↔ (ADAS-Cog)	NR	NR	\leftrightarrow	NR
Donepezil	Wilkinson, 2003 ²⁰² Fair-Good	Dem	616	75		IG1: ↑ (CIBIC+[D]), ↑ (CDR-SB) IG2: ↑ (CIBIC+[D]), ↑ (CDR-SB)	IG1: ↑ (ADAS-Cog), ↑ (MMSE) IG2: ↑ (ADAS-Cog), ↑ (MMSE)	NR	IG1: ↔ (ADL/IADL) IG2: ↔ (ADL/IADL)	NR	NR
Donepezil	Winblad, 2001 ²⁰³ Fair-Good	Dem	286	72	12	↔ (GBS), ↑ (GDS[D])	↑ (MMSE)	NR	↑ (ADL/IADL)	NR	NR
Galantamine	Auchus, 2007 ²⁰⁴ Fair	Dem	788	72	6	↔ (CIBIC+[D])	↑ (ADAS-Cog)	NR	↔ (ADL/IADL)	NR	NR
Galantamine	Brodaty, 2005 ²⁰⁵ Fair-Good	Dem	971	76	6	IG1: ↑ (CIBIC+[D]) IG2: ↔ (CIBIC+[D])	1 ()	NR	IG1: ↑ (ADL/IADL) IG2: ↑ (ADL/IADL)	IG1: ↔ IG2: ↔	NR

Medication	Author, year Quality	Pop cat	N rand	Age, mean	FU (mo.)	Global Function		Domain-specific Cognitive Function	Physical Function	Neuro Symptoms	Other
Galantamine	Erkinjuntti, 2002 ²⁰⁶ Fair-Good		592	75	6	↑ (CIBIC+[D])	↑ (ADAS-Cog), ↑ (ADAS-Cog [D])	NR	↑ (ADL/IADL)	↑	NR
Galantamine	2014* ²⁰⁸ Fair			73		NR		NR		NR	NR
	Raskind, 2000 ²⁰⁸ Fair-Good	Dem	636	75		IG1: ↑ (CIBIC+[D]) IG2: ↔ (CIBIC+[D])	1 ()	NR	NR	NR	NR
	2001 ²¹⁰ Fair-Good		386	75	3	↑ (CIBIC+[D])	(ADAS-Cog [D])	NR	↑ (ADL/IADL)		NR
Galantamine	2006 ²⁰⁹ Fair			78	4	↔ (CIBIC+)		NR	↔ (ADL/IADL)		NR
	Tariot, 2000 ²¹¹ Fair-Good	Dem	978	77	5	↑ (CIBIC+[D])	$\begin{array}{ll} IG1:\uparrow(ADAS\text{-}Cog),\uparrow\\ (ADAS\text{-}Cog\;[D])\\ IG2:\uparrow(ADAS\text{-}Cog),\uparrow\\ (ADAS\text{-}Cog\;[D])\\ IG3:\leftrightarrow(ADAS\text{-}Cog),\\ \leftrightarrow(ADAS\text{-}Cog\;[D])\\ \end{array}$			IG1: ↑ IG2: ↑ IG3: ↔	$IG1: \leftrightarrow (CGR)$ Burden) $IG2: \leftrightarrow (CGR)$ Burden) $IG3: \leftrightarrow (CGR)$ Burden)
Galantamine	Wilcock, 2000 ²¹² Fair-Good	Dem	653	72		IG1: ↑ (CIBIC+[D]) IG2: ↑ (CIBIC+[D])	IG1: ↑ (ADAS-Cog), ↑ (ADAS-Cog [D]) IG2: ↑ (ADAS-Cog), ↑ (ADAS-Cog [D])		IG1: ↔ (ADL/IADL) IG2: ↑ (ADL/IADL)	NR	NR
	Wilkinson, 2001 ²¹³ Fair-Good	Dem	285	74		↔ (CIBIC+)	ÎG1: ↑ (ADĂŠ-Čog) IG2: ↔ (ADAS-Cog) IG3: ↔ (ADAS-Cog)		IG1: ↔ (ADL/IADL [D]) IG2: ↔ (ADL/IADL [D]) IG3: ↔ (ADL/IADL [D])	NR	NR
Rivastigmine	Agid, 1998 ²¹⁴ Fair-Good	Dem	402	69	3	NR		↔ [‡] (Memory)	$IG1: \leftrightarrow (ADL), \\ \leftrightarrow (IADL) \\ IG2: \leftrightarrow (ADL), \\ \leftrightarrow (IADL)$		NR

Medication	Author, year Quality	Pop cat	N rand	Age, mean	FU (mo.)	Global Function	Global Cognitive Function	Domain-specific Cognitive Function	Physical Function	Neuro Symptoms	Other
Rivastigmine	Ballard, 2008 ²¹⁵ Fair	Dem	710	73	6	↔ (CIBIC+), ↔ (GDS)	↑ (ADAS-Cog), ↑ (MMSE)	NR	↔ (ADL/IADL)	\leftrightarrow	NR
	Corey- Bloom, 1998 ²¹⁶ Fair-Good	Dem	699	74		$\begin{array}{l} IG1: \leftrightarrow (CIBIC+[D]),\\ \uparrow (GDS)\\ IG2: \leftrightarrow (CIBIC+[D]),\\ \leftrightarrow (GDS) \end{array}$	↔ (ADAS-Cog [D]), ↑	NR		NR	NR
Rivastigmine	Feldman, 2007 ²¹⁷ Fair	Dem	678	71		IG1: ↑ (CIBIC+[D]), ↔ (GDS) IG2: ↔ (CIBIC+[D]), ↔ (GDS)	$\begin{array}{l} \hline \text{IG1:}\uparrow(\text{ADAS-Cog}),\uparrow\\ (\text{ADAS-Cog}\ [\text{D}]),\leftrightarrow\\ (\text{MMSE})\\ \hline \text{IG2:}\uparrow(\text{ADAS-Cog}),\\ \leftrightarrow(\text{ADAS-Cog}\ [\text{D}]),\\ \leftrightarrow(\text{MMSE}) \end{array}$		IG1: ↔ (ADL/IADL) IG2: ↔ (ADL/IADL)	NR	NR
	McKeith, 2000 ²¹⁸ Fair-Good	Dem	120	74	5	NR	↔ (MMSE)	NR	NR	↑	NR
Rivastigmine	Mok, 2007 ²¹⁹ Fair	Dem	40	75	6	↔ (CDR-SB)	↔ (MMSE)		↔ (IADL)	\leftrightarrow	↔ (Anxiety)
Rivastigmine	Rosler, 1999 ²²⁰ Fair-Good	Dem	725	72		IG1: ↑ (CIBIC+[D]), ↑ (GDS) IG2: ↔ (CIBIC+[D]), ↔ (GDS)	$\begin{array}{ll} IG1: \uparrow (ADAS\text{-}Cog), \uparrow \\ (ADAS\text{-}Cog \ [D]), \uparrow \\ (MMSE) \\ IG2: \leftrightarrow (ADAS\text{-}Cog), \\ \leftrightarrow (ADAS\text{-}Cog \ [D]), \\ \leftrightarrow (MMSE) \end{array}$	NR		NR	NR
Rivastigmine	Winblad, 2007 ²²¹ Fair	Dem	1195	74		IG1: ↑ (CIBIC+[D]) IG2: ↔ (CIBIC+[D]) IG3: ↑ (CIBIC+[D])	IG1: ↑ (ADAS-Cog), ↑	(EF) IG2: ↑ (Attention), ↔ (EF) IG3: ↑ (Attention), ↔	(ADL/IADL) IG2: ↑ (ADL/IADL)	IG1: ↔ IG2: ↔ IG3: ↔	NR
Memantine	Bakchine, 2008 ²²² Good	Dem	470	74	6	↔ (CIBIC+)	↔ (ADAS-Cog)	. ,	↔ (ADL/IADL)	\leftrightarrow	NR
<i>Memantine</i>	Choi, 2011* ²²³ Fair	Dem	172	75	4	↔ (CDR-SB)	↔ (ADAS-Cog), ↔ (MMSE)	↔ (EF)	↔ (ADL/IADL)	\leftrightarrow	NR

	Author, year	Рор	N	Age,	FU		Global Cognitive	Domain-specific	Physical	Neuro	
Medication	Quality	cat	rand	mean	(mo.)	Global Function	Function	Cognitive Function		Symptoms	Other
Memantine	Dysken, 2014 ^{*224} Good	Dem	613	79	48	NR	↔ (ADAS-Cog), ↔ (MMSE)		↔ (ADL/IADL))↔	NR
Memantine	Ferris, 2007 ²²⁵ Fair	MCI	60	67	3	NR	NR	↔ (Attention), ↔ (Memory)	NR	NR	NR
Memantine	Herrmann, 2013 ^{*226} Fair	Dem	369	75	6	NR	↔ (SIB)	NR	NR	\leftrightarrow	↔ (Institutionalization)
Memantine	Orgogozo, 2002 ²²⁷ Fair-Good	Dem	321	76		$\leftrightarrow (ADCS-CGIC), \\\leftrightarrow (CIBIC+[D]), \leftrightarrow \\(GBS)$	↑ (ADAS-Cog), ↑ (MMSE)	NR	↔ (ADL), ↔ (IADL)	NR	NR
Memantine	Peskind, 2006 ²²⁸ Fair-Good	Dem	403	78	6	↑ (CIBIC+)	↑ (ADAS-Cog)	NR	↔ (ADL/IADL)	₽↑	NR
Memantine	Peters, 2015* ²²⁹ Fair	Dem	226	72	12	↔ (CDR-SB)	↔ (ADAS-Cog)	NR	↔ (ADL/IADL)	♦	NR
Memantine	Porsteinss on, 2008 ²³⁰ Good		433	75	6	↔ (CIBIC+)	↔ (ADAS-Cog), ↔ (MMSE)	NR	↔ (ADL/IADL))↔	NR
Memantine	Saxton, 2012 ²³¹ Good	Dem	265	75	3	↔ (ADCS-CGIC[D])	NR	NR	NR	NR	NR
Memantine	Wilcock, 2002 ²³² Fair-Good	Dem	579	77	6	NR	↑ (ADAS-Cog)	NR	NR	NR	NR
Memantine	Wilkinson, 2012 ²³³ Fair	Dem	278	74	12	NR	↑ (MMSE)	⇔ [‡] (EF), ↑ (Language)	NR	\leftrightarrow	NR

NOTE: Arrows represent study-reported results.

Symbol Legend:

↑ = Statistically significant between-group difference in favor of intervention group \leftrightarrow = No statistically significant difference between groups or no clear between-group difference (not reported).

* New study

† Results are statistically significant for at least one timepoint

‡ Mixed results from multiple tests assessing same cognitive domain

Table 12. AChEls and Memantine: Summary of Results, by Medication Type (KQs 4 and 5)

Abbreviations: ADL = Activities of Daily Living; ADAS-Cog = Alzheimer's Disease Assessment Scale-cognitive subscale; ADCS-CGIC = Alzheimer's Disease Cooperative Stud – Clinical Global Impression of Change scale; CIBIC+ = Clinician's Interview-Based Impression of Change with caregiver's input; CDR-SB = Clinical Dementia Rating Scale Sum of Boxes; CGI = Clinical Global Impression scale; CGR = caregiver; D = dichotomized; Dem = dementia; EF = executive functioning; FU = followup; GBS = Gottfries-Brane-Steen scale; GDS = Global Deterioration Scale; IADL = Instrumental Activities of Daily Living; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination; mo. = months; NR = not reported; Pop cat = population category

Medication		Author, year			N		Baseline MMSE,		
type	Medication	(Study name)	Quality	Country	randomized	Population	mean	Age, mean	Female, %
Antihypertensive	Discontinuation of	Moonen, 2015* ²³⁷	Fair	NLD	385	MCI	26 [†]	81	59
51	antihypertensive	(DANTE)							
HMG-CoA	Atorvastatin	Feldman, 2010 ²³⁸	Fair	US	640	Dem	22.0	74	52
reductase		(LEADe)							
inhibitor									
HMG-CoA	Simvastatin	Sano, 2011 ²³⁹	Fair	US	406	Dem	20.4	75	59
reductase									
inhibitor									
HMG-CoA	Simvastatin	Simons, 2002 ²⁴⁰	Fair	DEU	44	Dem	17.5	68	55
reductase									
inhibitor									
HMG-CoA	Atorvastatin	Sparks, 2005 ²⁴¹	Fair	US	63	Dem	20.8	78	36
reductase		(Alzheimer's Disease							
inhibitor		Cholesterol-Lowering							
		Treatment (ADCLT)							
		trial)							
NSAID	Naproxen	Aisen, 2003 ²⁴²	Good	US	229	Dem	20.9	74	53
NSAID	Indomethacin	de Jong, 2008 ²⁴³	Fair	NLD	51	Dem	19.6	72	65
NSAID	Ibuprofen	Pasqualetti, 2009 ²⁴⁴	Fair	ITA	132	Dem	20.0	74	63
NSAID	Celecoxib	Soininen, 2007 ²⁴⁵	Fair	US, GBR,	425	Dem	19.7	74	55
				AUS, BEL,					
				FIN, FRA,					
				DEU, NLD					
Gonadal steroid	Estrogen	Henderson, 2000 ²⁴⁷	Fair	US	42	Dem	19.5	78	100
Gonadal steroid	Estrogen	Henderson, 2015* ²⁴⁶	Good	US	42	Dem	20.3	76	100
Gonadal steroid	Testosterone	Lu, 2006 ²⁴⁸	Fair	US	18	Dem	22.0	70	0
Gonadal steroid	Estrogen	Mulnard, 2000 ²⁴⁹	Fair	US	120	Dem	20.7	75	100
Gonadal steroid	Estrogen plus	Valen-Sendstad,	Fair	NOR	65	Dem	21.9	81	100
	progestin	2010 ²⁵⁰							
Gonadal steroid		Wang, 2000 ²⁵¹	Fair	TWN	50	Dem	16.2	72	100
Dietary	B vitamins (including	Aisen, 2008 ²⁵²	Good	US	409	Dem	21.0	76	56
supplement	folic acid)								
Dietary	B vitamins (including	Connelly, 2008 ²⁵³	Fair	GBR	57	Dem	24.0	76	71
supplement	folic acid)								
Dietary	B vitamins (including	de Jager, 2012 ²⁵⁴	Fair	GBR	271	MCI	NR	77	64
supplement	folic acid)	(VITACOG)							
Dietary	Vitamin E	Dysken, 2014*224	Good	US	613	Dem	21.0	79	3
supplement		(TEAM-AD VA)							

Medication		Author, year			N		Baseline MMSE,		
type	Medication	(Study name)	Quality	Country	randomized	Population	mean	Age, mean	Female, %
Dietary	Omega-3 fatty acids	Freund-Levi, 2006 ²⁵⁵	Fair	SWE	204	Dem	23.4	74	54
supplement									
Dietary	B vitamins (including	Kwok, 2011 ²⁵⁶	Fair	HKG	140	Dem	16.6	78	64
supplement	folic acid)								
Dietary	Vitamin E	Petersen, 2005 ¹⁹⁶	Fair	US, CAN	769	MCI	27.3	73	46
supplement									
Dietary	Omega-3 fatty acids	Phillips, 2015* ²⁵⁷	Fair	GBR	76	MCI + Dem	NR	71	55
supplement									
Dietary	Omega-3 fatty acids	Quinn, 2010 ²⁵⁸	Fair	US	402	Dem	20.7	76	52
supplement									
Dietary	Vitamin E	Sano, 1997 ²⁵⁹	Good	US	169	Dem	12.3	73	66
supplement									
Dietary	Omega-3 and LA	Shinto, 2014* ²⁶⁰	Fair	US	39	Dem	21.8	76	44
supplement									
Dietary	Omega-3 fatty acids	Sinn, 2012 ²⁶¹	Fair	AUS	54	MCI	27.2	74	32
supplement	- DHA								
Dietary	Multivitamin	Sun, 2007 ²⁶²	Fair	JPN	89	Dem	18.7	75	49
supplement									
Dietary	Omega-3 fatty acids	Yurko-Mauro, 2010 ²⁶³	Good	US	485	MCI	28.2	70	58
supplement									

* New Study

† Median

Abbreviations: AUS = Australia; AUT = Austria; BEL = Belgium; CAN = Canada; CHE = Switzerland; CZE = Czech Republic; Dem = Dementia; DEU = Germany; DNK = Denmark; ESP = Spain; EST = Estonia; FIN = Finland; FRA = France; GBR = Great Britain/United Kingdom; GRC = Greece; GTM = Guatemala; HKG = Hong Kong; IRL = Ireland; ISR = Israel; ITA = Italy; JPN = Japan; KOR = Korea; LEADe = Lipitor's Effect in Alzheimer's; Dementia; LVA = Latvia; LTU = Lithuania; MCI = mild cognitive impairment; MEX = Mexico; MMSE = Mini-Mental State Examination; N = number of participants; NLD = Netherlands; NOR = Norway; NR = not reported; NZL = New Zealand; PER = Peru; POL = Poland; PRT = Portugal; ROU = Romania; RUS = Russia; SVK = Slovakia; SVN = Slovenia; SWE = Sweden; TWN = Taiwan; UKR = Ukraine; VEN = Venezuela; ZAF = South Africa

Table 14. Other Medications and Supplements: Intervention Characteristics, by Agent (KQs 4 and 5)

Author, year				Duration,		
Quality	Country	Pop cat		weeks	Intervention details	CG description
Moonen, 2015* ²³⁷ Fair	NLD	MCI	Discontinuation of antihypertensive treatment	16	During a 6-week period after randomization, the discontinuation of antihypertensive treatment according to an algorithm composed by the investigators; and until a maximum increase of 20 mm Hg in SBP was reached. Treatment was restarted when DBP was 120 mm	Usual care (continuation of anti- hypertensive treatment)
Feldman, 2010 ²³⁸ Fair	US	Dem	Atorvastatin (80 mg)	72	80 mg qd and donepezil 10 mg qd	Placebo + donepezil (10 mg qd)
Sano, 2011 ²³⁹ Fair	US	Dem	Simvastatin (40 mg)	78	Started at 20 mg qd of simvastatin for 6 weeks and increased to 40-mg qd for remainder of 18- month study.	Placebo
Simons, 2002 ²⁴⁰ Fair	DEU	Dem	Simvastatin (80 mg)	26	40 mg qd for 4 weeks; 80 mg qd for rest of the study	Placebo
Sparks, 2005 ²⁴¹ Fair	US	Dem	Atorvastatin (80 mg)	52	80 mg qd (given two 40 mg tablets qd)	Placebo
Aisen, 2003 ²⁴² Good	US	Dem	Naproxen (440 mg)	52	220 mg bid	Placebo
de Jong, 2008 ²⁴³ Fair	NLD	Dem	Indomethacin (100 mg)	52	50 mg bid and omeprazole 20 mg qd	Placebo bid + omeprazole (20 mg qd)
Pasqualetti, 2009 ²⁴⁴ Fair	ITA	Dem	lbuprofen (800 mg)	52	400 mg bid	Placebo + esomeprazole (20 mg) placebo
Soininen, 2007 ²⁴⁵ Fair	US, GBR, AUS, BEL, FIN, FRA, DEU, NLD		Celecoxib (400 mg)	52	200 mg bid	Placebo
Henderson, 2000 ²⁴⁷ Fair	US	Dem	Estrogen (1.25 mg)	16	Given daily as a single oral tablet of 1.25 mg for 16 weeks.	Placebo
Henderson, 2015* ²⁴⁶ Good	US	Dem	Estrogen (120 mg)	52	Started at two 60-mg tablets qd and continued through the end of the study.	Placebo

Table 14. Other Medications and Supplements: Intervention Characteristics, by Agent (KQs 4 and 5)

Author, year				Duration		
	Country	•	· · · · ·	weeks	Intervention details	CG description
Lu, 2006 ²⁴⁸ Fair	US	Dem	Testosterone (75 mg)	24	Applied three packets of 25 mg of T-gel on three different sites in the morning after showering or bathing for total dose of 75 mg.	Placebo
Mulaard	US	Dom	IG1: Estrogen (0.625 mg)	52	IG1: Given one 0.625 mg and one identical	Placebo
Mulnard, 2000 ²⁴⁹	03	Dem	IGT. Estrogen (0.625 mg)	52	placebo tablet qd for 12 months followed by a 3	Placebo
Fair			IG2: Estrogen (1.24 mg)		month single-blind placebo washout period	
					IG2: Given two 0.625 mg tablets qd for 12 months followed by a 3 month single-blind placebo washout period	
Valen- Sendstad, 2010 ²⁵⁰ Fair	NOR	Dem	Estrogen plus progestin (1.5 mg)	52	Given 1 tablet containing 1 mg of estradiol and 0.5 mg norethisterone qd	Placebo
Wang, 2000 ²⁵¹ Fair	TWN	Dem	Estrogen (1.25 mg)	12	Given 1.25 mg of conjugated estrogen (Premarin); taken orally qd	Placebo
Aisen, 2008 ²⁵² Good	US	Dem	B vitamins (including folic acid) (31 mg)	78	31 mg qd for 78 weeks	Placebo
Connelly, 2008 ²⁵³ Fair	GBR	Dem	B vitamins (including folic acid) (1 mg)	26	1 mg qd combined with AChEI of clinician's choice	Placebo and AChEI of clinician's choice
de Jager, 2012 ²⁵⁴ Fair	GBR	MCI	B vitamins (including folic acid) (0.8 mg folic acid, 0.5 mg cyanocobalamin and 20 mg pyridoxine HCI)	104	NR	Placebo
Dysken, 2014* ²²⁴ Good	US	Dem	Vitamin E (2000 IU)	208	Alpha tocopherol at 1000 IU bid. Memantine placebo was titrated over 4 weeks.	Placebo
Freund-Levi, 2006 ²⁵⁵ Fair	SWE	Dem	Omega-3 fatty acids (4 g)	26	Four 1g capsules qd	Isocaloric placebo oil (1 g corn oil, 0.6 g linoleic acid); vitamin E 4 mg added to each packet.
Kwok, 2011 ²⁵⁶ Fair	HKG	Dem	B vitamins (including folic acid) (6 mg)	104		Placebo
Petersen, 2005 ¹⁹⁶ Fair	US, CAN	MCI	Vitamin E (2000 IU) and multivitamin	36	Started at 1000 IU qd, then increased to 2000 IU (1000 IU bid) after 6 weeks	Placebo + multivitamin containing 15 IU vitamin E

Table 14. Other Medications and Supplements: Intervention Characteristics, by Agent (KQs 4 and 5)

Author, year Quality	Country	Pon cat		Duration, weeks	Intervention details	CG description
	GBR	MCI +	Omega-3 fatty acids (625 mg DHA + 600 mg EPA)			Placebo
Quinn, 2010 ²⁵⁸ Fair	US	Dem	Omega-3 fatty acids (2 g)	78	1 g bid	Placebo
Sano, 1997 Good	US	Dem	Vitamin E (1.818 g)	104	0.909 g bid	Placebo
Shinto, 2014 ^{*260} Fair	US		IG1: Omega-3 fatty acids (675 mg DHA + 975 mg EPA)	52	IG1: Fish oil concentrate containing a daily dose of 675 mg DHA + 975 mg EPA	Placebo
Sinn, 2012 ²⁶¹ Fair	AUS		IG1: Omega-3 fatty acids – DHA (1.95 g) IG2: Omega-3 fatty acids – EPA (1.83 g)	26	IG1: 1.95 g qd IG2: 1.83 g qd	Placebo (safflower oil containing 2.2 g linoleic acid qd)
Sun, 2007 ²⁶² Fair	JPN		Multivitamin (Mecobalamin [0.5 mg] + multivitamin supplement that contained folic acid, pyridoxine HCl, ferrous [60 mg], nicotinamide [10 mg], calcium carbonate [250 mg], riboflavin [2 mg], thiamine mononitrate [3 mg], calcium pantothenate [1 mg], ascorbic acid [100 mcg], iodine [100 mcg], copper [150 mcg], vitamin B12 [3 mcg], vitamin A (4,000 IU) and vitamin D3 [400 IU])	26	To be taken after breakfast.	Placebo
Yurko- Mauro, 2010 ²⁶³ Good	US			24	900 mg qd	Placebo

* New Study

Abbreviations: AChEI = acetyl-cholinesterase-inhibitor; AUS = Australia; BEL = Belgium; bid = twice a day; CAN = Canada; CG = control group; cm² = square centimeter; DBP = diastolic blood pressure; Dem = Dementia; DEU = Germany; DHA = docosahexaenoic acid; EPA = eicosapentaenoic acid; FIN = Finland; FRA = France; g = grams; GBR = Great Britain/United Kingdom; HKG = Hong Kong; IG = intervention group; ITA = Italy; IU = International Unit; JPN = Japan; KOR = Korea; LVA = Latvia; LTU = Lithuania; MCI = mild cognitive impairment; mcg = microgram; mg = milligram; MMSE = Mini-Mental State Examination; N = number of participants; NLD = Netherlands; NOR = Norway; Pop cat = population category; qd = once a day; SBP = systolic blood pressure; SWE = Sweden; tid = three times a day; TWN = Taiwan

Medication type	Medication	Author, year Quality		N rand	Age, mean		Global Function	Global Cognitive Function	Domain- specific Cognitive Function	Physical Function	Neuro Symptoms	Other
Antihypertensive	Discontinuation of antihypertensive	Moonen, 2015 ^{*237} Fair	MCI	385	81	4	NR	↔ (MMSE)	↔ (EF, Memory)	↔ (ADL/IADL)	↔ (Dep)	↔ (QOL)
HMG-CoA reductase inhibitor	Atorvastatin	Feldman, 2010 ²³⁸ Fair	Dem	640	74	18	↔ (CIBIC+, CDR-SB)	↔ (ADAS-Cog 11, MMSE)	NR	↔ (ADL/IADL)	↔ (NPS)	NR
HMG-CoA reductase inhibitor	Simvastatin	Sano, 2011 ²³⁹ Fair	Dem	406	75	18	NR	↔ (ADAS-Cog 11, MMSE)	NR	↔ (ADL/IADL)	↔ (NPS)	NR
HMG-CoA reductase inhibitor	Simvastatin	Simons, 2002 ²⁴⁰ Fair	Dem	44	68	6	NR	↔ (ADAS-Cog 11), ↑ (MMSE)	NR	NR	NR	NR
HMG-CoA reductase inhibitor	Atorvastatin	Sparks, 2005 ²⁴¹ Fair	Dem	63	78	12	↔ (CIBIC+)	↔ (ADAS-Cog 11, MMSE)	NR	↔ (ADL/IADL)	↑ (Dep)	NR
NSAID	Naproxen	Aisen, 2003 ²⁴² Good	Dem	229	74	12	↔ (CDR-SB)	↔ (ADAS-Cog 11)	NR	↔ (ADL/IADL)	↔ (NPS)	↔ (QOL)
NSAID	Indomethacin	de Jong, 2008 ²⁴³ Fair	Dem	51	72	12	↔ (CIBIC+)	↔ (ADAS-Cog 11, MMSE)	NR	NR	↔ (NPS)	↔ (CGR Burden)
NSAID	lbuprofen	Pasqualetti, 2009 ²⁴⁴ Fair	Dem	132	74	12	↔ (CDR-SB, CIBIC+)	↔ (ADAS-Cog 11, MMSE)	NR	↔ (ADL, IADL)	↔ (Dep, NPS)	↔ (CGR Anxiety, Depression, Burden) ↔ (Institutionalization)
NSAID	Celecoxib	Soininen, 2007 ²⁴⁵ Fair	Dem	425	74	6	↔ (CIBIC+)	↔ (ADAS-Cog 11, ADAS-Cog 11 [D], MMSE)	NR	NR	↔ (NPS)	↔ (QOL)
Gonadal steroid	Estrogen	Henderson, 2000 ²⁴⁷ Fair	Dem	42	78	4	↔ (CIBIC+, CIBIC+ [D])	↔ (ADAS-Cog 11, ADAS-Cog 11 [D])	↔ (Attention), ↑ (EF), ↔* (Memory)	↔ (IADL)	↔ (Dep)	NR
Gonadal steroid	Estrogen	Henderson, 2015 ^{*246} Good	Dem	42	76	12	↔ (CDR, CDR-SB)	↔ (ADAS-Cog 11, MMSE)	↔ (Attention, EF, Language), ↔* (Memory)	↔ (ADL/IADL)	↔ (NPS)	↔ (CGR Burden)

Medication type	Medication	Author, year Quality			Age, mean		Global Function	Global Cognitive Function	Domain- specific Cognitive Function	Physical Function	Neuro Symptoms	Other
Gonadal steroid	Testosterone	Lu, 2006 ²⁴⁸ Fair	Dem	18	70	6	↔ (CIBIC+)	↔ (ADAS-Cog 11)	↔ (EF, Memory)	NR	↔ (Dep, NPS)	↔ (QOL)
Gonadal steroid	Estrogen		Dem	120	75	12	↔ (CIBIC+, CIBIC+ [D])	IG1: ↔ (ADAS- Cog 11, MMSE) IG2: ↔ (ADAS-	IG1: ↔ (Attention, Language, Memory) IG2: ↔ (Attention, Language, Memory)	↔ (ADL)	↔ (Dep)	NR
Gonadal steroid	Estrogen plus progestin	Valen- Sendstad, 2010 ²⁵⁰ Fair	Dem	65	81	12	IG1: ↔ (GDS)	↔ (MMSE)	↔ (Attention, Language, Memory)	↔ (ADL)	↔ (Dep)	NR
Gonadal steroid	Estrogen	Wang, 2000 ²⁵¹ Fair	Dem	50	72	3	↔ (CDR, CIBIC+)	↔ (MMSE)	NR	NR	↔ (Anx, Dep, NPS)	NR
supplement	B vitamins (including folic acid)	Aisen, 2008 ²⁵² Good	Dem	409	76	18	↔ (CDR-SB)	↔ (ADAS-Cog 11, MMSE)	NR	↔ (ADL/IADL)	↔ (NPS)	↔ (QOL)
supplement	B vitamins (including folic acid)	Connelly, 2008 ²⁵³ Fair	Dem	57	76	6	↑ (Unspecified [D])	↔ (MMSE)	↔ (Attention)	↑ (IADL)	NR	NR
supplement	B vitamins (including folic acid)	2012 ²⁵⁴ Fair		271		24	NR	NR	↑ (EF) ↔ (Language, Memory)	NR	↔ (Dep)	NR
Dietary supplement	Vitamin E	Dysken, 2014 ^{*224} Good	Dem	613	79	48	NR	↔ (ADAS-Cog 11, MMSE)	NR	↑ (ADL/IADL)	↔ (NPS)	NR
Dietary supplement	Omega-3 fatty acids	Freund-Levi, 2006 ²⁵⁵ Fair	Dem	204	74	6	↔ (CDR, CDR-SB)	↔ (ADAS-Cog 13, MMSE)	NR	↔ (ADL/IADL)	↔ (Dep, NPS)	NR
supplement	B vitamins (including folic acid)	Kwok, 2011 ²⁵⁶ Fair	Dem	140	78	24	NR	↔ (MDRS, MMSE)	↔ (Attention, EF, Memory)		↔ (Dep, NPS)	NR

Medication type	Medication	Author, year Quality			Age, mean		Global Function	Global Cognitive Function	Domain- specific Cognitive Function	Physical Function	Neuro Symptoms	Other
Dietary supplement	Vitamin E	Petersen, 2005 ¹⁹⁶ Fair				36	↔ (CDR-SB, ↔ GDS)	↔ (ADAS-Cog 11, ADAS-Cog 13, MMSE)	↔* (EF, Language) ↔ (Memory)	↔ (IADL)	NR	↔ (Dementia Incidence)
Dietary supplement	Omega-3 fatty acids	2015* ²⁵⁷	MCI + Dem	76	71	4	NR	NR	↔ (Attention, EF, Language, Memory)	↔ (ADL/IADL)	↔ (Dep)	NR
Dietary supplement	Omega-3 fatty acids	Quinn, 2010 ²⁵⁸ Fair	Dem	402	76	18	↔ (CDR-SB)	↔ (ADAS-Cog 11, MMSE)	NR	↔ (ADL/IADL)	↔ (NPS)	NR
Dietary supplement	Vitamin E	Sano, 1997 ²⁵⁹ Good	Dem	169	73	24	↔ (CDR [D])	↔ (ADAS-Cog 11, MMSE)	NR	↑ (ADL [D])	NR	↔ (Institutionalization)
Dietary supplement	Omega-3 and LA	Shinto, 2014 ^{*260} Fair	Dem	39	76	12	NR	IG1: ↔ (ADAS- Cog 11), ↔ (MMSE) IG2: ↔ (ADAS- Cog 11), ↑ (MMSE)	NR	IG1: ↔ (ADL), ↑ (IADL) IG2: ↔ (ADL), ↑ (IADL)		NR
Dietary supplement	Omega-3 fatty acids - DHA	Sinn, 2012 ²⁶¹ Fair	MCI	54	74	6	NR	NR	G1: ↔ (Attention, Language), $↔^* (EF)$ IG2: ↔ (Attention, EF, Language)		IG1: ↑ (Dep) IG2: ↑ (Dep)	↔ (QOL)
Dietary supplement	Multivitamin	Sun, 2007 ²⁶² Fair	Dem	89	75	6	NR	↔ (ADAS-Cog 11, MMSE)	↔* (Memory)	l↔ (ADL, IADL)	NR	NR
Dietary supplement	Omega-3 fatty acids		MCI	485	70	6	NR	↔ (MMSE)	↑ (EF), ↔* (Memory)	↔ (ADL)	↔ (Dep)	NR

NOTE: Arrows represent study-reported results.

Symbol Legend:

 \uparrow = Statistically significant between-group difference in favor of intervention group

Table 15. Other Medications and Supplements: Summary of Results, by Agent (KQs 4 and 5)

 \leftrightarrow = No statistically significant difference between groups or no clear between-group difference (not reported).

↓= Statistically significant between-group difference in favor of control group

Abbreviations: ADAS-Cog 11 = Alzheimer's Disease Assessment Scale-cognitive subscale; 11-item; ADAS-Cog 13 = Alzheimer's Disease Assessment Scale-cognitive subscale; 13-item; ADL = Activities of Daily Living; Anx = anxiety; CDR = Clinical Dementia Rating Scale; CDR-SB = Clinical Dementia Rating Scale Sum of Boxes; CIBIC+ = Clinician's Interview-Based Impression of Change with caregiver's input; D = dichotomized; Dem = dementia; Dep = depression; DHA = docosahexaenoic acid; EF = executive functioning; FU = followup; GDS = global deterioration scale; HMG-CoA = β -Hydroxy β -methylglutaryl-CoA; IADL = Instrumental Activities of Daily Living; IG = intervention group; LA = linoleic acid; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination; NPS = Composite neuropsychiatric symptoms; NR = not reported; N rand = number of participants randomized; NSAID = Nonsteroidal Anti-inflammatory Drug; Pop cat = population category; QOL = quality of life

Table 16. Patient-Level Nonpharmacologic Interventions: Study Characteristics, by Intervention (KQs 4 and 5)

					Baseline			AChEl or
Author, year					MMSE,			memantine
(Study name)	Quality	Country	N rand	Population	mean	Age, mean	Female, %	use, %
Cognitive Stimulation, Train								
Amieva, 2016 ^{*277} (ETNA3)	Good	FRA	481	Dem	21.5	79	58	88
Belleville, 2018 ²⁹¹ (MEMO+)	Fair	CAN	145	MCI	NR	72	55	NR
Bergamaschi, 2013*282	Fair	ITA	32	Dem	21.1	78	NR	100
Buschert, 2011 ²⁷¹	Fair	DEU	39	MCI + Dem	26.4	73	51	41
Cahn-Weiner, 2003 ²⁶⁹	Fair	US	34	Dem	24.7	77	59	100
Cavallo, 2016* ²⁸⁶	Good	ITA	80	Dem	22.9	76	64	92
Chapman, 2004 ²⁶⁸	Fair	US	54	Dem	20.9	76	54	NR
Cove, 2014* ²⁷⁹	Fair	GBR	68	Dem	22.6	77	47	57
Fiatarone Singh, 2014* ²⁸⁰ (SMART[a])	Fair	AUS	78	MCI	27.0	70	68	NR
Greenaway, 2012 ²⁷³	Fair	US	40	MCI	26.8	72	61	NR
Herrera, 2012* ²⁸³	Fair	FRA	22	MCI	27.3	77	50	NR
Hyer, 2016* ²⁸⁷	Fair	US	77	MCI	26	75	53	0
Jelcic, 2012* ²⁸⁴	Fair	ITA	40	Dem	24.7	82	82	0
Jeong, 2016* ²⁷⁶	Fair	KOR	293	MCI	25.7	70	63	34
Kallio, 2018 ²⁹⁰ (FINCOG)	Fair	FIN	147	Dem	20.5	83	72	83
Kinsella, 2009 ²⁶⁶	Fair	AUS	54	MCI	26.0	77	57	NR
Kurz, 2012 ²⁷⁴ (CORDIAL)	Fair	DEU	201	Dem	25.1	74	44	NR
Nousia, 2018 ²⁸⁸	Fair	GRC	50	Dem	NR	76	72	NR
Olazaran, 2004 ²⁶⁷	Fair	ESP	84	MCI + Dem	NR	74	60	100
Orrell, 2014* ²⁸¹	Good	GBR	236	Dem	17.8	83	64	32
Orrell, 2017* ²⁷⁵	Good	GBR	356	Dem	21.2	78	46	76
Pantoni, 2017 (RehAtt) ²⁸⁹	Fair	ITA	46	MCI	26.4	75	35	0
Quayhagen, 1995 ²⁷²	Fair	US	63	Dem	NR	74	35	NR
Rapp, 2002 ²⁷⁰	Fair	US	19	MCI	27.6	74	58	0
Troyer, 2008 ²⁶⁴	Fair	CAN	54	MCI	27.9	75	54	NR
Tsantali, 2017* ²⁸⁵	Fair	GRC	63	Dem	22.9	74	NR	100
Tsolaki, 2011 ²⁶⁵	Fair	GRC	196	MCI	27.9	68	72	0
Vidovich, 2015* ²⁷⁸ (PACE)	Good	AUS	160	MCI	NR	75	54	NR
Exercise Interventions					•	•		
Baker, 2010 ²⁹⁸	Fair	US	33	MCI	27.4	70	52	NR
Blumenthal, 2018 ³⁰⁹	Fair	US	160	MCI	NR	65	66	NR
(ENLIGHTEN)								
Dawson, 2016* ³⁰⁷	Fair	US	26	Dem	20.8	74	56	NR
Doi, 2017* ³⁰⁶	Good	JPN	134	MCI	25.9	76	48	0
Ho, 2018 ³¹⁰	Fair	HKG	204	MCI + Dem	NR	79	82	NR

Table 16. Patient-Level Nonpharmacologic Interventions: Study Characteristics, by Intervention (KQs 4 and 5)

					Baseline			AChEl or
Author, year					MMSE,	1		memantine
(Study name)	Quality	Country	N rand	Population	mean	Age, mean	Female, %	use, %
Hoffmann, 2016* ³⁰⁴ (ADEX)	Good	DNK	200	Dem	23.9	70	56	96
Holthoff, 2015* ³⁰⁵	Fair	DEU	30	Dem	22.0	72	50	100
Hong, 2017 ^{*302}	Fair	KOR	25	MCI	NR	77	64	NR
Karssemeijer, 2019 ³¹²	Fair	NLD	115	Dem	22.4	80	46	21
Lam, 2011 ²⁹⁵	Fair	HKG	389	MCI	24.5	78	76	NR
Lamb, 2018 ³⁰⁸ (DAPA)	Good	GBR	494	Dem	21.9	77	61	55
Lautenschlager, 2008 ²⁹⁴ (FAB)	Good	AUS	170	MCI	NR	68	51	NR
Lazarou, 2017* ³⁰¹	Fair	GRC	154	MCI	27.2	67	78	NR
Liu-Ambrose, 2016* ²⁹³	Fair	CAN	70	Dem	26.4	74	51	NR
(PROMOTE)								
Morris, 2017* ³⁰³ (ADEPT)	Good	US	76	MCI + Dem	25.4	73	51	NR
Pitkälä, 2013*292 (FINALEX)	Good	FIN	210	Dem	18.0	78	39	96
Schwenk, 2010 ²⁹⁶	Fair	DEU	61	Dem	21.4	82	64	NR
Siu, 2018 ³¹¹	Fair	HKG	160	MCI	25.0	NR	74	0
Suzuki, 2012 ²⁹⁹	Fair	JPN	50	MCI	26.7	76	46	NR
Venturelli, 2010 ²⁹⁷	Fair	ITA	30	MCI + Dem	NR	84	NR	NR
Vreugdenhil, 2012 ³⁰⁰	Fair	AUS	40	Dem	22.0	74	60	63
Multicomponent and Other I	nterventions	5	•		•		•	
Bae, 2019 ³²²	Fair	JPN	83	MCI	26.9	76	48	NR
Bellantonio, 2008 ³¹³	Fair	US	100	Dem	14.8	82	63	NR
Belleville, 2018 ²⁹¹ (MEMO+)	Fair	CAN	145	MCI	NR	72	55	NR
Blumenthal, 2018 ³⁰⁹	Fair	US	160	MCI	NR	65	66	NR
(ENLIGHTEN)								
Burgener, 2008 ³¹⁴	Fair	US	43	Dem	24.0	77	46	NR
Jha, 2013 ^{*318}	Fair	GBR	48	MCI + Dem	22.0	79	67	NR
Karssemeijer, 2019 ³¹²	Fair	NLD	115	Dem	22.4	80	46	21
Marshall, 2015*317 (Living Well	Fair	GBR	58	Dem	23.0	76	57	81
with Dementia)								
Quinn, 2016* ³¹⁶ (SMART[b])	Good	GBR	24	Dem	23.6	76	25	NR
Richard, 2009 ³¹⁹	Fair	NLD	123	Dem	22.3	76	57	32
Rovner, 2018 ³²⁰	Good	US	221	MCI	25.7	76	79	0
Shimada, 2017 ³²³	Fair	JPN	308	MCI	26.7	72	50	0
Straubmeier, 2017 ³²⁴	Fair	DEU	453	MCI + Dem	19.6	81	61	28
(DeTMAKS)						-		-
Train the Brain Consortium,	Fair	ITA	113	MCI	25.6	74	49	NR
2017 ³²¹ (TTB)								
Wolfs, 2008 ³¹⁵	Fair	NLD	230	MCI + Dem	20.0	78	64	14

Table 16. Patient-Level Nonpharmacologic Interventions: Study Characteristics, by Intervention (KQs 4 and 5)

* New study

Abbreviations: AChEI = acetyl-cholinesterase-inhibitor; ADEPT = Alzheimer's Disease Exercise Program Trial; ADEX = Preserving Cognition, Quality of Life, Physical Health and Functional Ability in Alzheimer's Disease: The Effect of Physical Exercise; AUS = Australia; CORDIAL= Cognitive Rehabilitation and Cognitive-behavioral Treatment for Early Dementia in Alzheimer Disease; DAPA = Dementia and Physical Activity; DeTMAKS = Dementia Day Care Motor, Activities of daily living, Cognitive, Social; DEU = Germany; ENLIGHTEN = Exercise and Nutritional Interventions for coGnitive and Cardiovascular HealTh Enhancement; ESP = Spain; FAB = Fitness for the Aging Brain; FIN = Finland; FINALEX = Finnish Alzheimer Disease Exercise Trial; FINCOG = Finnish Cognitive Training Trial; MEMO = Methode d'Entrainement pour Memoire Optimale; MMSE = Mini-Mental State Examination; FRA = France; GBR = Great Britain/United Kingdom; GRC = Greece; HKG = Hong Kong; ITA = Italy; JPN = Japan; KOR = Korea; MCI = mild cognitive impairment; N = number of participants; NLD = Netherlands; NR = not reported; PACE = Promoting Healthy Ageing with Cognitive Exercise; PROMOTE = Promotion of the Mind Through Exercise; RehAtt = Rehabilitation of Attention; SMART(a) = Study of Mental and Resistance Training; SMART(b) = Self-management group intervention for people with early-stage dementia; TTB = Train the Brain

Author, year					Duration,	
Quality	Country		Intervention type	Brief intervention group description	months	Brief control group description
Cognitive Stimulat	ion, Training	, and Reh	abilitation			
Amieva, 2016* ²⁷⁷	FRA	Dem	IG1: Cognitive		24	UC: Patients received usual care
Good			training	90 min/d for first 3 months followed by		while caregivers were offered the
				maintenance sessions once every 6 months for		same support group sessions as
			IG2: Cognitive	the next 21 months plus separate caregiver		cognitive training intervention arm.
			rehabilitation	support group sessions.		
				IG2: Individualized cognitive rehabilitation for 1		
				d/wk, 90 min/d over the first 3 months followed by		
				maintenance sessions once every 6 months for		
				the next 21 months plus ongoing caregiver		
				support through telephone calls.		
Belleville, 2018 ²⁹¹	CAN	MCI	IG1: Cognitive		2.2	WL: Offered cognitive training
Fair			training	120 min/d for 2 months followed by one intensive		intervention after study ended.
				booster session delivered three months later.		
			IG2: Other			
				IG2: Group-based cognitive behavioral therapy		
				for 1 d/wk, 120 min/d for 2 months followed by		
				one intensive booster session delivered three		
				months later.		
Bergamaschi,	ITA	Dem	Cognitive training	Group-based cognitive training over 5 one-month	12	Sham: Group-based cognitive
2013* ²⁸²				cycles over 1 year. Each cycle was 5 d/wk (20		activities during multiple, daily
Fair			A	sessions total) for 90 min/d.	-	sessions (total # of sessions NR).
Buschert, 2011 ²⁷¹	DEU	MCI +	Cognitive		6	Sham: Paper-pencil cognitive
Fair		Dem	stimulation and	cognitive training over 20 sessions for 90 min/d		exercises for self-study plus 6
			training	over 6 months; stimulation and training activities		monthly group-based sessions to
				were conducted and tailored separately for MCI		review self-study exercises.
Cahn-Weiner,	US	Dom	Cognitive training	and AD patients. Group-based cognitive training focused	2	BI: Group-based general education
2003 ²⁶⁹	03	Dem	Cognitive training	specifically on memory training for 1 d/wk over 6	2	and support regarding aging and
Fair				weeks.		dementia 1 d/wk for 6 weeks.
Cavallo, 2016* ²⁸⁶	ITA	Dem	Cognitive training	Computerized, individual-based cognitive training	3	Sham: Computerized cognitive
Good				("Brainer1") with neuropsychologist for 3 d/wk, 30	2	training sessions following same
900u				min/d over 3 months.		schedule as intervention (3 d/wk, 30
						min/d) with neuropsychologist, but
						with general Internet browsing,
						reading, and games and no
						structured cognitive training.
			1			ou dotal od obginu vo u dining.

Table 17. Patient-Level Nonpharmacologic Interventions: Intervention Characteristics, by Intervention (KQs 4 and 5)

Author, year					Duration,	
Quality	Country	Pop cat		Brief intervention group description	months	Brief control group description
Chapman, 2004 ²⁶⁸ Fair	US	Dem	Cognitive stimulation	Group-based cognitive stimulation therapy for 1 d/wk, 90 min/d over 2 months.	2	WL: Caregivers encouraged to attend education classes that were also offered to intervention group and offered stimulation program at end of study.
Cove, 2014 ^{*279} Fair	GBR	Dem	IG1: Cognitive stimulation IG2: Cognitive stimulation	IG1: Group-based cognitive stimulation therapy for 1 d/wk, 45 min/d over 3 months plus caregiver training on cognitive stimulation during two 60- 180 min group sessions. IG2: Group-based cognitive stimulation therapy for 1 d/wk, 45 min/d over 3 months.	3	WL: Offered intervention after completion of study.
Greenaway, 2012 ²⁷³ Fair	US	MCI	Cognitive training		1.5	None: Given same calendar as intervention group and encouraged to use it on their own without further instruction.
Fair	FRA	MCI	Cognitive training	Computerized, individual-based cognitive training focused on memory and attention with neuropsychologist supervision for 2 d/wk, 60 min/d over 3 months.	3	Sham: Paper-pencil general cognitive activities following same schedule as intervention (2 d/wk, 60 min/d) with neuropsychologist
Hyer, 2016 ^{*287} Fair	US	MCI	Cognitive training	Computerized, individual-based cognitive training ("Cogmed QM©") focused on working memory for 25 sessions, 40 min/session over 1-2 months.		Sham: Computerized cognitive training sessions following same schedule as intervention (25 sessions, 40 min/session) and same general activities as Cogmed but without adaptivity based on individual's performance.
Jelcic, 2012 ^{*284} Fair	ITA	Dem	Cognitive stimulation	Group-based cognitive stimulation therapy (Lexical-Semantic Stimulation) for 2 d/wk, 60 min/d over 3 months.	3	Sham: Group-based unstructured cognitive stimulation following same schedule as intervention (2 d/wk, 60 min/d) including creative work, reading plus discussion, and activities for improving verbal skills.
Jeong, 2016 ^{*276} Fair	KOR	MCI	IG1: Cognitive training	IG1: Group-based cognitive training for 2 d/wk, 90 min/d over 3 months.	3	WL: Offered cognitive training after study ended.
			IG2: Cognitive training	IG2: Home-based cognitive training using print- based materials for 5 d/wk for 3 months with		

Author, year Quality	Country	Pop cat	Intervention type	Brief intervention group description	Duration, months	Brief control group description
				visits to the clinic every week in the 1st month and every other week in the 2nd and 3rd months to check and discuss homework materials.		
Kallio, 2018 ²⁹⁰ Fair	FIN	Dem	Cognitive training	Group-based cognitive training focused to stimulate sub-skills of executive function for 2 d/wk, 45 min/d for 12 weeks.	3	UC: Usual care with routine treatment at a day care center twice a week for 6 hrs/d.
Kinsella, 2009 ²⁶⁶ Fair	AUS	MCI	Cognitive rehabilitation	Individualized cognitive rehabilitation focused on memory difficulties for 1 d/wk, 90 min/d over 5 weeks.	1.25	WL: Offered intervention after study ended.
Kurz, 2012 ²⁷⁴ Fair	DEU	Dem	Cognitive rehabilitation	Individualized cognitive rehabilitation 1 d/wk, 60 min/d over 3 months.	3	UC: Site-specific standard medical management including occupational therapy, physiotherapy, carer counseling, carer support groups, or medication alone.
Nousia, 2018 ²⁸⁸ Fair	GRC	Dem	Cognitive training	Individual cognitive training sessions for 2 d/wk, 60-min/d.	3	UC: Standard care.
Olazaran, 2004 ²⁶⁷ Fair	ESP	MCI + Dem	Cognitive stimulation	Group-based cognitive stimulation therapy 2 d/wk, 210 min/d over 1 year plus telephone help- line for caregivers.	12	MI: Psychosocial support (not described) plus telephone help-line for caregivers.
Orrell, 2014 ^{*281} Good	GBR	Dem	Cognitive stimulation	Group-based maintenance cognitive stimulation therapy for 1 d/wk, 45 min/d for 6 months following a 7 week cognitive stimulation program.	6	UC: Site-specific usual care following a 7 week cognitive stimulation program.
Orrell, 2017 ^{*275} Good	GBR	Dem	Cognitive stimulation	Home-based caregiver-led cognitive stimulation therapy for 3 d/wk, 30 min/d over 6 months.	6	UC: Site-specific usual care excluding cognitive stimulation, but including group-based activities such as gardening and support groups.
Pantoni, 2017 ²⁸⁹ Fair	ΙΤΑ	MCI	Cognitive training	Individual cognitive training 1 d/wk, 120-min/d over 5 months.	5	UC: Instructed to continue usual activities and provided with standard care (medication and clinic consultations).
Quayhagen, 1995 ²⁷² Fair	US	Dem	Cognitive stimulation	Home-based caregiver-led cognitive stimulation therapy for 1 d/wk, 60 min/d over 3 months.	3	WL: Offered training on cognitive stimulation after study ended.
Rapp, 2002 ²⁷⁰ Fair	US	MCI	Cognitive training	Group-based cognitive training focused on memory enhancement for 1 d/wk, 120 min/d over 6 weeks.	1.5	None: Given copies of intervention print materials after study ended.

Author, year	0	Des			Duration,	
	Country	Pop cat		Brief intervention group description	months	Brief control group description
Troyer, 2008 ²⁶⁴	CAN	MCI	Cognitive	Group-based cognitive stimulation therapy	6	WL: Offered intervention after study
Fair			stimulation	focused on memory enhancement for 10		ended.
Tsantali, 2017* ²⁸⁵	GRC	Dom	IC1. Cognitive	sessions, 120 min/session over 6 months.	4	Will + Offered intervention ofter study
Fair	GRC	Dem	IG1: Cognitive training	IG1: Individual-based cognitive training focused on memory enhancement for 3 d/wk, 90 min/d for	4	WL: Offered intervention after study ended.
rall			uanniy	4 months.		ended.
			IG2: Cognitive	HIORIUS.		
			stimulation	IG2: Individual-based non-specific cognitive		
				stimulation activities for 3 d/wk, 90 min/d for 4		
				months.		
Tsolaki, 2011 ²⁶⁵	GRC	MCI	Cognitive	Group-based cognitive training, cognitive	6	WL: Offered intervention after study
Fair			stimulation and	stimulation therapy, and cognitive-behavioral		ended.
			training	therapy for 3 d/wk, 90 min/d over 6 months.		
Vidovich, 2015 ²⁷⁸	AUS	MCI	Cognitive	Group-based cognitive training, stimulation, and	1	MI: Group-based general education
Good			rehabilitation,	rehabilitation for 2 d/wk, 90 min/d for 5 weeks.		on healthy aging for 2 d/wk, 90
			training, stimulation			min/day over 5 weeks.
Exercise Intervention	ons					
Baker, 2010 ²⁹⁸	US	MCI	Exercise	Supervised individual-based aerobic exercise for	6	MI: Prescribed stretching and
Fair				4 d/wk, 45-60 min/d over 6 months.		balance exercises.
Blumenthal, 2018 ³⁰⁹	US	MCI	IG1: Exercise and	IG1: Supervised exercise for 3 d/wk, 45-min/d	6	AC: Instructed to maintain their
Fair			diet counseling	over three months; unsupervised home exercise		normal activities, and educational
				sessions 3 d/wk, 45min/d over subsequent three		calls on CVD health-related topics 1
			IG2: Exercise	months; and dietary counseling for 1 d/wk, 30-		d/wk, 30-min/d for three months and
				min/d for three months and 2 d/month, 30-min/d		2 d/month for subsequent three
			IG3: Diet counseling	over subsequent three months		months.
				IG2: Supervised exercise for 3 d/wk, 45-min/d		
				over three months; unsupervised home exercise		
				sessions 3 d/wk, 45min/d over subsequent three		
				months		
				IG3: Dietary counseling for 1 d/wk, 30-min/d for		
				three months and 2 d/month, 30-min/d over		
				subsequent three months.		
Dawson, 2016* ³⁰⁷	US	Dem	Exercise	Supervised individual, home-based functional	3	WL: Maintain normal activities.
Fair				strength and balance exercises for 2 d/wk over 3		
				months.		

Author, year Quality	Country	Pop cat	Intervention type	Brief intervention group description	Duration, months	Brief control group description
Doi, 2017* ³⁰⁶ Good	JPN	MCI	Exercise	Supervised group-based ballroom dancing for 1 d/wk, 60 min/d over 10 months.	10	AC: Three 90-min health education classes on general older adult health topics.
Ho, 2018 ³¹⁰ Fair	HKG	MCI + Dem	Exercise	IG1: Dance-movement group-based intervention for 2 d/wk, 60-min/d over three months. IG2: Supervised group-based exercise intervention for 2 d/wk, 60-min/d over three months.	IG1: 3 IG2: 12	WL: Usual care plus wait list intervention.
Hoffmann, 2016* ³⁰⁴ Good	DNK	Dem	Exercise	Supervised group-based aerobic exercise for 3 d/wk, 60 min/d over 4 months.	4	UC: Treatment as usual with access to memory clinic staff as needed.
Holthoff, 2015 ^{*305} Fair	DEU	Dem	Exercise	Self-guided individual, home-based lower body exercises on computer-controlled movement trainer for 3 d/wk, 30 min/d over 3 months.	3	BI: Monthly clinic visits and general advice on changing inactive habits and increasing physical activity.
Hong, 2017* ³⁰² Fair	KOR	MCI	Exercise	Supervised group-based M42resistance exercises using elastic band for 2 d/wk, 60 min/d over 3 months.	3	None: Maintain normal activities.
Karssemeijer, 2019 ³¹² Fair	NLD	Dem	IG1: Multicomponent IG2: Exercise	IG1: Supervised combined cognitive-aerobic exercise sessions for 3 d/wk, 30-50 min/d for 3 months. IG2: Supervised aerobic exercise sessions for 3 d/wk, 30-50 min/d for 3 months.	3	Sham: Relaxation and stretching exercises for 3 d/week, 30-min/d over 3 months.
Lam, 2011 ²⁹⁵ Fair	HKG	MCI	Exercise	Supervised group-based and self-guided Tai Chi for minimum of 1 d/wk, 30 min/d over 2-3 months.		MI: Supervised stretching and toning exercises at same intensity as intervention group (1 d/wk for 30 min/day).
Lamb, 2018 ³⁰⁸ Good	GBR	Dem	Exercise	Dance-movement group-based intervention for 2 d/wk, 60-min/d over three months.	12	WL: Usual care plus wait list intervention.
Lautenschlager, 2008 ²⁹⁴ Good	AUS	MCI	Exercise	Self-guided individually-tailored aerobic exercise for 3 d/wk, 50 min/d (minimum of 150 min/wk) + workbook over 6 months.	6	AC: Educational material about general health topics, excluding physical activity.
Lazarou, 2017* ³⁰¹ Fair	GRC	MCI	Exercise	Supervised group-based ballroom dancing for 2 d/wk, 60 min/d over 10 months.	10	None: Maintain normal activities.
Liu-Ambrose, 2016* ²⁹³ Fair	CAN	Dem	Exercise	Supervised group-based aerobic exercise for 3 d/wk, 60 min/d over 6 months.	6	UC: Usual care plus monthly educational materials about vascular cognitive impairment and healthy diet.

Table 17. Patient-Level Nonpharmacologic Interventions: Intervention Characteristics, by Intervention (KQs 4 and 5)

Author, year Quality	Country	Pop cat	Intervention type	Brief intervention group description	Duration, months	Brief control group description
Morris, 2017 ^{*303} Good	US	MCI + Dem	Exercise	Supervised individual-based aerobic exercise for 3-5 d/wk, 30-50 min/d (150 min/wk) over 6 months.		MI: Supervised non-aerobic exercises (core strengthening, resistance bands, modified tai chi, modified yoga) at same intensity as intervention group (3-5 d/wk for 30- 50 min/d).
Pitkälä, 2013 ^{*292} Good	FIN	Dem	IG1: Exercise IG2: Exercise	IG1: Supervised group-based exercise focused on endurance, balance, strength training, and executive functioning for 2 d/wk, 60 min/d over 1 year. IG2: Supervised home-based individually-tailored functional mobility exercises for 2 d/wk, 60 min/d over 1 year.	12	UC: Usual care plus general advice on nutrition and exercise.
Schwenk, 2010 ²⁹⁶ Fair	DEU	Dem	Exercise	Supervised group-based resistance-balance and functional-balance training, including specific dual-task training for concurrent motor or cognitive tasks for 2 d/wk, 120 min/d over 3 months.	3	MI: Supervised group-based motor placebo training including flexibility exercises, calisthenics, and ball games while seated for 2 d/wk, 60 min/d over 1 year.
Siu, 2018 ³¹¹ Fair	HKG	MCI	Exercise	Supervised group-based Tai Chi for 2 d/wk, 60- min/d over 4 months and telephone followup for emotional support and reinforcement of intervention.	4	UC: Usual care and advised to attend recreational activities provided by their elderly centers and to continue their daily activities.
Suzuki, 2012 ²⁹⁹ Fair	JPN	MCI	Exercise	Supervised group-based exercise including aerobic exercise, strength training, balance retraining, and dual-task training for 2 d/wk, 90 min/d over 1 year.	12	AC: Three general health education classes.
Venturelli, 2010 ²⁹⁷ Fair	ΙΤΑ	MCI + Dem	Exercise	Supervised group-based resistance training for 3 d/wk, 45 min/d over 3 months plus usual physical therapy.		UC: Usual physical therapy including electrostimulation, massage, and passive leg movement on bed as well as bingo, music therapy, and patchwork.
Vreugdenhil, 2012 ³⁰⁰ Fair	AUS	Dem	Exercise	Self- and caregiver-guided home-based exercise including aerobic exercise, strength and balance training recommended to be performed daily over 4 months.		WL: Usual care plus wait list intervention.

Author, year					Duration,	
Quality	Country	Pop cat	Intervention type	Brief intervention group description	months	Brief control group description
Multicomponent and	d Other Inte	rventions		•	•	
Bae, 2019 ³²² Fair	JPN	MCI	Multicomponent	Multicomponent group-based intervention with supervised exercise and cognitive and social activities 2d/wk, 90-min/d.	6	AC: Two 90-min health education classes about oral care and nutrition.
Bellantonio, 2008 ³¹³ Fair	US	Dem	Multidisciplinary assessment	Four multidisciplinary assessments by geriatrician, physical therapist, dietitian, and medical social worker and associated care recommendations provided over 9 months to new dementia-specific assisted living patients.	9	UC: Medical evaluation by primary care physician within 7 days of admission.
Belleville, 2018 ²⁹¹ Fair	CAN	мсі	IG1: Cognitive training IG2: Other		2.2	WL: Offered cognitive training intervention after study ended.
Blumenthal, 2018 ³⁰⁹ Fair	US	MCI	IG1: Exercise and diet counseling IG2: Exercise IG3: Diet counseling	IG1: Supervised exercise for 3 d/wk, 45-min/d over three months; unsupervised home exercise sessions 3 d/wk, 45min/d over subsequent three months; and dietary counseling for 1 d/wk, 30- min/d for three months and 2 d/month, 30-min/d over subsequent three months IG2: Supervised exercise for 3 d/wk, 45-min/d over three months; unsupervised home exercise sessions 3 d/wk, 45min/d over subsequent three months IG3: Dietary counseling for 1 d/wk, 30-min/d for three months and 2 d/month, 30-min/d over subsequent three months.	6	AC: Instructed to maintain their normal activities, and educational calls on CVD health-related topics 1 d/wk, 30-min/d for three months and 2 d/month for subsequent three months.
Burgener, 2008 ³¹⁴ Fair	US	Dem	Multicomponent	Multicomponent group-based intervention with exercise classes for 3 d/wk, 60 min/d and cognitive behavioral therapy and support groups 1 d/wk, 90 min/d over 5 months.	5	WL: Offered intervention after 5 months.
Fiatarone Singh, 2014 ^{*280} Fair	AUS	MCI	IG1: Multicomponent	IG1: Computerized, group-based cognitive training ("COGPACK") and group-based	6	Sham: Sham cognitive training 2 d/wk, 30 min/d of watching videos and responding to questions

Table 17. Patient-Level Nonpharmacologic Interventions: Intervention Characteristics, by Intervention (KQs 4 and 5)

Author, year Quality	Country	Pop cat	Intervention type	Brief intervention group description	Duration, months	Brief control group description
			IG2: Cognitive training	progressive resistance training for 2 d/wk, 100 min/d over 6 months. IG2: Computerized, group-based cognitive training ("COGPACK") for 2 d/wk, 45 min/d over 6 months plus a 30 min of sham physical exercises of stretching and seated calisthenics during each session.		regarding video content plus 30 min of sham physical exercises of stretching and seated calisthenics during each session.
Jha, 2013 ^{*318} Fair	GBR	MCI + Dem	Other	Psychiatric assessment, counseling, and support for 1 d/month, 60 min/d over 6 months.	6	MI: General counseling to patient and caregiver (not focused on wellbeing or quality of life) for 1 d/month, 60 min/d over 6 months.
Karssemeijer, 2019 ³¹² Fair	NLD	Dem	IG1: Multicomponent IG2: Exercise	IG1: Supervised combined cognitive-aerobic exercise sessions for 3 d/wk, 30-50 min/d for 3 months. IG2: Supervised aerobic exercise sessions for 3 d/wk, 30-50 min/d for 3 months.	3	Sham: Relaxation and stretching exercises for 3 d/week, 30-min/d over 3 months.
Marshall, 2015 ^{*317} Fair	GBR	Dem	Other	Group-based psychotherapy and psychoeducation for 1 d/wk, 75 min/day over 2.5 months.	2.5	WL: Offered intervention after study ended.
Quinn, 2016 ^{*316} Good	GBR	Dem	Other	Group-based self-management program for 1 d/wk, 90 min/d over 2 months.	2	UC: Routine memory clinic services including psychiatry, psychology, occupational therapy, and social services.
Richard, 2009 ³¹⁹ Fair	NLD	Dem	Other	Vascular care targeting hypercholesterolemia and hypertension including medications, exercise, diet and smoking cessation during outpatient visits every 3 months for 24 months.	24	UC: Physicians followed general guidelines for treatment for vascular risk factors in older adults.
Rovner, 2018 ³²⁰	US	MCI	Other	Five in-home 60-min behavioral activation (goal- setting and action plans) intervention over 4 months and six in-home 60-min followup maintenance sessions over subsequent 20 months.		Sham: Five in-home 60-min general supportive therapy sessions over 4 months and six in-home 60-min followup maintenance sessions over subsequent 20 months.
Shimada, 2017 ³²³ Fair	JPN	MCI	Multicomponent	Group-based physical and cognitive exercises for 1 d/wk, 90 min/d over 9 months	9	MI: Three 90-minute health promotion classes and three booster calls over 9 months.

Author, year Quality	Country	Pop cat	Intervention type	Brief intervention group description	Duration, months	Brief control group description
Straubmeier, 2017 ³²⁴ Fair			Multicomponent	Multicomponent group-based intervention with social, cognitive, and physical components for 5 d/wk, 120-min/d over 6 months.	6	WL: Offered intervention after 6 months.
Train the Brain Consortium, 2017 ³²¹ Fair	ITA	MCI	Multicomponent	Multicomponent group-based intervention with twice daily 30-min/d cognitive training; music therapy 1 d/wk, 60-min/d; monthly 60-min movie and discussion sessions; and supervised exercise 3 d/wk, 60-min/d.	7	None: Maintain normal activities.
Wolfs, 2008 ³¹⁵ Fair	NLD	MCI + Dem	Other	Multidisciplinary diagnostic assessment with results and recommended treatment and management plan sent to general practitioner ("Diagnostic Observation Center for Psychogeriatric Patients" [DOC-PG]).	NR	UC: Diagnosis by general practitioner or outside service.

* New study

Abbreviations: AC = attention control; AUS = Australia; BI = brief intervention; CG = control group; d = day; Dem = dementia; DEU = Germany; ESP = Spain; FIN = Finland; FRA = France; GBR = Great Britain/United Kingdom; GRC = Greece; HKG = Hong Kong; ITA = Italy; JPN = Japan; KOR = Korea; MCI = mild cognitive impairment; MI = minimal intervention; min = minutes; NLD = Netherlands; NR = not reported; Pop cat = population category; UC = usual care; wk = week; WL = waitlist

							Domain-Specific			Mental Health	
Author, year	Рор		Age,	FU	Global	Global Cognitive	Cognitive	Physical	Quality	and Behavioral	
Quality	cat		mean		Function	Function	Function	Function	of Life	Symptoms	Other
Cognitive Stimul		Fraining	, and Re	habilita	ation						
Amieva, 2016 ^{*277} Good	Dem	481	79	24	NR	IG1: ↔ (ADAS-Cog) IG2: ↔ (ADAS-Cog)	NR			IG1: ↔ (D, NPS) IG2: ↔ (D, NPS)	IG1: ↔ (CGR Burden, Institutionalization, Dementia Incidence) IG2: ↔ (CGR Burden, Institutionalization, Dementia Incidence)
Belleville, 2018 ^{*291} Fair	MCI	145	72	6	NR	NR	↔ [†] (Memory)	↔ (ADL)	\leftrightarrow	↔ (A, D)	NR
Bergamaschi, 2013 ^{*282} Fair	Dem	32	78	12	NR	↑ (MMSE)	↑ (EF) ⇔ [†] (Memory)	↑ (ADL), ↔ (IADL)	NR	↔ (D)	NR
Buschert, 2011 ²⁷¹ Fair	MCI + Dem	39	73	6	NR	MCI: ↑ (ADAS-Cog), ↔ (MMSE) Dem: ↔ (ADAS- Cog), ↔ (MMSE)	↔ (Attention) ↔ (EF) ↔ (Memory)			MCI: ↑ (D) Dem: ↔ (D)	NR
Cahn-Weiner, 2003* ²⁶⁹ Good	Dem	34	77	3	NR	NR	↔ (Attention) ↔ (EF) ↔ (Language) ↔ (Memory)	↔ (ADL/IADL)	NR	NR	NR
Cavallo, 2016 ^{*286} Good			76	6	NR	↔ (MMSE)	↑ (Attention) ↔ [†] (EF) ↑ (Language) ↔ [†] (Memory)		NR	↔ (A, D)	NR
Chapman, 2004 ²⁶⁸ Fair	Dem	54	76	12	\leftrightarrow	↔ (ADAS-Cog), ↔ (MMSE)	NR	↔ (ADL/IADL)	\leftrightarrow	↔ (NPS)	↑ (CGR Burden)
Cove, 2014 ^{*279} Fair	Dem	72	77	3	NR	$IG1: \leftrightarrow (ADAS-Cog), \\ \leftrightarrow (MMSE) \\ IG2: \leftrightarrow (ADAS-Cog), \\ \leftrightarrow (MMSE)$	NR		IG1: ↔ IG2: ↔	NR	NR

Authon woon	Den		A		Clabel		Domain-Specific		Quality	Mental Health	
Author, year Quality	Pop cat	N rand	Age, mean	FU (mo.)	Global Function	Global Cognitive Function	Cognitive Function	Physical Function	Quality of Life	and Behavioral Symptoms	Other
Fiatarone Singh, 2014 ²⁸⁰ Fair	MCI	100	70	18		IG2: ↔ (ADAS-Cog)		IG2: ↔ (IADL)		NR	NR
Greenaway, 2012 ^{*273} Fair	MCI	40	72	6	NR	↔ (MMSE)	↔ (Memory)	NR	\leftrightarrow	↔ (D)	↑ (CGR Burden, CGR MH [D]) ↔ (CGR QOL)
Herrera, 2012 ²⁸³ Fair	MCI	22	77	6	NR	NR	↔ [†] (Attention) ↔ [†] (Memory)	NR	NR	NR	NR
Hyer, 2016* ²⁸⁷ Fair	MCI	77	75	5	NR	NR	↔ [†] (EF) ↔ (Memory)	↑ (IADL)	NR	NR	NR
Jelcic, 2012* ²⁸⁴ Fair	Dem	40	82	3	NR	↑ (MMSE)	 ↔[†] (Attention) ↔ (EF) ↔[†] (Language) ↔[†] (Memory) 	↔ (IADL)	NR	NR	NR
Jeong, 2016 ^{*276} Fair	MCI	293	70	9	IG2: ↑	↔ (MMSE)	$IG1: \leftrightarrow (EF), \leftrightarrow$ (Memory) $IG2: \leftrightarrow (EF), ↔$ (Memory)	IG1: ↔ (IADL) IG2: ↔ (IADL)		IG1: ↔ (D), ↑ (NPS) IG2: ↔ (D), ↔ (NPS)	NR
Kallio, 2018* ²⁹⁰ Fair	Dem	147	83	9	NR	↔ (ADAS-Cog)	NR	NR	\leftrightarrow	NR	↔ (Deaths, Institutionalization, Hospitalization)
Kinsella, 2009 ²⁶⁶ Fair	MCI	54	77	4	NR	NR	↔ (Memory)	NR	NR	NR	NR
Kurz, 2012 ²⁷⁴ Fair	Dem	201	74	9	NR	↔ (MMSE)	NR	↔ (IADL)	\leftrightarrow	$\leftrightarrow (D), \leftrightarrow (NPS)$	↔ (CGR Burden, CGR MH [D])
Nousia, 2018 ^{*288} Fair	Dem	50	76	3.5	NR	NR	↑ (Attention) ↑ (EF) ↑ (Language) ↔ [†] (Memory)	NR	NR	NR	NR
Olazaran, 2004 ²⁶⁷ Fair	MCI + Dem	84	74	12	NR	↔ (ADAS-Cog), ↔ (MMSE)	NR	↔ (IADL)	NR	↑ (D)	NR
Orrell, 2014 ^{*281} Good	Dem	236	83	6	NR	↔ (ADÁS-Cog), ↔ (MMSE)	NR		↑ (Self- rated), ↔ (Proxy- rated)	↔ (NPS)	↔ (CGR QOL)

Author, year Quality	Pop cat	N rand	Age, mean	FU (mo.)	Global Function	Global Cognitive Function	Domain-Specific Cognitive Function	Physical Function	Quality of Life	Mental Health and Behavioral Symptoms	Other
Orrell, 2017 ^{*275} Good	Dem	356	78	6	NR	↔ (ADAS-Cog), ↔ (MMSE)	NR	↔ (ADL/IADL)		\leftrightarrow (D), \leftrightarrow (NPS)	↔ (CGR QOL, CGR MH, CGR Burden)
Pantoni, 2017* ²⁸⁹ Fair	MCI	46	75	12	NR	↔ (MMSE)	↔ (Attention) ↔ (EF) ↔† (Memory)	$\leftrightarrow (ADL), \leftrightarrow (ADL), \leftrightarrow (ADL/IADL)$	\leftrightarrow	↔ (D)	NR
Quayhagen, 1995 ²⁷² Fair	Dem	95	74	9	NR	↑ (MDRS)		NR	NR	NR	NR
Rapp, 2002 ²⁷⁰ Fair	MCI	19	74	6	NR	NR	⇔ [†] (Memory)	NR	NR	NR	NR
Troyer, 2008 ²⁶⁴ Fair	MCI	54	75	6	NR	NR	↔ [†] (Memory)	NR	NR	NR	NR
Tsantali, 2017 ^{*285} Fair	Dem	63	74	12		IG1: ↑ (MMSE) IG2: ↔ (MMSE)	IG1: ↑ (Language), ↑ (Memory) IG2: ↔ (Language), ↔ [†] (Memory)	NR	NR	NR	NR
Tsolaki, 2011 ²⁶⁵ Fair	MCI	196	68	6	NR	↑ (MMSE)	NR	↑ (ADL)	NR	NR	NR
Vidovich, 2015* ^{27§} Good	³ MCI	160	75	24	NR	↔ (CAMCOG-R)	$↔^{\dagger}$ (Attention) ↔ (EF) ↔ (Memory)	NR	↑	↔ (D)	↔ (Dementia Incidence)
Exercise Interver	ntions				1		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1		
Baker, 2010 ²⁹⁸ Fair	MCI	33	70	6	NR	NR	↑ (Attention) ↑ (EF)	NR	NR	NR	NR
Blumenthal, 2019 ^{*309} Fair	MCI	160	65	6	\leftrightarrow	NR	↔ (EF) ↔ (Language) ↔ (Memory)	NR	NR	NR	↔ (Dementia Incidence)
Dawson, 2016 ^{*307} Fair	Dem	26	74	3	NR	NR	↔ (EF)	↔ (ADL/IADL)	NR	NR	↔ (Institutionalization)
Doi, 2017* ³⁰⁶ Good	MCI	201	76	9	NR	↑ (MMSE)	$\leftrightarrow (Attention) \\ \leftrightarrow (EF) \\ \leftrightarrow^{\dagger} (Memory)$	NR	NR	NR	, ↔ (Dementia Incidence)

Author, year Quality	Pop cat	N rand	Age, mean	FU (mo.)	Global Function	Global Cognitive Function	Domain-Specific Cognitive Function	Physical Function	Quality of Life	Mental Health and Behavioral Symptoms	Other
Ho, 2018 ^{*310} Fair	MCI + Dem	204	79	12	NR	NR	$\begin{array}{l} IG1: \leftrightarrow (Attention) \\ \leftrightarrow (EF) \\ \leftrightarrow (Language) \\ \leftrightarrow (Memory) \\ IG2: \leftrightarrow (Attention) \\ \leftrightarrow (EF) \\ \leftrightarrow (Language) \\ \leftrightarrow (Memory) \end{array}$	IG1: ↔ (IADL) IG2: ↔ (IADL)		IG1: ↔ (D), ↔ (NPS) IG2; ↔ (D), ↔ (NPS)	NR
Hoffmann, 2016 ^{*304} Good	Dem	200	70	4	NR	↔ (MMSE)	↔ (EF) ↔ (Language)	↔ (ADL/IADL)	\leftrightarrow	↔ (D) ↑ (NPS)	NR
Holthoff, 2015* ³⁰⁵ Fair	Dem	30	72	6	NR	↔ (MMSE)	↑ (EF)	↑ (ADL)	NR	↑ (NPS)	↔ (CGR Burden, Institutionalization)
Hong, 2017* ³⁰² Fair	MCI	25	77	3	NR	↔ (MoCA)	$↔^{\dagger}$ (Attention) ↔ (EF) ↔ (Memory)	NR	NR	NR	NR
Karssemeijer, 2019 ^{*312} Fair	Dem	115	80	6	NR	NR	↔ (EF) ↔ (Memory)	NR	NR	NR	↔ (SAE)
Lam, 2011 ²⁹⁵ Fair	MCI	389	78	5	↑	↔ (ADAS-Cog), ↔ (MMSE)	↔ [†] (Attention) ↔ (EF) ↔ (Language) ↔ (Memory)	NR	NR	$\leftrightarrow (D), \leftrightarrow (NPS)$	NR
Lamb, 2018* ³⁰⁸ Good	Dem	494	77	12	NR	↑ (ADAS-Cog)	NR		↔ (Self- rated), ↔ (Proxy- rated)	↔ (NPS)	↔ (CGR Burden, CGR QOL)
Lautenschlager, 2008 ²⁹⁴ Good	MCI	170	68	17	↑	↑ (ADAS-Cog)	↔ (Attention) ↔ (EF) ↔† (Memory)	NR	\leftrightarrow	↔ (D)	NR
Lazarou, 2017 ^{*301} Fair	MCI	154	67	10	↑	↑ (MMSE)	↑ (Attention) ↔ [†] (EF) ↑ (Memory)	NR	NR	↔ (NPS)	NR
Liu-Ambrose, 2016 ^{*293} Fair	Dem	70	74	12	NR	↔ (ADAS-Cog)	↔ (EF)	↔ (ADL/IADL)	NR	NR	NR

Author, year	Рор		Age,	FU	Global	Global Cognitive	Domain-Specific Cognitive	Physical		Mental Health and Behavioral	
Quality	cat	N rand		(mo.)	Function	Function	Function	Function	of Life	Symptoms	Other
Morris, 2017* ³⁰³	MCI +	76	73	6	NR	NR	↔ (EF)	↑ (ADL/IADL)	NR	↔ (D)	NR
Good	Dem						↔ (Memory)				
Pitkälä, 2013* ²⁹²	Dem	210	78	12	NR	IG1: ↔ (MMSE)	IG1: ↔ (EF)	IG1: ↔	NR	$IG1: \leftrightarrow (D), \leftrightarrow$	IG1: ↔
Good						IG2: ↔ (MMSE)	IG2: ↔† (EF)	(ADL/IADL)		(NPS)	(Institutionalization
								IG2: ↑		$IG2: \leftrightarrow (D), \leftrightarrow$)
								(ADL/IADL)		(NPS)	IG2: ↔
											(Institutionalization
Schwenk, 2010 ²⁹⁶	³ Dem	61	82	3	NR	NR	↔ (EF)	NR	NR	NR	NR
Fair							· · /				
Siu, 2018* ³¹¹	MCI	160	NR	4	NR	↑ (MMSE)	NR	↑ (IADL)	NR	NR	NR
Fair											
Suzuki, 2012 ²⁹⁹	MCI	50	76	6	NR	↔ (ADAS-Cog), ↑	↔ [†] (Memory)	NR	NR	NR	NR
Fair						(MMSE)	(<i>y</i> ,				
Venturelli, 2010 ²⁹	⁷ MCI +	30	84	3	NR	↑ (MMSE)	NR	↑ (ADL)	NR	NR	NR
Fair	Dem			-		· (·····-=/		1 (* *= = /			
Vreugdenhil,	Dem	40	74	4	NR	↑ (ADAS-Cog), ↑	NR	↑ (ADL/IADL)	NR	↔ (D)	↔ (CGR Burden)
2012 ³⁰⁰	2011		· ·			(MMSE)		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Fair						(
Multicomponent	and Ot	her Inte	rvention	S							
Bae, 2019* ³²²	MCI		76		NR	↔ (MMSE)	↔ (Attention)	NR	NR	↔ (D)	\leftrightarrow (AE, SAE)
Fair		00		Ŭ			↔ (EF)				(, , , , , , , , , , , , , , , , , , ,
							↔ [†] (Memory)				
Belleville,	MCI	145	72	6	NR	NR	\leftrightarrow (Memory)	↔ (ADL)	\leftrightarrow	↔ (A, D)	NR
2018 ^{*291}		140	12	Ŭ			(Wentery)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· /	(,,)	
Fair											
Blumenthal,	MCI	160	65	6	IG1: ↔	NR	IG1: ↑ (EF)	NR	NR	NR	IG1: ↔ (Dementia
2019* ³⁰⁹		100	00	Ŭ	IG3: ↔		↔ (Language)				Incidence)
Fair					100. ()		\leftrightarrow (Memory)				IG3: ↔ (Dementia
							IG3: ↔ (EF)				Incidence)
							↔ (Language)				incidence)
							\leftrightarrow (Memory)				
Bellantonio,	Dem	100	82	9	NR	NR	NR	NR	NR	NR	
2008 ³¹³	Dem	100	02	3							↔ (Institutionalization
Fair											
Burgener, 2008 ³¹⁴	4Dom	43	77	5	NR	↔ (MMSE)	NR	NR	NR	↔ (D)) NR
Fair	Delli	+3		5	INIX				INTX		
ı alı		1									

Author, year Quality	Pop cat	N rand	Age, mean	FU (mo.)	Global Function	Global Cognitive Function	Domain-Specific Cognitive Function	Physical Function	Quality of Life	Mental Health and Behavioral Symptoms	Other
Fiatarone Singh, 2014 ²⁸⁰ Fair	MCI	100	70	18	NR	IG1: ↔ (ADAS-Cog)	IG1: ↔ (EF), ↔ (Memory)	IG1: ↔ (IADL)	NR	NR	NR
Jha, 2013* ³¹⁸ Fair	MCI + Dem	48	79	6	NR	↔ (MMSE)	NR		↔ (EQ- 5D), ↑ (WHO- 5)	↔ (D)	↔ (CGR Burden)
Karssemeijer, 2019 ^{*312} Fair	Dem	115	80	6	NR	NR	↔ (EF) ↔ (Memory)			NR	↔ (SAE)
Marshall, 2015 ^{*317} Fair	⁷ Dem	58	76	5	NR	↔ (MMSE)	NR	NR	\leftrightarrow	↔ (D)	↔ (CGR MH [Psych Health])
Quinn, 2016 ^{*316} Good	Dem	24	76	6	NR	NR	NR	NR	\leftrightarrow	↔ (A, D)	NR
Richard, 2009 ³¹⁹ Fair	Dem	123	76	24	NR	↔ (MMSE)	NR	↔ (ADL/IADL)	NR	↔ (NPS)	↔ (Institutionalization
Rovner, 2018 ^{*320} Good	MCI	221	76	24	NR	↔ (MMSE)	↔ (Attention) ↑ (EF) ↔ (Language) ↔ [†] (Memory)	NR	NR	↔ (D)	↔ (Hospitalization, ER visits) ↔ (Dementia Incidence)
Shimada, 2018 ^{*323} Fair	MCI	308	72	9	NR	↑ (MMSE)		NR	NR	NR	↔ (AE, Falls, Hospitalization)
Straubmeier, 2017* ³²⁴ Fair	MCI + Dem	453	81	6	NR	↑ (MMSE)	NR	↑ (ADL)	NR	↔ (NPS)	↔ (AE)
Train the Brain Consortium, 2017* ³²¹ Fair	MCI	113	74	7	NR	↑ (ADAS-Cog)	↔ (Attention) ↔ [†] (EF) ↔ (Memory)	NR	NR	NR	↔ (AE)
Wolfs, 2008 ³¹⁵	MCI + Dem	230	78	12	\leftrightarrow	↔ (MMSE)	NR	↔ (IADL)	\leftrightarrow	↔ (D, NPS)	

NOTE: Arrows represent study-reported results.

Symbol Legend:

↑ = Statistically significant between-group difference in favor of intervention group \leftrightarrow = No statistically significant difference between groups or no clear between-group difference (not reported).

Table 18. Patient-Level Nonpharmacologic Interventions: Summary of Results, by Intervention (KQs 4 and 5)

* New study

† Mixed results from multiple tests assessing same cognitive domain

Abbreviations: A = Anxiety; ADAS-Cog = Alzheimer's Disease Assessment Scale-cognitive subscale; ADL = Activities of Daily Living; AE = adverse events; D = Depression; Dem = Dementia; EF = executive functioning; FU (mo.) = followup (months); CGR = caregiver; IADL = Instrumental Activities of Daily Living; MCI = mild cognitive impairment; MH = mental health; MMSE = Mini-Mental State Examination; NPS = Composite neuropsychiatric symptoms; NR = not reported; N rand = number of participants randomized; Pop cat = population category; Psych = psychological; QOL = quality of life; SAE = serious adverse events

Table 19. Caregiver and Caregiver-Patient Dyad Interventions: Study Characteristics, by Intervention (KQs 4 and 5)

Author, year					Caregiver	-	Caregiver	Patient BL
(study name)			Audience	N rand	age, mean	type	female, %	MMSE, mean
Psychoeducation I				I	<u> </u>	<u></u>	<u> </u>	b .
Barnes, 2018 ^{*327}	Fair	GBR	Caregiver	55	67	Spouse: 67 Child: 29 Other: 4	77	24
Belle, 2006 ³²⁸ (REACH II)	Fair	US	Caregiver	642	61	Spouse: 43 Child: 48 Other: 9	83	13.0
Berwig, 2017* ³²⁹ (GE-REACH)	Fair	DEU	Caregiver	92	73	Spouse: 89 Child: NR Other: 11	66	12.4
Brennan, 1995 ³³⁰	Fair	US	Caregiver	102	60	Spouse: 68 Child: 28 Other: NR	67	NR
Bruvik, 2013 ^{*331}	Good	NOR	Caregiver + Patient	230	64	Spouse: 53 Child: 40 Other: 7	77	21.2
Burgio, 2003 ³³² (REACH - Birmingham)	Fair	US	Caregiver	140	63	Spouse: 50 Child: NR Other: 50	79	13.0
Chang, 1999 ³³³	Fair	US	Caregiver	87	66	Spouse: 89 Child: NR Other: NR	NR	NR
Chu, 2011 ³³⁴	Fair	TWN	Caregiver	85	NR	Spouse: 32 Child: 64 Other: NR	57	NR
Coon, 2003 ³³⁵	Fair	US	Caregiver	169	64	Spouse: 57 Child: 43 Other: NR	100	14.2
Cristancho-Lacroix, 2015* ³³⁶	Fair	FRA	Caregiver	49	62	Spouse: 37 Child: 59 Other: 4	65	18.7
De Rotrou, 2011 ³³⁷	Fair	FRA	Caregiver	157	65	Spouse: 57 Child: 29 Other: NR	68	NR
	Fair	CAN	Caregiver	121	61	Spouse: 34 Child: 52 Other: 14	79	NR
Duggleby, 2018* ³³⁹ (MT4C)	Fair	CAN	Caregiver	199	64	Spouse: 49 Child: 46 Other: 5	81	NR
Finkel, 2007 ³⁴⁰	Fair	US	Caregiver	46	65	Spouse: 44 Child: 53 Other: NR	68	NR
Fung, 2002* ³⁴¹	Fair	HKG	Caregiver	60	NR	Spouse: 50 Child: 29 Other: 21	63	NR
Gallagher- Thompson, 2003 ³⁴² (REACH - Palo Alto)	Fair	US	Caregiver	257	57	Spouse: NR Child: NR Other: NR	100	13.7
	Fair	US	Caregiver	184	58	Spouse: 38 Child: NR Other: 62	100	14.1
Gallagher- Thompson, 2010* ³⁴⁴	Good	US	Caregiver	76	59	Spouse: 13 Child: NR Other: NR	87	NR

Table 19. Caregiver and Caregiver-Patient Dyad Interventions: Study Characteristics, by Intervention (KQs 4 and 5)

Author, year	Quality	Country	Audionaa	Nrond	Caregiver	Caregiver	Caregiver	Patient BL
(study name) Garand, 2014* ³⁴⁵	Fair	US	Audience Caregiver	N rand	age, mean	type Spouse: 75	female, % 78	MMSE, mean NR
Garano, 2014 ° °	raii	05	Caregiver	13	00	Child: NR Other: NR	10	
Gaugler, 2013* ³⁴⁶	Fair	US	Family	107	50	Spouse: 0	94	NR
(NYUCI-AC)						Child: 100	-	
(/						Other: 0		
Gitlin, 2001 ³⁴⁷	Fair	US	Caregiver	202	60	Spouse: 25	73	NR
			-			Child: NR		
						Other: 75		
Gitlin, 2003 ³⁴⁹	Fair	US	Caregiver	255	61	Spouse: 35	74	12.2
(REACH -						Child: NR		
Philadelphia)						Other: NR		
Gitlin, 2008 ³⁴⁸	Fair	US	Caregiver +	60	65	Spouse: 62	88	11.6
			Patient			Child: 38		
0:0: 0040350	_ ·		<u> </u>	070		Other: 0	0.0	40.0
Gitlin, 2010 ³⁵⁰	Fair	US	Caregiver	272	66	Spouse: 51	82	13.0
(ACT)						Child: NR		
Gitlin, 2010 ⁴⁶²	Fair	US	Caregiver +	007	62	Other: NR Spouse: 38	89	13.4
(COPE)	raii		Patient	231	02	Child: NR	09	13.4
			attern			Other: 62		
Graff, 2006 ³⁵¹	Fair	NLD	Caregiver +	135	64	Spouse: 58	70	19.0
			Patient			Child: 32		
						Other: 10		
Hebert, 2003 ³⁵²	Fair	CAN	Caregiver	144	60	Spouse: 61	80	NR
			_			Child: NR		
						Other: NR		
Hepburn, 2005 ³⁵³	Fair	US	Caregiver	215	66	Spouse: 66	76	17.7
						Child: NR		
054						Other: NR		
Joling, 2012 ³⁵⁴	Fair	NLD	Family	192	70	Spouse: 94	70	12.6
						Child: NR		
Judge, 2013* ³⁵⁵	Foir	US	Caregiver +	100	65	Other: NR	74	23.0
(ANSWERS)	Fair		Patient	120	00	Spouse: 60 Child: NR	74	23.0
			ratient			Other: NR		
Koivisto, 2016* ³⁵⁶	Fair	FIN	Caregiver +	236	66	Spouse: 70	66	21.5
(ALSOVA)			Patient	_00	00	Child: 23	00	
(********						Other: 6		
Kurz, 2010 ³⁵⁷	Fair	AUT,	Caregiver	292	62	Spouse: 58	69	13.9
(AENEAS)		DEU,	C C			Child: 38		
		CHE				Other: NR		
Kwok, 2013* ³⁵⁸	Fair	HKG	Caregiver	42	NR	Spouse: 10	71	NR
						Child: 87		
						Other: 3		
Laakkonen,	Fair	FIN	Caregiver +	136	75	Spouse: 100	62	20.8
2016* ³⁵⁹			Patient			Child: 0		
Livia anton 0010*260	Card		Carro	000	50	Other: 0	<u></u>	
Livingston, 2013* ³⁶⁰	Good	GBR	Caregiver	260	59	Spouse: 42	68	NR
(START)						Child: 44 Other: 15		
Losada, 2010 ³⁶¹	Fair	ESP	Caregiver	167	60	Spouse: 35	83	NR
		-01	Jarogiver	101		Child: 59		
						GHIQ. 5M		

Author, year					Caregiver	Caregiver	Caregiver	Patient BL
(study name)	Quality	Country	Audience	N rand	age, mean	type	female, %	MMSE, mean
Mariott, 2000 ³⁶²	Fair	GBR	Caregiver	28	64	Spouse: 52 Child: 41 Other: 7	69	12.5
Martin-Carrasco, 2009 ³⁶⁴	Fair	ESP	Caregiver	115	58	Spouse: 55 Child: 36 Other: 9	69	18.7
Martin-Carrasco, 2014* ³⁶³ (EDUCA-II)	Fair	ESP	Caregiver	238	62	Spouse: 49 Child: 45 Other: 6	77	12.9
Martin-Cook, 2005 ³⁶⁵	Fair	US	Caregiver + Patient	49	NR	Spouse: 92 Child: 6 Other: 2	70	19.4
Martindale-Adams, 2013* ³⁶⁶ (CONNECT)	Fair	US	Caregiver	154	66	Spouse: 72 Child: 23 Other: 5	84	15.4
Mittelman, 2004* ³⁶⁷ (NYUCI)	Fair	US	Family	406	71	Spouse: 100 Child: 0 Other: 0	60	NR
Nunez-Naveira, 2016 ^{*368}	Fair	DNK, POL, ESP	Caregiver	77	NR	Spouse: NR Child: NR Other: NR	64	NR
Ostwald, 1999 ³⁶⁹	Fair	US	Caregiver + Patient	117	66	Spouse: 66 Child: 28 Other: NR	65	NR
Roberts, 1999 ³⁷⁰	Fair	CAN	Caregiver	77	62	Spouse: 52 Child: 45 Other: NR	70	NR
Schoenmakers, 2010 ³⁷¹	Fair	BEL	Caregiver	62	63	Spouse: 46 Child: 34 Other: 20	76	NR
Steffen, 2016 ^{*373}	Good	US	Caregiver	74	60	Spouse: 52 Child: 43 Other: 10	100	NR
Spaulding-Wilson, 2018 ^{*372}	Fair	US	Caregiver	104	63	Spouse: 45 Child: 52 Other: 3	73	NR
Teri, 2005 ³⁷⁴	Fair	US	Caregiver	95	65	Spouse: 55 Child: 31 Other: 14	70	13.6
Tremont, 2015* ³⁷⁵	Fair	US	Caregiver	250	63	Spouse: 51 Child: 42 Other: 7	78	NR
Ulstein, 2007 ³⁷⁶	Fair	NOR	Caregiver	180	65	Spouse: 70 Child: 28 Other: NR	64	20.8
Voigt-Radloff, 2011 ³⁷⁷	Fair	DEU	Caregiver + Patient	141	65	Spouse: 56 Child: 37 Other: 6	71	20.4
Waldorff, 2012 ³⁷⁸ (DAISY)	Good	DNK	Caregiver + Patient	330	66	Spouse: 65 Child: 26 Other: 9	67	24.1
Wang, 2011* ³⁷⁹	Fair	HKG	Caregiver + Patient	80	41	Spouse: 40 Child: 38 Other: 22	65	17.4

Author, year					Caregiver	_	Caregiver	Patient BL
(study name)			Audience	N rand	age, mean		female, %	MMSE, mean
Williams, 2010 ³⁸⁰	Fair	US	Caregiver	116	60	Spouse: 41 Child: 50 Other: 9	78	NR
Wilz, 2016* ³⁸¹	Fair	DEU	Caregiver	176	62	Spouse: NR Child: NR Other: NR	82	NR
Wilz, 2018 ^{*382} (Tele.TAnDem)	Good	DEU	Caregiver	273	64	Spouse: 60 Child: 38 Other: 2	81	NR
Wright, 2001 ³⁸³	Fair	US	Caregiver	93	60	Spouse: 45 Child: 38 Other: 17	76	NR
Care/Case Manage	ment Inte	rvention	S				•	
Bass, 2003 ³⁸⁴	Fair	US	Caregiver + Patient	182	NR	Spouse: NR Child: NR Other: NR	NR	NR
Callahan, 2006 ³⁸⁵	Fair	US	Caregiver + Patient	153	61	Spouse: 44 Child: 36 Other: 20	89	18.0
Chien, 2008* ³⁸⁷	Fair	HKG	Family	88	44	Spouse: 32 Child: 36 Other: 32	64	17.4
Chien, 2011* ³⁸⁶	Good	HKG	Caregiver + Patient	92	45	Spouse: 27 Child: 39 Other: 34	66	NR
Chu, 2000 ³⁸⁸	Fair	CAN	Caregiver + Patient	75	NR	Spouse: NR Child: NR Other: NR	73	22.8
Eloniemi-Sulkava, 2009 ³⁹⁰	Good	FIN	Caregiver + Patient	125	75	Spouse: 100 Child: 0 Other: NR	62	13.8
Eloniemi-Sulvaka, 2001 ³⁸⁹	Fair	FIN	Caregiver + Patient	100	64	Spouse: 56 Child: 34 Other: 10	69	14.8
Fortinsky, 2009 ³⁹¹	Fair	US	Caregiver + Patient	84	62	Spouse: 45 Child: 46 Other: 9	69	NR
Jansen, 2011 ³⁹²	Fair	NLD	Caregiver + Patient	99	63	Spouse: 40 Child: 48 Other: 9	70	22.3
Lam, 2010 ³⁹³	Fair	HKG	Caregiver + Patient	102	NR	Spouse: 29 Child: 60 Other: NR	74	17.8
Mavandadi, 2017*	Fair	US	Caregiver + Patient	75	70	Spouse: 83 Child: NR Other: NR	97	NR
Meewsen, 2012 ³⁹⁵ (AD-Euro)	Good	NLD	Caregiver + Patient	175	64	Spouse: 54 Child: 41 Other: 5	70	22.7
Menn, 2012 ³⁹⁶	Fair	DEU	Caregiver + Patient	390	59	Spouse: 32 Child: 59 Other: 9	73	18.7
Samus, 2014* ³⁹⁷ (MIND)	Fair	US	Caregiver + Patient	303	67	Spouse: 43 Child: 48 Other: 9	75	19.1

Author, year					Caregiver	Caregiver	Caregiver	Patient BL
(study name)	Quality	Country	Audience	N rand	age, mean	type	female, %	MMSE, mean
Thyrian, 2017* ³⁹⁸	Fair	DEU	Caregiver +	516	NR	Spouse: NR	NR	22.8
(DelpHi)			Patient			Child: NR		
						Other: NR		
Vickrey, 2006 ³⁹⁹	Good	US	Caregiver +	408	66	Spouse: 55	69	NR
			Patient			Child: 39		
						Other: 6		
Xiao, 2016*400	Fair	AUS	Caregiver	72	56†	Spouse: 26	84	NR
, .						Child: NR	-	
						Other: NR		
Other Intervention	s	1						
Charlesworth,	Fair	GBR	Caregiver	236	68	Spouse: 67	64	NR
2008 ⁴⁰¹		OBIC	Galogivoi	200	00	Child: NR	01	
2000						Other: NR		
Connell, 2009 ⁴⁰²	Fair	US	Caregiver	157	67	Spouse: 100	100	NR
Connen, 2003		00	Caregiver	107	07	Child: 0	100	
						Other: NR		
Gitlin, 2018* ⁴⁰³	Fair	US	Caregiver +	160	72	Spouse: 87	98	16.6
	Fair	03	-	100	12	•	90	10.0
(TAP-VA)			patient			Child: NR		
	_ ·	1511	<u> </u>			Other: 13		
Hirano, 2011 ⁴⁰⁴	Fair	JPN	Caregiver	36	74	Spouse: NR	68	18.3
						Child: NR		
						Other: NR		
King, 2002 ⁴⁰⁵	Fair	US	Caregiver	100	63	Spouse: 53	100	NR
						Child: 47		
						Other: 0		
Leach, 2015* ⁴⁰⁶	Good	AUS	Caregiver	17	66	Spouse: 65	88	NR
(TRANSCENDENT))					Child: 35		
						Other: 5		
LoGiudice, 1999 ⁴⁰⁷	Fair	AUS	Caregiver +	50	61	Spouse: 54	78	17.0
			Patient			Child: 36		
						Other: 10		
Nourhashemi,	Fair	FRA	Caregiver +	1131	NR	Spouse: NR	NR	19.7
2010 ⁴⁰⁸			Patient			Child: NR		
(PLASA)						Other: NR		
Pillemer, 2002 ⁴⁰⁹	Fair	US	Caregiver	147	58	Spouse: 40	71	NR
			g. · - ·			Child: 60		
						Other: 0		
Prick, 2015*410	Fair	NLD	Caregiver +	111	72	Spouse: 90	72	21.0
1 11010, 2010			Patient			Child: NR	12	21.0
			atient			Other: 10		
Spijker, 2011 ⁴¹¹	Good	NLD	Caregiver	301	59	Spouse: 28	73	NR
	3000		Calegiver	501	55	Child: 52	, 3	
						Other: 6		
Teri, 2003 ⁴¹²	Cood		Corogiuar	152	ND		ND	16.7
1611, 2003***	Good	US	Caregiver +	103	NR	Spouse: NR	NR	16.7
			Patient			Child: NR		
	L .			100	07	Other: NR	4.0.0	
Winter, 2006 ⁴¹³	Fair	US	Caregiver	103	67	Spouse: 41	100	NR
						Child: NR		
						Other: NR		

* New study

† Median

Abbreviations: ACT = Advancing Caregiver Training; AENEAS = A European Network for the Evaluation of Alzheimer Support groups; ALSOVA = Alzheimer's Disease Follow-up Study; ANSWERS = Acquiring New Skills While Enhancing Remaining Strengths; AUS = Australia; AUT = Austria; BL = baseline; BEL = Belgium; CAN = Canada; CHE = Chile;

CONNECT = Telephone Support for Dementia Caregivers; COPE = Care of Persons with Dementia in their Environments; DAISY = Danish Alzheimer Intervention Study; DelpHi = Dementia: Life- and Person-Centered Help in Mecklenburg-Western Pomerania; DEU = Germany; DNK = Denmark; ESP = Spain; FIN = Finland; FRA = France; GBR = Great Britain/United Kingdom; GE-REACH = German Adaptation of Resources for Enhancing Alzheimer's Caregiver Health; HKG = Hong Kong; JPN = Japan; MIND = Maximizing Independence at Home; MT4C = My Tools 4 Care; N rand = number of participants randomized; NLD = Netherlands; NOR = Norway; NR = not reported; NYUCI = New York University Caregiver Intervention; NYUCI-AC = New York University Caregiver Intervention-Adult Child; PLASA = Plan de Soin et d'Aide dans la maladie d'Alzheimer or "Specific Care and Assistance Plan for Alzheimer Disease"; POL = Poland; REACH = Resources for Enhancing Alzheimer's Caregiver Health; START = STrAtegies for RelaTives; TAP-VA = Tailored-Activity Program-Veterans Affairs; Tele.TAnDem = Telephone-based CBT for Family Caregivers of People With Dementia; TRANSCENDENT = Transcendental Meditation for the improvement of health and wellbeing in community-dwelling dementia caregivers; TWN = Taiwan

Author, year		Intervention			Duration,	
Quality	Country	/ type	Audience	Brief intervention group description	months	Brief control group description
Psychoeducation						
Barnes, 2018 ^{*327} Fair	GBR	Individual psychoeducation		Individual home-based psychoeducation sessions for 3 d/2 months, 60-min/d	2	BI: One 60-min general support session to discuss any issues identified at the point of referral.
Belle, 2006 ³²⁸ Fair	US	Individual psychoeducation		Individual- and group-based psychoeducation and support through nine 90-min in-home sessions and three 30-min telephone sessions plus 5 structured telephone support group sessions over 6 months.	6	Bl: Educational materials and two 15-min phone calls.
Berwig, 2017* ³²⁹ Fair	DEU	Individual psychoeducation		Individual psychoeducation, problem-solving, and social support through nine 90-min in-home sessions and three 30-min telephone sessions over 6 months.	6	UC: Care as usual corresponding with available services determined by German Care Insurance.
Brennan, 1995 ³³⁰ Fair	US	Telehealth psychoeducation		moderated support ("ComputerLink") with access 24 h/d, 7 d/wk. over 1 year.	12	BI: In-person training on identifying local services and resources
Bruvik, 2013 ^{*331} Good	NOR	Individual psychoeducation	+ Patient	Individual- and group-based psychoeducation and support through five 60-min individual counseling sessions, 2 half-day seminars, and six 2-hr group meetings over 12 months.	12	BI: Information on local services.
Burgio, 2003 ³³² Fair	US	Individual psychoeducation		Individualized psychoeducation through one 3-hr group workshop, eleven 60-min in-home sessions, and five 15-min phone calls over 1 year.	12	BI: Minimal support control delivered through five 15-min telephone calls focused on empathetic and active listening and generic educational materials.
Chang, 1999 ³³³ Fair	US	Telehealth psychoeducation		Videos demonstrating assisted modeling behaviors specific to dressing and eating plus reinforcing telephone calls 1 d/wk over 12 weeks.	3	MI: Telephone calls on same schedule as intervention (1 d/wk over 12 weeks) to assess general well-being, but offered no specific strategies for dressing or eating.
Chu, 2011 ³³⁴ Fair	TWN	Group-based psychoeducation		through 12 weekly group sessions over 3 months.	3	UC: Standard care provided in Taiwan (not described).
Coon, 2003 ³³⁵ Fair	US	IG1: Group- based psychoeducation IG2: Group-		IG1: Group-based psychoeducation focused on anger management through 8 weekly 120-min sessions over 4 months. IG2: Group-based psychoeducation focused on	4	WL: Offered either anger management or depression management intervention after study ended.
		based psychoeducation		depression management through 8 weekly 120- min sessions over 4 months.		

Author, year		Intervention			Duration,	
Quality	Country	type	Audience	Brief intervention group description	months	Brief control group description
Cristancho-Lacroix, 2015* ³³⁶ Fair		Telehealth psychoeducation	Caregiver	Computer-based psychoeducation program and support ("Diapason") with 12 sessions intended for 1 d/wk, 15-30 min/d for 3 months.	3	WL: Offered intervention after study ended.
De Rotrou, 2011 ³³⁷ Fair		Group-based psychoeducation		Group-based psychoeducation through 12 weekly 120-min sessions over 3 months.	3	WL: Offered intervention after study ended.
Duggleby, 2018 ^{*339} Fair		Individual psychoeducation	Caregiver	Self-administered web-based psychoeducation for 3 months	3	WL: Participants received a copy of the publicly available Alzheimer's Society's "The Progression of Alzheimer's Disease" booklet via email and were offered access to the intervention website after three months.
Ducharme, 2011 ³³⁸ Fair	CAN	Individual psychoeducation	Caregiver	Individual-based "Learning to Become a Family Caregiver" program consisting of psychoeducation sessions for 1 d/wk, 90 min/d over 7 weeks.	2	UC: Usual care provided by memory clinics including referrals to local services.
Finkel, 2007 ³⁴⁰ Fair	US	Telehealth psychoeducation	Caregiver	Computer- and telephone-based psychoeducation and moderated support ("Computer-Telephone Integration System") including 2 in-home sessions and 12 sessions conducted via computer/telephone over 6 months.	6	BI: Basic educational materials and 2 brief telephone check-in calls.
Fung, 2002* ³⁴¹ Fair	НКG	Group-based psychoeducation	Caregiver	Group-based psychoeducation program through 12 weekly 60-min sessions over 3 months.	3	UC: Standard family services provided by dementia care center (Hong Kong) including culturally tailored medical assessment and treatment, advice and referrals to social welfare services, and monthly educational talks in dementia care and social and recreational activities
Gallagher- Thompson, 2003 ³⁴² Fair	US	Group-based psychoeducation	Caregiver	Group-based "Coping with Caregiving" psychoeducation class through 10 weekly 120- min group sessions followed by 8 monthly 120- min booster sessions over 10 months.	10	MI: Written educational materials and brief, regularly scheduled empathetic telephone support calls.
Gallagher- Thompson, 2008 ³⁴³ Fair	US	Group-based psychoeducation		Group-based "Coping with Caregiving" psychoeducation class through 12 weekly 120- min classes over 4 months.	4	MI: Written educational materials and seven 15-30 min empathetic telephone support calls.
Gallagher- Thompson, 2010 ^{*344} Good	US	Telehealth psychoeducation	Caregiver	Culturally-tailored psychoeducational/ cognitive behavioral skill training program delivered via 150 min DVD with 3 telephone check-in calls.	3	AC: General 150-min DVD on dementia with 3 telephone check-in calls.

Author, year		Intervention			Duration,	
Quality	Country	y type	Audience	Brief intervention group description	months	Brief control group description
Garand, 2014* ³⁴⁵ Fair	US	Individual psychoeducation		Individual problem-solving therapy including 6 in- person sessions, 90 min/session over 3 months followed by 3 telephone contacts, 45 min/call over 1.5 months.	4.5	AC: In-person and telephone counseling focused on nutrition following same schedule as intervention (6 in-person sessions and 3 telephone contacts).
Gaugler, 2013 ^{*346} Fair	US	Family-based psychoeducation	Family	"New York University Caregiver Intervention - adapted for adult child caregivers" consisting of 6 individual and family counseling sessions, support group participation, and ad hoc counseling in-person or via phone or e-mail over 4 months.	4	MI: Biannual project newsletter and quarterly check-in calls including ad hoc consultations as necessary.
Gitlin, 2001 ³⁴⁷ Fair	US	Individual psychoeducation	_	Individual in-person psychoeducation sessions and home environmental modifications during five 90-min biweekly home visits over 3 months.	3	UC: Usual care not described; given education materials and booklet describing home environmental safety tips after study was over.
Gitlin, 2003 ³⁴⁹ Fair	US	Individual psychoeducation		Individual-based "Environment Skill-Building Program" including psychoeducation, problem- solving training, and adaptive equipment provided through five 90-min home visits and one 30-min telephone call over 6 months followed by maintenance sessions over another 6 months.	12	UC: Usual care not described; given information on local resources.
Gitlin, 2008 ³⁴⁸ Fair	US	Individual psychoeducation	+ Patient	Individual-based "Tailored Activity Program" including customized activities to address neuropsychiatric and functional needs through six 90-min home visits and two 150-min telephone contacts over 4 months.	4	WL: Offered intervention after study ended.
Gitlin, 2010 ⁴⁶² Fair	US	Individual psychoeducation	+ Patient	Individual-based intervention including assessments, caregiver education, and caregiver training for up to 10 occupational therapy home visits and 1 in-person and 1 telephone call with a nurse over 4 months.	4	MI: Up to 3 20-min telephone calls and mailed materials.
Gitlin, 2010 ³⁵⁰ Fair	US	Individual psychoeducation		Individual-based "Advancing Caregiver Training" consisting of activities to address patient-, caregiver-, and environmental-based needs through up to 9 occupational therapy visits, 1 in- home and 1 telephone nursing session, and 3 brief telephone contacts over 4 months.	6	None: Offered 2-hr in-home workshop involving education and tips for managing problem behaviors after study ended.
Graff, 2006 ³⁵¹ Fair	NLD	Individual psychoeducation	Caregiver	In-home, individual-based occupational therapy during ten 60-min sessions over 5 weeks.	1	WL: Offered intervention after study ended.

Author, year		Intervention			Duration,	
Quality	Country	y type	Audience	Brief intervention group description	months	Brief control group description
Hebert, 2003 ³⁵² Fair	CAN	Group-based psychoeducation	Caregiver	Group-based psychoeducation through 15 weekly 120-min sessions over 4 months.	4	UC: Referred to regular support group program offered by local Alzheimer's Society (Canada) or health care organizations in their region.
Hepburn, 2005 ³⁵³ Fair	US	Group-based psychoeducation	Caregiver	"Partners in Caregiving" group-based psychoeducation program through 6 weekly 120- min sessions over 6 weeks.	1.5	WL: Offered intervention after study ended.
Joling, 2012 ³⁵⁴ Fair	NLD	Family-based psychoeducation	Family	Family- and individual-based counseling through 2 individual counseling session and 4 family counseling sessions over 1 year.	12	UC: Standard care provided by the Netherland's community health services, which does not include support groups.
Judge, 2013* ³⁵⁵ Fair	US	Individual psychoeducation		Individual-based "ANSWERS" psychoeducation and cognitive rehabilitation program consisting of six 90-min individual sessions over 3 months.	3	BI: Standardized education resource packet and information on local resources.
Koivisto, 2016 ^{*356} Fair	FIN	Group-based psychoeducation	+ Patient	through 4 group-based courses (for 16 days total) over 2 years.	24	UC: Basic counseling by a memory nurse at time of diagnosis and followed up with their normal healthcare system.
Kurz, 2010 ³⁵⁷ Fair	AUT, DEU, CHE	Group-based psychoeducation	Caregiver	Group-based psychoeducation through 7 bi- weekly 90-min sessions and 6 bi-monthly refresher sessions over 15 months.	15	UC: One standard individual counseling session.
Kwok, 2013 ^{*358} Fair	HKG	Telehealth psychoeducation	Caregiver	Telephone-based psychoeducation and training for 1 d/wk, 30 min/d plus educational DVD over 12 weeks.	3	BI: Educational DVD about dementia caregiving.
Laakkonen, 2016* ³⁵⁹ Fair	FIN	Group-based psychoeducation		Group-based psychoeducation and support through 8 weekly 4-hr sessions over 8 weeks.	2	UC: Standard care provided by Finnish health and social service system.
Livingston, 2013 ^{*360} Good	GBR	Individual psychoeducation	Caregiver	Individual-based "START" psychoeducation and support program consisting of eight 60-min in- home sessions over 2-3 months.	2-3	UC: Standard care for the family member with dementia including pharmacologic and nonpharmacologic treatment and caregiver support.
Losada, 2010 ³⁶¹ Fair	ESP	Group-based psychoeducation	Caregiver	Group-based psychoeducation through 12 weekly 90-120-min sessions over 3 months.	3	UC: Standard care or assistance provided by social and health centers in Spain plus offered intervention after study ended.
Mariott, 2000 ³⁶² Fair	GBR	Individual psychoeducation	Caregiver	Individual-based psychoeducation during 14 sessions every other week over 7 months.	7	None: No intervention.
Martin-Carrasco, 2009 ³⁶⁴ Fair	ESP	Individual psychoeducation	Caregiver	Individual-based "Psychoeducational Intervention Program" through eight 90-min sessions over 4 months.	4	UC: Standard care for caregivers including information on dementia and local resources and on-demand in-person and phone support.

Author, year		Intervention			Duration,	
Quality	Country	v type	Audience	Brief intervention group description	months	Brief control group description
Martin-Carrasco, 2014* ³⁶³ Fair	ESP	Group-based psychoeducation		Group-based "Psychoeducational Intervention Program" consisting of 7 sessions, 90-120-min each over 3 months. [†]	3	UC: Standard care from day center or memory clinic including information for caregivers.
Martin-Cook, 2005 ³⁶⁵ Fair	US	Individual psychoeducation		Individual-based psychoeducation through 4 weekly sessions over 1 month.	1	WL: Given information on local resources and offered intervention after study ended.
Martindale-Adams, 2013* ³⁶⁶ Fair	US	Telehealth psychoeducation		Telephone-based, group psychoeducation and support through fourteen 60-min telephone group sessions plus workbook over 12 months.	12	BI: General print materials on dementia and safety and information on local resources; offered intervention workbook and one workshop after study ended.
Mittelman, 2004* ³⁶⁷ Fair	US	Family-based psychoeducation		Family- and individual-based counseling through two 60-180-min individual counseling sessions and four 60-180-min family counseling sessions, weekly support groups, and ad hoc counseling as needed over 4 months.	≥4	UC: Standard services provided by the NYU Alzheimer's Disease Center including information and advice on request plus access to same support groups and ad hoc counseling provided to intervention group.
Nunez-Naveira, 2016 ^{*368} Fair	DNK, POL, ESP	Telehealth psychoeducation		App-based psychoeducation and support ("UnderstAID application") with 5 different learning modules, a calendar and note-taking section, a moderated social networking section, and options for receiving personalized feedback.	3	None: No intervention.
Ostwald, 1999 ³⁶⁹ Fair	US	Group-based psychoeducation	Caregiver + Patient	· · · ·	3	WL: Offered intervention after study ended.
Roberts, 1999 ³⁷⁰ Fair	CAN	Individual psychoeducation		Individual-based problem-solving training through up to 10 in-home or telephone sessions over 6 months.	6	UC: Access to community and respite services by other nurses and volunteer agencies.
Schoenmakers, 2010 ³⁷¹ Fair	BEL	Individual psychoeducation		Individual-based support to support home care through 4 home visits and 12 telephone calls over 1 year and ad-hoc care counselor support.	12	UC: Access to usual care systems.
Spaulding-Wilson, 2018* ³⁷² Fair	US	Group-based psychoeducation		Group-based psychoeducation delivered in a 2 day workshop.	0.07	WL: Offered intervention after study ended.
Steffen, 2016* ³⁷³ Good	US	Telehealth psychoeducation		consisting of ten 30-min video segments, a workbook, and ten telephone calls over 14 weeks.	3	MI: Basic education and support via an Alzheimer's Basic Care Guide and seven 20-min telephone calls every other week.
Teri, 2005 ³⁷⁴ Fair	US	Individual psychoeducation	Caregiver	Individual-based psychoeducation program "STAR-Caregivers" consisting of 8 weekly in-	6	UC: Standard medical care including nonspecific advice and support routinely

Author, year		Intervention			Duration,	
Quality	Country	type	Audience	Brief intervention group description	months	Brief control group description
				home treatment sessions followed by 4 monthly phone calls over 6 months.		provided by nurses and primary physicians or community support services with no specific behavior-management training.
Tremont, 2015* ³⁷⁵ Fair	US	Telehealth psychoeducation		Individual, telephone-based psychoeducation provided over sixteen 30-60 min calls over 6 months.	6	MI: Non-directive telephone support following same schedule as intervention (sixteen 30-60 min calls over 6 months).
Ulstein, 2007 ³⁷⁶ Fair	NOR	Group-based psychoeducation		Group-based psychoeducation consisting of one 3-hr educational program and six 2-hr group meetings over 4.5 months.	4.5	UC: Patients received standard memory clinic care and caregivers were offered to talk with an experienced nurse and offered advice and ad hoc counseling as needed.
Voigt-Radloff, 2011 ³⁷⁷ Fair	-	Individual psychoeducation		through three home visits and two telephone calls over 1 year.	1.25	MI: Usual care and 60 min of community occupational therapy consultation.
Waldorff, 2012 ³⁷⁸ Good		Group-based psychoeducation	+ Patient	Individual- and group-based psychoeducation and support through up to 7 individual counseling sessions for both patient and caregiver, five 2-hr educational group courses, and up to 8 followup phone calls over 8-12 months.	8-12	BI: General information and guidance about dementia and information and referral to local resources at 6 and 12 months.
Wang, 2011* ³⁷⁹ Fair		Group-based psychoeducation	+ Patient	Group-based psychoeducation program "Family Mutual Support Programme in Dementia Care" through 8 bi-weekly 120-min sessions over 6 months.	6	UC: Standard family services provided by dementia care center (Hong Kong) including culturally tailored medical assessment and treatment, advice and referrals to social welfare services, and monthly educational talks in dementia care and social and recreational activities.
Williams, 2010 ³⁸⁰ Fair	US	Telehealth psychoeducation		Video- and telephone-based psychoeducation consisting of ten 7-10-min video segments, a workbook, and five telephone calls over 5 weeks.	1.25	WL: Offered intervention after study ended.
Wilz, 2016 ^{*381} Fair	DEU	Telehealth psychoeducation		Telephone-based psychoeducation and training through seven 60-min sessions over 3 months; first session was in home and remaining six sessions were via telephone.	3	BI: Written educational material on dementia, dementia caregiving, and local resources.
Wilz, 2018* ³⁸² Good		Telehealth psychoeducation	Caregiver	Telephone-based psychoeducation and training through 12 50-min sessions over 6 months.	6	UC: Written educational material about dementia and caregiving.
Wright, 2001 ³⁸³ Fair	US	Individual psychoeducation		Individual-based psychoeducation and support through three home visits and two telephone calls over 1 year.	12	None: No intervention.

Author, year Quality	Country	Intervention type	Audience	Brief intervention group description	Duration, months	Brief control group description
Care/Case Manage						
Bass, 2003 ³⁸⁴ Fair	US	Care/Case Management + Psychoeducation	+ Patient	Partnership between local Alzheimer's Association and managed care plan to provide care consultation and individualized treatment plans to families over 1 year through regular telephone calls (12 calls per year on average).	12	UC: Standard care provided by managed care and ability to contact Alzheimer's Association on their own.
Callahan, 2006 ³⁸⁵ Fair	US	Care/Case Management + Psychoeducation	+ Patient	Care management for patients and caregivers including pharmacotherapy treatment and individualized caregiver psychoeducation and support through monthly in-person sessions and telephone-based support groups over 1 year.	12	MI: Augmented usual care including 40-90 min of counseling by geriatric nurse practitioner, written consultation note to PCP communicating results of diagnostic assessment, and materials describing local resources.
Chien, 2008 ^{*387} Fair	HKG	Care/Case Management + Psychoeducation		Care management for patients and caregivers including assessment, education, support, and referrals including twelve 2-hr group sessions and monthly home visits over 6 months.	6	MI: Routine care provided by Hong Kong Dementia Care Center including pharmacotherapy, social and recreational activities, and materials for caregivers plus 6 monthly psychoeducation group sessions for caregivers.
Chien, 2011 ^{*386} Good	HKG	Care/Case Management + Psychoeducation	+ Patient	Dementia Family Care Programme including assessment, education, support, and referrals including ten 2-hr individual sessions.	6	MI: Routine care provided by Hong Kong Dementia Care Center including pharmacotherapy, social and recreational activities, and materials for caregivers plus 6 monthly psychoeducation group sessions for caregivers.
Chu, 2000 ³⁸⁸ Fair	CAN	Care/Case Management + Psychoeducation	+ Patient	Multicomponent "Early Home Care Program" including case management with education, referrals to community services, ongoing monitoring, supportive counseling, and skills training through monthly in-person or telephone contacts in addition to conventional home care (occupational and physical therapy, respite care, personal care assistance, social work, nursing) over 1.5 years.	18	UC: Conventional home care program provided by local Canadian Home Care Program, but not including case management.
Eloniemi-Sulkava, 2009 ³⁹⁰ Good	FIN	Care/Case Management + Psychoeducation	Caregiver + Patient		24	UC: Standard services provided for geriatric patients in Finland community care by the municipal social and healthcare system or private sector.

Author, year		Intervention			Duration,	
Quality	Country		Audience		months	Brief control group description
Eloniemi-Sulvaka, 2001 ³⁸⁹ Fair		Care/Case Management + Psychoeducation	+ Patient	Comprehensive support provided by a "Dementia Family Care Coordinator" through counseling, in- home visits, annual courses, facilitating care plans, and arranging social and health care services over 2 years.	24	UC: Standard services provided for geriatric patients in Finland community care by the municipal social and healthcare system or private sector.
Fortinsky, 2009 ³⁹¹ Fair		Care/Case Management + Psychoeducation	+ Patient	Partnership between local Alzheimer's Association and primary care physicians to provide care consultation and individualized treatment plans to families through monthly contact over 1 year.	12	UC: Standard primary care plus package of educational materials.
Jansen, 2011 ³⁹² Fair		Care/Case Management + Psychoeducation	+ Patient	Case management including assessment, advice and information, planning, coordinating, organizing collaboration, and monitoring of care provided through home visits and telephone calls over 1 year.	12	UC: Standard health care and welfare services in the Netherlands.
Lam, 2010 ³⁹³ Fair	HKG	Care/Case Management + Psychoeducation	+ Patient	Case management including assessment and advice, cognitive stimulation, coordination with geriatricians, and referrals to local social services provided through home visits and telephone calls over 4 months.	4	MI: One home visit focused on home safety, with no case management.
Mavandadi, 2017 ^{*394} Fair		Care/Case Management + Psychoeducation	+ Patient	Care management including assessment and advice, education, support, and coordination through monthly telephone calls over 3 months.	3	UC: Standard care through VA and mailed general materials about VA and community resources for patients and caregivers.
Meewsen, 2012 ³⁹⁵ Good		Care/Case Management + Psychoeducation		Care coordination and post-diagnosis treatment provided by memory clinic.	12	UC: Usual care coordination and post- diagnosis treatment provided only by general practitioner.
Menn, 2012 ³⁹⁶ Fair		IG1: Care/Case Management + Psychoeducation IG2: Care/Case Management + Psychoeducation	+ Patient	IG1: Training for primary care physicians on evidence-based treatment for dementia plus physician suggested that caregiver attend support groups and receive counseling for up to 2 years. IG2: Training for primary care physicians on evidence-based treatment for dementia plus physician suggested that caregiver attend support groups and receive counseling for up to	24	UC: General training course on dementia care for physicians and usual dementia medical treatment.

Author, year		Intervention			Duration,	
	Country		Audience	• •	months	Brief control group description
Samus, 2014* ³⁹⁷ Fair		Care/Case Management + Psychoeducation	Caregiver + Patient	Dementia Care Needs Assessment and care coordination including two home visits and monthly contact with families over 18 months.	18	MI: Received results of Dementia Care Needs Assessment, recommendations for each unmet need, and brief resource guide with local and national aging organizations.
Thyrian, 2017* ³⁹⁸ Fair		Care/Case Management + Psychoeducation		Care management and interdisciplinary collaboration including assessment and individualized treatment plans, medication management, and caregiver support including 6 home visits over 6 months and ongoing telephone support for remaining 6 months.	12	UC: Usual primary care provided to patients and caregivers in Germany (not described).
Vickrey, 2006 ³⁹⁹ Good		Care/Case Management + Psychoeducation		Care coordination for 18 months including communication within and between organizations, Internet-based care management, collaborative care planning with caregivers, caregiver self-management support, ongoing follow-up, and provider education.	18	UC: Usual care provided by primary care clinics.
Xiao, 2016 ^{*400} Fair		Care/Case Management + Psychoeducation	Caregiver	Extending usual care coordination for patient to also support caregivers through quarterly home visits and monthly telephone calls over 1 year.	12	UC: Care coordination for patient provided as part of usual care in Australia and optional activities for caregivers including monthly support group meetings and information sessions.
Other Intervention	ns					
Charlesworth, 2008 ⁴⁰¹ Fair	GBR	Social support	Caregiver	"Befriending" intervention matching trained volunteers with caregivers to provide emotional and informational support through weekly home visits over at least 6 months.	6	UC: Standard care provided by local health, social, or voluntary services.
Connell, 2009 ⁴⁰² Fair	US	Physical activity counseling	Caregiver	"Health First" video- and telephone-based counseling to encourage physical activity provided through 14 telephone calls over 6 months.	6	None: No intervention.
Gitlin, 2018 ^{*403} Fair		Multidisciplinary assessment	+ patient	Multidisciplinary assessment and tailored care plan involving 8 treatment sessions over 4 months.	4	MI: Biweekly telephone-based dementia education sessions (8 30-min contacts) over 4 months.
Hirano, 2011 ⁴⁰⁴ Fair		Physical activity counseling	Caregiver	One-time prescription to participate in moderate- intensity physical activity 3 times per week over the course of 3 months.	3	MI: Carried a pedometer that recorded daily steps and asked to record their daily progress of exercise amount in a journal.

Author, year Quality	Country		Audience	Priof intervention group description	Duration, months	
				• • •	12	Brief control group description
King, 2002 ⁴⁰⁵ Fair		Physical activity counseling		Prescription to participate in moderate-intensity physical activity at least 4 d/wk, 30-40 min/d provided through weekly and then monthly telephone calls plus daily logs over 12 months.	12	AC: Nutrition education provided at same intensity as intervention (weekly and then monthly telephone calls) over 12 months.
Leach, 2015 ^{*406} Good	AUS	Other		in-person through twelve 30-90 min sessions over 3 months.	3	None: Offered 4-week healthy lifestyle education program (4 weekly 90-min sessions) after study ended.
LoGiudice, 1999 ⁴⁰⁷ Fair		Assessment and Treatment Planning	+ Patient	Attended hospital memory clinic on 2 occasions for assessment and referral to appropriate services.	NR	UC: Patients received same medical and cognitive assessments and caregivers received same interview as intervention group and all questions were answered and referrals back to primary care physician were encouraged.
Nourhashemi, 2010 ⁴⁰⁸ Fair		Multidisciplinary assessment and treatment plan		Multidisciplinary assessment and tailored care plan once every 6 months over 24 months.	24	UC: Standard medical care provided at community health centers.
Pillemer, 2002 ⁴⁰⁹ Fair	US	Social support		"Peer Support Project" providing one-on-one peer support through up to 8 weekly 120-min visits over 2 months.	2	None: No intervention.
Prick, 2015 ^{*410} Fair	NLD	Multicomponent dyadic	+ Patient	Multicomponent dyadic intervention including exercise training, psychoeducation, communication skills training and pleasant skills training through eight 1-hr in-home sessions over 3 months.	3	BI: Monthly mailings with general information and 3 monthly 10-min telephone calls to provide emotional support.
Spijker, 2011 ⁴¹¹ Good	NLD	Provider training		"Systematic Care Program for Dementia" consisting of training professionals in the assessment of and strategies for reducing caregiver burden including screening, psychosocial support, and care coordination with medical, home, and respite care.	12	UC: Standard care provided by the Netherland's community mental health services (not described).
Teri, 2003 ⁴¹² Good	US	Multicomponent dyadic	Caregiver + Patient	Multicomponent dyadic intervention including an exercise intervention for patients and caregiver psychoeducation through twelve 60-min in-home visits over the first 3 months and three 60-min followup sessions over the next 3 months.	6	UC: Monthly mailings with general information and 3 monthly 10-min telephone calls to provide emotional support.
Winter, 2006 ⁴¹³ Fair	US	Social support	Caregiver	Telephone-based group social support through 26 weekly telephone calls over 6 months.	6	None: No intervention.

* New study

† Based on "Coping with Caregiving" Intervention tested in Gallagher-Thompson, 2003 and Gallagher-Thompson, 2008

Abbreviations: AC = attention control; AUS = Australia; AUT = Austral; BI = brief intervention; BL = baseline; BEL = Belgium; CAN = Canada; CHE = Chile; DEU = Germany; d = day; DNK = Denmark; ESP = Spain; FIN = Finland; FRA = France; GBR = Great Britain/United Kingdom; HKG = Hong Kong; hr = hour; IG = intervention groups; JPN = Japan; MI = minimal intervention; min = minute; NLD = Netherlands; NOR = Norway; NR = not reported; NYU = New York University; POL = Poland; TWN = Taiwan; UC = usual care; wk = week; WL = waitlist

Author, year Quality	Intervention Type	N	FU (mo.) [†]	Caregiver Burden	Caregiver Mental Health Symptoms	Caregiver QOL	Patient Institutionalization	Patient Mental Health and Behavioral Symptoms	Other Patient Outcomes
Psychoeducation			(110.)	Duruen	Symptoms	QUL	Institutionalization	Symptoms	Outcomes
		55	3	NR	\leftrightarrow (A, D)	\leftrightarrow	NR	NR	NR
·	psychoeducation								
Belle, 2006 ³²⁸	Individual	642	6	NR	↑ (D)	NR	\leftrightarrow	NR	NR
	psychoeducation								
0,	Individual	92	9	↑	$\leftrightarrow (A,D)$	\leftrightarrow	NR	↑ (NPS)	NR
	psychoeducation								
,	Telehealth	102	12	\leftrightarrow	$\leftrightarrow (D)$	NR	NR	NR	NR
	psychoeducation								
,	Individual	230	12	NR	$\leftrightarrow (D)$	NR	NR	↔ (D)	NR
	psychoeducation								
· J · , · · ·	Individual	140		Black: ↔	Black: \leftrightarrow (A, D)	NR	NR	Black: ↔ (NPS)	NR
	psychoeducation			White: ↔	White: \leftrightarrow (A, D)			White: ↔ (NPS)	
0,		87	3	NR	↔ (A, D)	NR	NR	NR	↔ (ADL)
	psychoeducation								
		85	4	\leftrightarrow	↑ (D)	NR	NR	NR	NR
	psychoeducation								
•	Group-based	169	6	NR	IG1: ↔ (D)	NR	NR	NR	NR
	psychoeducation		-		IG2: ↔ (D)				
	Telehealth	49	6	\leftrightarrow	↔ (D, PS)	NR	NR	↔ (NPS)	NR
	psychoeducation								
Fair	Oraun haaad	157	<u> </u>			NR	NR		
De Rotrou, 2011 ³³⁷ Fair		157	6	\leftrightarrow	$\leftrightarrow (D)$	NK	NK	↔ (NPS)	↔ (GCF), ↔ (ADL/IADL)
	psychoeducation Individual	121	8		NR	NR	NR	NR	NR
,	psychoeducation	121	0	\leftrightarrow					
Fair	psychoeducation								
	Individual	199	6	NR	NR	\leftrightarrow	NR	NR	NR
00 1/	psychoeducation	133	Ŭ			7			
Fair	poyonocadoaton								
Finkel, 2007 ³⁴⁰	Telehealth	46	6	\leftrightarrow	↔ (D)	NR	NR	NR	NR
	psychoeducation								
	Group-based	60	4	↑	NR	↑	\leftrightarrow	NR	NR
-	psychoeducation	-		ľ		1			

Author, year Quality	Intervention Type	N rand	FU (mo.)†	Caregiver Burden	Caregiver Mental Health Symptoms	Caregiver QOL	Patient Institutionalization	Patient Mental Health and Behavioral Symptoms	Other Patient Outcomes
Gallagher- Thompson, 2003 ³⁴² Fair	Group-based psychoeducation	257	6	Hisp: ↔ White: ↔	Hisp: ↔ (D) White: ↔ (D)	NR	NR	NR	NR
Gallagher- Thompson, 2008 ³⁴³ Fair	Group-based psychoeducation	184	6	Hisp: ↔ White: ↔	Hisp: ↔ (D, PS) White: ↔ (D, PS)	NR	NR	NR	NR
Gallagher- Thompson, 2010 ^{*344} Good	Telehealth psychoeducation	76	4	↑	↔ (D)	NR	NR	↔ (NPS)	NR
Garand, 2014 ^{*345} Fair	Individual psychoeducation	73	12	NR	MCI pt: ↑ (A, D) Dem pt: ↑ (A, D)	NR	NR	NR	NR
Gaugler, 2013* ³⁴⁶ Fair	Family-based psychoeducation	107	18/36	↑	↑ (D)	\leftrightarrow	↑	↔ (NPS)	NR
Gitlin, 2001 ³⁴⁷ Fair	Individual psychoeducation	202	3	\leftrightarrow	NR	NR	NR	↔ (NPS)	$\leftrightarrow (ADL, IADL)$
Gitlin, 2003 ³⁴⁹ Fair	Individual psychoeducation	255	6	\leftrightarrow	$\leftrightarrow (D)$	NR	NR	↔ (NPS)	$\leftrightarrow (ADL, IADL)$
Gitlin, 2008 ³⁴⁸ Fair		60	4	\leftrightarrow	$\leftrightarrow (D)$	NR	NR	↔ (D, NPS)	↔ (Pt QOL)
Gitlin, 2010 ³⁵⁰ Fair		272	4	NR	NR	NR	NR	NR	↑ (ADL/IADL), ↔ (ADL), ↑ (IADL)
Gitlin, 2010 ⁴⁶² Fair	Individual psychoeducation	237	6	↑	↑ (D)	NR	NR	NR	NR
Graff, 2006 ³⁵¹ Fair	Individual psychoeducation	135	3	NR	↑ (D, PM)	↑	NR	↑ (D)	↑ (ADL/IADL)
Hebert, 2003 ³⁵² Fair	Group-based psychoeducation	144	4	\leftrightarrow	↔ (A)	NR	NR	↔ (NPS)	NR
Hepburn, 2005 ³⁵³ Fair	Group-based psychoeducation	215	12	\leftrightarrow	NR	NR	NR	NR	NR
Joling, 2012 ³⁵⁴ Fair	Family-based psychoeducation	192	17	NR	↔ (A, D)	NR	NR	NR	NR
Judge, 2013* ³⁵⁵ Fair		128	3	NR	↑ (D)	\leftrightarrow	NR	NR	NR

Author, year Quality	Intervention Type	N rand	FU (mo.) [†]	Caregiver Burden	Caregiver Mental Health Symptoms	Caregiver QOL	Patient Institutionalization	Patient Mental Health and Behavioral Symptoms	Other Patient Outcomes
Koivisto, 2016* ³⁵⁶	Group-based	236	36	NR	NR	NR	\leftrightarrow	NR	NR
Fair	psychoeducation								
Kurz, 2010 ³⁵⁷ Fair	Group-based psychoeducation	292	15	NR	$\leftrightarrow (D)$	\leftrightarrow	\leftrightarrow	NR	NR
Kwok, 2013* ³⁵⁸ Fair	Telehealth psychoeducation	42	3	1	NR	NR	NR	NR	NR
Laakkonen, 2016* ³⁵⁹ Fair	Group-based psychoeducation	136	9	NR	NR	\leftrightarrow	NR	NR	NR
Livingston, 2013* ³⁶⁰ Good	Individual psychoeducation	260	24	NR	↔ (A, D, PM)	NR	NR	NR	↔ (Pt QOL)
	Group-based psychoeducation	167	3	NR	↑ (D)	NR	NR	NR	NR
Mariott, 2000 ³⁶² Fair	Individual psychoeducation	28	12	NR	↑ (D, PM)	NR	NR	↔ (D)	↔ (GCF), ↑ (ADL/IADL)
Martin-Carrasco, 2009 ³⁶⁴ Fair	Individual psychoeducation	115	10	1	↑ (PM)	↑ [‡]	NR	NR	NR
Martin-Carrasco, 2014 ^{*363} Fair	Group-based psychoeducation	238	4	\leftrightarrow	↔ (PM)	\leftrightarrow	NR	NR	NR
Martin-Cook, 2005 ³⁶⁵ Fair	Individual psychoeducation	49	4	\leftrightarrow	↔ (D)	NR	NR	NR	
Martindale-Adams, 2013* ³⁶⁶ Fair	Telehealth psychoeducation	154	12	\leftrightarrow	↔ (D)	NR	NR	NR	NR
Mittelman, 2004* ³⁶⁷ Fair	Family-based psychoeducation	406	48/60	Î	↑ (D)	NR	↑	↔ (NPS)	NR
Nunez-Naveira, 2016* ³⁶⁸ Fair	Telehealth psychoeducation	77	3	NR	↔ (D)	NR	NR	NR	NR
Ostwald, 1999 ³⁶⁹ Fair	Group-based psychoeducation	117	5	\leftrightarrow	↑ (D)	NR	NR	↔ (NPS)	↔ (GCF)

Author, year Quality	Intervention Type	N rand	FU (mo.) [†]	Caregiver Burden	Caregiver Mental Health Symptoms	Caregiver QOL	Patient Institutionalization		Other Patient Outcomes
Roberts, 1999 ³⁷⁰	Individual	77	12	\leftrightarrow	NR	NR	NR	NR	NR
Fair	psychoeducation								
Schoenmakers, 2010 ³⁷¹ Fair	Individual psychoeducation	62	12	NR	↑ (D)	NR	NR	NR	NR
Steffen, 2016 ^{*373} Good	Telehealth psychoeducation	74	9	↑	↑ (A, D)	NR	NR	NR	NR
Spaulding-Wilson, 2018* ³⁷² Fair	Group-based psychoeducation	104	6	\leftrightarrow	↑ (PS), \leftrightarrow (A, D)	NR	NR	NR	NR
Teri, 2005 ³⁷⁴ Fair	Individual psychoeducation	95	6	↑	↑ (D)	NR	NR	↔ (NPS)	↔ (Pt QOL)
Tremont, 2015* ³⁷⁵ Fair	Telehealth psychoeducation	250	6	↑	↑ (D)	\leftrightarrow	\leftrightarrow	NR	NR
Ulstein, 2007 ³⁷⁶ Fair	Group-based psychoeducation	180	12	NR	↔ (PS)	NR	\leftrightarrow	↔ (NPS)	NR
Voigt-Radloff, 2011 ³⁷⁷ Fair	Individual psychoeducation	141	6, 12	NR	↔ (D)	\leftrightarrow	\leftrightarrow	↔ (D)	↔ (ADL/IADL), ↔ (Pt QOL)
Waldorff, 2012 ³⁷⁸ Good	Group-based psychoeducation	330	36	NR	↔ (D)	\leftrightarrow	\leftrightarrow	↔ (D, NPS)	$\leftrightarrow (GCF), \uparrow \\ (ADL/IADL), \leftrightarrow (Pt \\ QOL)$
Wang, 2011* ³⁷⁹ Fair	Group-based psychoeducation	80	6	↑	NR	↑	NR	NR	↔ (GCF)
Williams, 2010 ³⁸⁰ Fair	Telehealth psychoeducation	116	6	NR	↔ (A, D, PS)	NR	NR	NR	NR
Wilz, 2016* ³⁸¹ Fair	Telehealth psychoeducation	176	6	NR	$\leftrightarrow (D)$	NR	NR	NR	NR
Wilz, 2018* ³⁸² Good	Telehealth psychoeducation	273	12	NR	↔ (D)	\leftrightarrow	NR	NR	NR
Wright, 2001 ³⁸³ Fair		93	12	\leftrightarrow	$\leftrightarrow (D)$	NR	\leftrightarrow	NR	NR
	ement Interventio		•	•	•	•	•	•	·
Bass, 2003 ³⁸⁴ Fair	Care/Case Management	182	12	NR	↑ (D)	NR	NR	NR	NR
Callahan, 2006 ³⁸⁵ Fair	Care/Case Management	153	17	\leftrightarrow	↑ (D)	NR	\leftrightarrow	↔ (D), ↑ (NPS)	↔ (GCF), ↔ (ADL/IADL)

Author, year Quality	Intervention Type	N rand	FU (mo.) [†]	Caregiver Burden	Caregiver Mental Health Symptoms	Caregiver QOL	Patient Institutionalization	Patient Mental Health and Behavioral Symptoms	Other Patient Outcomes
Chien, 2008* ³⁸⁷		88	12	↑	NR	↑	↑	↑ (NPS)	↔ (GCF)
Fair	Management			1		1	1		~ /
Chien, 2011* ³⁸⁶ Good	Care/Case Management	92	18	↑	NR	1	↑	↑ (NPS)	↔ (GCF)
Chu, 2000 ³⁸⁸ Fair		75	17	\leftrightarrow	NR	NR	\leftrightarrow	NR	NR
		125	24	NR	NR	NR	↔§	NR	NR
Eloniemi-Sulvaka, 2001 ³⁸⁹ Fair	Care/Case Management	100	12	NR	NR	NR	\leftrightarrow	NR	NR
	Care/Case Management	84	12	\leftrightarrow	$\leftrightarrow (D)$	NR	\leftrightarrow	NR	NR
Jansen, 2011 ³⁹² Fair		99	12	\leftrightarrow	$\leftrightarrow (D)$	\leftrightarrow	NR	NR	↔ (Pt QOL)
Lam, 2010 ³⁹³ Fair	Care/Case Management	102	12	1	↔ (PM)	\leftrightarrow	NR	↔ (D, NPS)	$\leftrightarrow (GCF), \leftrightarrow (Pt)$ QOL)
Mavandadi, 2017* ³⁹⁴ Fair	Care/Case Management	75	6	↑	NR	NR	NR	↔ (NPS)	NR
Meewsen, 2012 ³⁹⁵ Good	Care/Case Management	175	12	NR	↑ (A, D)	\leftrightarrow	NR	↔ (D)	↔ (GCF), ↔ (ADL/IADL)
Menn, 2012 ³⁹⁶ Fair		390	24	\leftrightarrow	NR	NR	IG1: ↔ IG2: ↔	NR	$\begin{array}{c} IG1: \leftrightarrow (GCF), \leftrightarrow \\ (ADL), \leftrightarrow (IADL), \leftrightarrow \\ (Pt \ QOL) \\ IG2: \leftrightarrow (GCF), \leftrightarrow \\ (ADL), \leftrightarrow (IADL), \leftrightarrow \\ (Pt \ QOL) \end{array}$
Samus, 2014* ³⁹⁷ Fair	Care/Case Management	303	12, 18	\leftrightarrow	↔ (D)	\leftrightarrow	↑	↔ (D, NPS)	↑ (Pt QOL)
Thyrian, 2017 ^{*398} Fair		516	12	1	NR	NR	\leftrightarrow	↑ (D)	$\leftrightarrow (GCF), \leftrightarrow (ADL/IADL), \leftrightarrow (Pt QOL)$
Vickrey, 2006 ³⁹⁹ Good	Care/Case Management	408	17	NR	NR	\leftrightarrow	NR	NR	↑ (Pt QOL)

	Intervention Type	N rand	FU (mo.) [†]	Caregiver Burden	Caregiver Mental Health Symptoms	Caregiver QOL	Patient Institutionalization	Patient Mental Health and Behavioral Symptoms	Other Patient Outcomes
Xiao, 2016* ⁴⁰⁰ Fair	Care/Case Management	72	12	↑	NR	↑	NR	↔ (NPS)	NR
Other Interventions	Management								
Charlesworth, 2008 ⁴⁰¹ Fair	Social support	236	22	NR	↔ (A, D)	\leftrightarrow	\leftrightarrow	NR	NR
Connell, 2009 ⁴⁰² Fair	Physical activity counseling	157	12	\leftrightarrow	↔ (D, PS)	NR	NR	NR	NR
Gitlin, 2018 ^{*403} Fair	Multidisciplinary assessment	160	8	\leftrightarrow	↔ (D)	NR	NR	↔ (NPS)	$\leftrightarrow (AE), \leftrightarrow (PF), \leftrightarrow (Pt QOL)$
Hirano, 2011 ⁴⁰⁴ Fair	Physical activity counseling	36	3	↑	NR	NR	NR	↔ (NPS)	NR
King, 2002 ⁴⁰⁵ Fair	Physical activity counseling	100	12	\leftrightarrow	↔ (A, D, PS)	NR	NR	↔ (NPS)	NR
Leach, 2015* ⁴⁰⁶ Good	Other	17	6	NR	NR	\leftrightarrow	NR	NR	NR
Logiudice, 1999 ⁴⁰⁷ Fair	Assessment and treatment planning	50	12	\leftrightarrow	↔ (PM)	NR	\leftrightarrow	NR	NR
Nourhashemi, 2010 ⁴⁰⁸ Fair	Multidisciplinary assessment and treatment plan	1131	22	NR	NR	NR	\leftrightarrow	NR	↔ (ADL/IADL)
Fair	Social support	147	6	NR	NR	NR	NR	NR	NR
Prick, 2015 ^{*410} Fair	Multicomponent dyadic	111	6	\leftrightarrow	↔ (D)	NR	\leftrightarrow	↔ (D), ↑ (NPS)	↔ (Pt QOL)
Spijker, 2011 ⁴¹¹ Good	Provider training	301	12	NR	NR	NR	\leftrightarrow	NR	NR
	Multicomponent dyadic	153	6, 17, 24	NR	↔ (D)	NR	\leftrightarrow	↔ (D)	↑ (Pt QOL)
Winter, 2006 ⁴¹³ Fair	Social support	103	6	\leftrightarrow	$\leftrightarrow (D)$	NR	NR	NR	NR

NOTE: Arrows represent study-reported results.

Symbol Legend:

↑ = Statistically significant between-group difference in favor of intervention group \leftrightarrow = No statistically significant difference between groups or no clear between-group difference (not reported).

Table 21. Caregiver and Caregiver-Patient Dyad Interventions: Summary of Results, by Intervention (KQs 4 and 5)

↓= Statistically significant between-group difference in favor of control group

* New study

† Longest followup. Some studies have more than one FU listed because longest followup differed by outcome

‡ Statistically significantly favored IG on 7 of 8 subscales of the SF-36

§ Results statistically significant for at least one timepoint

Abbreviations: A = anxiety; ADL = Activities of Daily Living; D = depression; DEM = dementia; FU = followup; GCF = global cognitive function; Hisp = Hispanic; IADL = IADL = Instrumental Activities of Daily Living; IG = intervention group; MCI = mild cognitive impairment; mo. = months; NPS = Composite neuropsychiatric symptoms; NR = not reported; N rand = number of participants randomized; PM = psychological morbidity; PS = perceived stress; Pt = patient; QOL = quality of life;

Key Question Instrument or Treatment	Studies (k) Study Designs, Observations (n)	Summary of Findings	Consistency and Precision*	Other Limitations	Strength of Evidence*	Applicability
KQ 1	k=1 RCT n=4,005	No evidence of a difference in health related QOL at 1, 6, and 12 months between those randomized to screening versus no screening as well as no difference in healthcare utilization and advanced planning at 12 months.	NA	High rate of missing data for all outcomes at all time points given attrition and data quality issues (42% missing data at 12 months for primary outcome).	Low evidence of no benefit	Mean age of participants within the one trial was 74.2 years and the majority were female (66%) and white (67%). Over one-third of primary care eligible older adults declined participation in the study and 66% of those who screened positive refused further diagnostic assessment.
KQ 2 Very brief instruments	k=31 cross sectional studies (6 new) n=22,359	25 instruments.To detect dementia sensitivity was usually at 0.75 or higher and specificity at 0.80 or higher.Across all very brief instruments, the detection of MCI was less consistent, with a wide range in sensitivity and specificity.	Reasonably consistent and precise (dementia) Inconsistent and imprecise (MCI)	Large number of instruments with little replication.	Moderate evidence of adequate sensitivity and specificity	Broad inclusion of older adult populations with a wide range of underlying dementia and MCI
KQ 2 Brief instruments	k=48 cross sectional studies (7 new) n=29,950	 20 instruments. For the MMSE, to detect dementia, 15 studies (n=12,796) resulted in a pooled sensitivity of 0.89 (95% CI, 0.85 to 0.92) and a specificity of 0.89 (95% CI, 0.85 to 0.93). For other brief instruments reported in more than one study, sensitivity ranged from 0.74 to 1.0 and specificity ranged from 0.65 to 0.96. Across all brief instruments, the detection of MCI was less consistent, with a wide range in sensitivity and specificity. 	Reasonably consistent and precise (dementia) Inconsistent and imprecise (MCI)	Large number of instruments with little replication, except for the MMSE.	Moderate evidence of adequate sensitivity and specificity	Broad inclusion of older adult populations with a wide range of underlying dementia and MCI. Administration time less useful for primary care screening.

Key Question Instrument or Treatment	Studies (k) Study Designs, Observations (n)	Summary of Findings	Consistency and Precision*	Other Limitations	Strength of Evidence*	Applicability
KQ 2 Longer, self- administered instruments	k=8 cross sectional studies (0 new) n=2,271	 4 instruments. Only the IQCODE was assessed in more than one study, with sensitivity to detect dementia ranging from 0.80 to 0.88 and specificity ranging from 0.51 to 0.91. To detect MCI, sensitivity ranged from 0.71 to 0.82 and specificity ranged from 0.69 to 0.92. 	Reasonably consistent (dementia and MCI) Precise (dementia and MCI)	Few instruments, little replication.	Moderate evidence of adequate sensitivity and specificity	Broad inclusion of older adult populations with a wide range of underlying dementia and MCI
KQ 3	k=1 RCT n=4,005	No evidence of a difference in symptoms of depression or anxiety between those in the screening versus no screening arm at 1, 6, and 12 months followup.	NA	High rate of missing data for all outcomes at all time points given attrition and data quality issues (42% missing data at 12 months for primary outcome).	Low evidence of no harm	Mean age of participants within the one trial was 74.2 years and the majority were female (66%) and white (67%). Over one-third of primary care eligible older adults declined participation in the study and 66% of those who screened positive refused further diagnostic assessment.

Кеу	Studies (k)					
Question	Study		O		Of a second the	
Instrument or	Designs, Observations		Consistency and		Strength of	
Treatment	(n)	Summary of Findings	Precision*	Other Limitations	Evidence*	Applicability
KQ 4 AChEls and memantine	k=48 RCTs (6 new) n=22,431	Medications may improve measures of global cognitive function in short-term, but magnitude of differences between drug versus placebo groups was small. Pooled results indicate differences in change ranging from approximately 1 to 2.5 points in favor of drug groups on the ADAS-Cog-11 (range 0-70). For donepezil: MD, -2.13 95% CI: -0.94 to -3.32, k=6, n=1,981, I ² =64.4%). For galantamine: MD, -2.13 (95% CI, -1.32 to -2.94, k=9, n=3,786, I=65.9). For rivastigmine: -2.43 (95% CI: -0.75 to -4.10, k=5, n=2,618, I ² =81.9%). For memantine: -0.88 (95% CI: -0.11 to -1.65, k=8, n=2,609, I2=78.1%). Using accepted thresholds of clinical benefit, the average benefit across patients is not clinically significant. AChEIs and memantine increased the likelihood of improving or maintaining patient's global function (e.g., using a CIBIC+) by 15 percent (for memantine) to 50 percent (for rivastigmine) in the short-term (pooled 95% CI range, 0.49 to 2.69). Pooled continuous change found small effect sizes (SMDs ranging from 0.14 to 0.46). Other important measures such as mental health and neuropsychiatric symptoms and rates of institutionalization were rarely reported; no trials included measures of QOL.	Reasonably consistent Precise	Evidence of a small studies effect for the pooled result for global cognitive function measured by the MMSE for donepezil, indicating the possibility of publication bias. Few trials included followup longer than 6 months.	Moderate evidence of a small benefit	Older adults with dementia (mainly AD), particularly among those with moderate versus mild forms. Unclear representation of ethnic minorities and those of varying education levels. Doses of medications applicable to common use.
KQ 4 Other medications and supplements	k=29 RCTs (5 new) n=6,489	No evidence that antihypertensives, vitamins or omega-3 fatty acids, gonadal steroids, HMG- CoA reductase inhibitors, or NSAIDS are beneficial for any cognitive, functional or other outcome at 3 months to 4 years of followup.	Reasonably consistent Imprecise	Small trials often with differential attrition between groups. Lack of consistency in formulations and dosages of agents used.	Low evidence of no benefit	Older adults with mild to moderate dementia. Unclear representation of ethnic minorities and those of varying education levels.

Key Question Instrument or Treatment	Studies (k) Study Designs, Observations (n)	Summary of Findings	Consistency and Precision*	Other Limitations	Strength of Evidence*	Applicability
KQ 4 Nonpharmac ologic patient-level interventions	k=61 RCTs (39 new) n=7,847	No clear benefit of cognitive stimulation, training, or rehabilitation, exercise interventions, multicomponent interventions, and other interventions on global and domain-specific cognitive function compared with controls at 3 months to 2 years followup among persons with MCI or dementia. Effect estimates generally favored intervention groups, but the magnitude of effects was inconsistent across trials and represented very wide CIs. Measures related to physical function, QOL, and mental and neuropsychiatric symptoms were only reported by half or less of the trials for each intervention group and few found robust differences between groups.	Reasonably consistent Imprecise	Small studies of limited duration. Types of outcomes, specific measures, and duration of followup was highly variable across trials.	Low evidence of small to no benefit	Broad range of older adults with MCI and mild and moderate dementia. Very sparse reporting of clinical characteristics of the included patients such as race/ethnicity and education. Virtually no data on effect modification by important clinical differences. Many complex interventions may not be widely available in the U.S.

Key	Studies (k)					
Question Instrument	Study Designs,		Consistency		Strength	
	Observations		and		of	
Treatment	(n)	Summary of Findings	Precision*	Other Limitations	Evidence*	Applicability
KQ 4 Caregiver and caregiver- patient dyad interventions	k=88 RCTs (33 new) n=14,880	Consistent benefit of psychoeducation and care and case management interventions on caregiver burden and depression outcomes. However, effect sizes were mostly small and are of unclear clinical significance. For caregiver burden, the standardized pooled effect was - 0.24 (95% CI, -0.36 to -0.13]; I ² =50.2%; k=27; n=2,776) for psychoeducation interventions and -0.54 (95% CI, -0.85 to -0.22); k=8; n=1,215; I ² =82.9%) for care and case management interventions. Other outcomes such as caregiver or patient QOL, rates or time to institutionalization, patient mental health and neuropsychiatric symptoms, and patient functional ability were sparsely reported across the trials with no consistent evidence of a benefit. Decision-making and preparation for meeting dementia-related needs were only reported by one trial each with neither finding statistically significant benefit of the interventions versus control conditions on overall scores for these measures.	Reasonably consistent Precise	Little evidence of longer-term effects; inconsistency in outcomes and specific measures across trials with many providing little data on precise scales used.	Moderate evidence of small benefit	Generally applicable to caregivers of persons with moderate dementia. Many complex interventions may not be widely available in the U.S.
KQ 5 AChEls and memantine	k=48 RCTs (6 new) n=22,431 k=3 obs. studies (1 new) n=190,076	Side effects from medications were common. Withdrawal or discontinuation was more common with AChEls (13% withdrawing for donepezil and rivastigmine, 14% for galantamine) than placebo (8%). Memantine appeared to be better tolerated, with no difference in withdrawal rates (8%) compared with placebo (8%). In total, there did not appear to be a difference in total SAEs for these medications across trials with limited duration of followup. However, individual studies, including observational evidence, reported increased rates of bradycardia, and relatedly, of syncope, falls and need for pacemaker placement among those exposed versus unexposed to AChEls.	Reasonably consistent Precise	The definitions of serious adverse events, which likely vary, were rarely described in the included studies.	Moderate evidence of harm	Mostly represented patients with moderate dementia.

Key Question Instrument or Treatment	Studies (k) Study Designs, Observations (n)	Summary of Findings	Consistency and Precision*	Other Limitations	Strength of Evidence*	Applicability
KQ 5 Other medications and supplements	k=21 RCTs (4 new) n=5,688	Across interventions, harms were not clearly significantly increased in intervention vs. control groups.	Reasonably consistent Precise	Small trials often with differential attrition between groups. Lack of consistency in formulations and dosages of agents used.	Low evidence of no harm	Older adults with mild to moderate dementia. Unclear representation of ethnic minorities and those of varying education levels.
KQ 5 Nonpharmac ologic patient-level interventions	k=12 RCTs (11 new) n=2,370	Little evidence of harms from good quality studies. Evidence of greater musculoskeletal problems among persons taking part in exercise interventions versus comparators. One trial reported one case of atrial fibrillation among one patient during an exercise session.	Reasonably consistent Precise	Sparse reporting of harms. Trials of exercise interventions more likely to report monitoring harms than cognitive training or other interventions	Low evidence of no harm [†]	Applicable to patients with mild-to-moderate dementia and MCI.
KQ 5 Caregiver and caregiver- patient dyad interventions	k=4 RCTs (3 new) n=486	No harms evident.	NA	Sparse reporting of harms for patients or caregivers.	Low evidence of no harm [†]	Generally applicable to caregivers of persons with moderate dementia.

* For KQ 4, consistency, precision, and strength of evidence, assessments were based on primary outcomes within each body of evidence. For AChEIs and memantine, assessments were for cognitive function and global function outcomes. For, other medications and supplements assessments were for cognitive function. For nonpharmacologic patient-level interventions, assessments were for cognitive function, physical function, and neuropsychiatric symptoms. For caregiver and caregiver-patient dyad interventions, assessments were for caregiver burden and depression outcomes.

† No hypothesized serious harms of nonpharmacologic patient or caregiver interventions. Thus, despite few trials reporting this outcome, we have low confidence that the finding of no harm in these two trials reflects this body of evidence.

Abbreviations: AChEIs = acetylcholinesterase inhibitors AD = Alzheimer's disease; CI = confidence interval; CIBIC+ = Clinicians' Interview-Based Impression of Change plus informant input; CG = control group; HMG-CoA = 3-hydroxy-3-methyl-glutaryl-CoA reductase; IG = intervention group; K = number of trials; MCI = mild cognitive impairment; N = population size; n = sample size; NA = not applicable; NR = not reported; NSAIDs = Nonsteroidal Anti-inflammatory Drugs; obs = observational; QOL = quality of life; RCT = randomized controlled trial; SAE = serious adverse events; vs = versus

	Age Group, years	Dementia prevalence, percent [*]	PPV, percent	NPV, percent
Sensitivity 70	65-74	3	10	99
Specificity 80	75-84	10	28	96
	85+	30	60	86
Sensitivity 80	65-74	3	20	99
Specificity 90	75-84	10	47	98
	85+	30	77	91
Sensitivity 90	65-74	3	22	100
Specificity 90	75-84	10	50	99
	85+	30	79	95

* Dementia prevalence based on 2012 data reported by Langa and colleagues.²³

Abbreviations: PPV = positive predictive value; NPV = negative predictive value.

Key: / = MeSH subject heading * = truncation * preceding a word = major focus \$ = truncationLL ab = word in abstract exp = explodefs = MeSH subheading hw = subject heading word id = identifier kf = keyword heading [word not phrase indexed] kw = keyword md = methodology mp = mapping alias (searches within: Title (TI), Abstract (AB), Subject Headings Word (HW), Table of Contents Titles/Headings (TC), Original Title (OT), Test & Measures (TM), and Key Phrase Identifiers (ID) fields) pt = publication type ti = word in title

Cochrane Central Register of Controlled Trials (CENTRAL)

#1	dementia:ti,kw or alzheimer*:kw
#2	(cognitive next impairment*):ti,kw
#3	(cognitive next decline):ti,kw
#4	(cognitive next loss):ti,kw
#5	(cognitive next disorder*):ti,kw
#6	(cognition next disorder*):ti,kw
#7	448-#6
#8	(screen* or instrument or instruments):ti,ab,kw
#9	(assess* or tool* or test* or evaluat* or questionnaire*):ti,kw
#10	#8 or #9
#11	#7 and #10
#12	(sensitivit* or specificit*):ti,ab,kw
#13	"ROC Curve":ti,ab,kw
#14	"predictive value":ti,ab,kw
#15	accuracy:ti,ab,kw
#16	(False next Negative*):ti,ab,kw
#17	(False next positive*):ti,ab,kw
#18	(Diagnostic next Error*):ti,ab,kw
#19	Reproducibility:ti,ab,kw
#20	(Reference next Value*):ti,ab,kw
#21	(Reference next standard*):ti,ab,kw
#22	(Observer next Variation*):ti,ab,kw

- #23 {or #12-#22} #7 and #23 #24 #25 statin*:ti,ab,kw #26 (antihypertensive* or diuretic* or (beta next blocker*) or (alpha next blocker*) or (ace next inhibitor*) or "calcium channel" or vasodilator*):ti,ab,kw #27 (nsaid* or nonsteroidal):ti,ab,kw #28 aspirin:ti,ab,kw #29 (hormone* or estrogen* or estradiol or Medroxyprogesterone or Progesterone or androgen* or testosterone or Dehydroepiandrosterone or Norethindrone):ti,ab,kw #30 (cholinesterase or donepezil or galantamine):ti,ab,kw #31 memantine:ti,ab,kw #32 (folic or folate or "vitamin b" or bl or b2 or b6 or b12):ti,ab,kw #33 (antioxidant* or "vitamin e" or "ascorbic acid" or ascorbate or "vitamin c" or "beta carotene"):ti,ab,kw #34 (omega* or "fatty acid" or "fatty acids" or linolenic or "mediterranean diet"):ti,ab,kw #35 (exercis* or "physical activity" or "physical training" or "strength training" or "resistance training" or "aerobic training" or "cardiovascular training" or "endurance training" or "flexibility training" or relaxation or walking or yoga or "tai chi" or danc*):ti,ab,kw #36 (caregiv* or carer* or "self help" or "family therapy" or "social support" or "skills training" or education):ti,ab,kw #37 (counsel* or psychotherapy or (behavio* next therap*) or (cognitive next therap*)):ti,ab,kw #38 (engage* or "cognitive exercise" or "cognitive exercises"):ti,ab,kw #39 ("case management" or "care management"):ti,ab,kw #40 (multicomponent or multidisciplinary or multimodal):ti,ab,kw #41 ("multi component" or "multi disciplinary" or "multi modal"):ti,ab,kw #42 {or #25-#41} #43 #7 and #42
- #44 #11 or #24 or #43 Publication Year from 2012 to 2017

Dementia/Mild cognitive impairment

Screening trials

- 1 Dementia/
- 2 Alzheimer Disease/
- 3 Dementia, Vascular/
- 4 Dementia, Multi-Infarct/

- 5 Frontotemporal Lobar Degeneration/
- 6 Lewy Body Disease/
- 7 dementia.ti.
- 8 Neurocognitive Disorders/
- 9 Cognition Disorders/
- 10 Cognitive Dysfunction/
- 11 cognitive impairment*.ti.
- 12 cognitive decline.ti.
- 13 cognitive loss.ti.
- 14 cognitive disorder*.ti.
- 15 cognitive dysfunction*.ti.
- 16 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15
- 17 Mass screening/
- 18 screen*.ti,ab.
- 19 17 or 18
- 20 16 and 19
- 21 *Dementia/di
- 22 *Alzheimer Disease/di
- 23 *Neurocognitive Disorders/di
- 24 *Cognition Disorders/di
- 25 *Cognitive Dysfunction/di
- 26 20 or 21 or 22 or 23 or 24 or 25
- 27 clinical trials as topic/ or controlled clinical trials as topic/ or randomized controlled trials as topic/
- 28 meta-analysis as topic/ (17142)
- 29 (clinical trial or controlled clinical trial or meta analysis or randomized controlled trial or pragmatic clinical trial).pt.
- 30 random*.ti,ab.
- 31 control groups/ or double-blind method/ or single-blind method/ (184630)
- 32 clinical trial*.ti,ab.
- 33 controlled trial*.ti,ab.
- 34 (metaanaly* or meta analy*).ti,ab.
- 35 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34
- 36 26 and 35
- 37 Animals/ not (Humans/ and Animals/)
- 38 36 not 37

- 39 limit 38 to (english language and yr="2012 -Current")
- 40 remove duplicates from 39

Dementia/Mild cognitive impairment

Test performance of screening instruments

- 1 Dementia/
- 2 Alzheimer Disease/
- 3 Dementia, Vascular/
- 4 Dementia, Multi-Infarct/
- 5 Frontotemporal Lobar Degeneration/
- 6 Lewy Body Disease/
- 7 dementia.ti.
- 8 Neurocognitive Disorders/
- 9 Cognition Disorders/
- 10 Cognitive Dysfunction/
- 11 cognitive impairment*.ti.
- 12 cognitive decline.ti.
- 13 cognitive loss.ti.
- 14 cognitive disorder*.ti.
- 15 cognitive dysfunction*.ti.
- 16 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15
- 17 Mass screening/
- 18 neuropsychological tests/ or mental navigation tests/
- 19 (screen* or instrument or instruments).ti,ab.
- 20 (assess* or tool* or test* or evaluat* or questionnaire*).ti,kf.
- 21 17 or 18 or 19 or 20
- 22 "Sensitivity and Specificity"/
- 23 "Predictive Value of Tests"/
- 24 ROC Curve/
- 25 Receiver operat*.ti,ab.
- 26 (sensitivit* or specificit*).ti,ab.
- 27 predictive value.ti,ab.
- 28 accuracy.ti,ab.
- 29 False Negative Reactions/

- 30 False Positive Reactions/
- 31 Diagnostic Errors/
- 32 "Reproducibility of Results"/
- 33 Reference Values/
- 34 Reference Standards/
- 35 Observer Variation/
- 36 Psychometrics/
- 37 Psychometric\$.ti,ab.
- 38 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37
- 39 16 and 21 and 38
- 40 Animals/ not (Humans/ and Animals/)
- 41 39 not 40
- 42 limit 41 to (english language and yr="2012 -Current")
- 43 remove duplicates from 42

Dementia/Mild cognitive impairment

Screening harms

- 1 Dementia/
- 2 Alzheimer Disease/
- 3 Dementia, Vascular/
- 4 Dementia, Multi-Infarct/
- 5 Frontotemporal Lobar Degeneration/
- 6 Lewy Body Disease/
- 7 dementia.ti.
- 8 Neurocognitive Disorders/
- 9 Cognition Disorders/
- 10 Cognitive Dysfunction/
- 11 cognitive impairment*.ti.
- 12 cognitive decline.ti.
- 13 cognitive loss.ti.
- 14 cognitive disorder*.ti.
- 15 cognitive dysfunction*.ti.
- 16 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15
- 17 Mass screening/

- 18 screen*.ti,ab.
- 19 17 or 18
- 20 16 and 19
- 21 *Dementia/di
- 22 *Alzheimer Disease/di
- 23 *Neurocognitive Disorders/di
- 24 *Cognition Disorders/di
- 25 *Cognitive Dysfunction/di
- 26 20 or 21 or 22 or 23 or 24 or 25
- 27 adverse effects.fs.
- 28 adverse*.ti,ab.
- 29 harm*.ti,ab.
- 30 Anxiety/
- 31 anxiety.ti,ab.
- 32 Depression/
- 33 depression.ti,ab.
- 34 Depressive Disorder/
- 35 labeling.ti,ab.
- 36 labelling.ti,ab.
- 37 labeled.ti,ab.
- 38 labelled.ti,ab.
- 39 Stress, Psychological/
- 40 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39
- 41 26 and 40
- 42 Animals/ not (Humans/ and Animals/)
- 43 41 not 42
- 44 limit 43 to (english language and yr="2012 -Current")
- 45 remove duplicates from 44

Dementia/Mild cognitive impairment

Treatment trials

- 1 Dementia/
- 2 Alzheimer Disease/
- 3 Dementia, Vascular/

- 4 Dementia, Multi-Infarct/
- 5 Frontotemporal Lobar Degeneration/
- 6 Lewy Body Disease/
- 7 dementia.ti.
- 8 Neurocognitive Disorders/
- 9 Cognition Disorders/
- 10 Cognitive Dysfunction/
- 11 cognitive impairment*.ti.
- 12 cognitive decline.ti.
- 13 cognitive loss.ti.
- 14 cognitive disorder*.ti.
- 15 cognitive dysfunction*.ti.
- 16 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15
- 17 Hydroxymethylglutaryl-CoA Reductase Inhibitors/
- 18 statin*.mp.
- 19 lovastatin.mp.
- 20 simvastatin.mp.
- 21 cerivastatin.mp.
- 22 atorvastatin.mp.
- 23 rosuvastatin.mp.
- 24 pravastatin.mp.
- 25 fluvastatin.mp.
- 26 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25
- 27 Antihypertensive Agents/
- 28 Antihypertensive*.ti,ab.
- 29 Diuretics/
- 30 Diuretic*.ti,ab.
- 31 exp Adrenergic beta-Antagonists/
- 32 Adrenergic beta Antagonist*.ti,ab.
- 33 beta blocker*.ti,ab.
- 34 exp Adrenergic alpha-Antagonists/
- 35 Adrenergic alpha Antagonist*.ti,ab.
- 36 alpha blocker*.ti,ab.
- 37 Angiotensin-Converting Enzyme Inhibitors/
- 38 ace inhibitor*.ti,ab.

- 39 Angiotensin Converting Enzyme Inhibitor*.ti,ab.
- 40 Calcium Channel Blockers/
- 41 Calcium Channel Blocker*.ti,ab.
- 42 Vasodilator Agents/
- 43 Vasodilator*.ti,ab.
- 44 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43
- 45 Aspirin/
- 46 aspirin*.ti,ab.
- 47 45 or 46
- 48 Anti-Inflammatory Agents, Non-Steroidal/
- 49 Nonsteroidal Anti Inflammatory Agent*.ti,ab.
- 50 Non steroidal Anti Inflammatory Agent*.ti,ab.
- 51 Nonsteroidal Antiinflammatory Agent*.ti,ab.
- 52 Non steroidal Antiinflammatory Agent*.ti,ab.
- 53 NSAID*.ti,ab.
- 54 Diclofenac/
- 55 Diclofenac.ti,ab.
- 56 Ibuprofen/
- 57 Ibuprofen.ti,ab.
- 58 Indomethacin/
- 59 Indomethacin.ti,ab.
- 60 Ketoprofen/
- 61 Ketoprofen.ti,ab.
- 62 Ketorolac/
- 63 Ketorolac.ti,ab.
- 64 Naproxen/
- 65 Naproxen.ti,ab.
- 66 Piroxicam/
- 67 Piroxicam.ti,ab.
- 68 Salicylates/
- 69 Salicylate*.ti,ab.
- 70 Sulindac/
- 71 Sulindac.ti,ab.
- 72 Cyclooxygenase Inhibitors/
- 73 Cyclooxygenase Inhibitor*.ti,ab.

- 74 Cyclooxygenase 2 Inhibitors/
- 75 Cyclooxygenase 2 Inhibitor*.ti,ab.
- 76 COX 2 Inhibitor*.ti,ab.
- 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58 or 59 or 60 or 61 or 62 or 63 or 64 or 65 or 66 or 67 or 68 or 69 or 70 or 71 or 72 or 73 or 74 or 75 or 76
- 78 Gonadal Steroid Hormones/
- 79 Hormone Replacement Therapy/
- 80 Estrogen Replacement Therapy/
- 81 Estradiol/
- 82 Estrogens/
- 83 "Estrogens, Conjugated (USP)"/
- 84 Medroxyprogesterone Acetate/
- 85 Progesterone/
- 86 Progesterone Congeners/
- 87 Androgens/
- 88 Testosterone/
- 89 Dehydroepiandrosterone/
- 90 Dehydroepiandrosterone Sulfate/
- 91 Norethindrone/
- 92 Hormone Replacement Therapy.ti,ab.
- 93 estrogen*.ti,ab.
- 94 Estradiol.ti,ab.
- 95 Medroxyprogesterone.ti,ab.
- 96 Progesterone.ti,ab.
- 97 Androgen*.ti,ab.
- 98 Testosterone.ti,ab.
- 99 Dehydroepiandrosterone.ti,ab.
- 100 Norethindrone.ti,ab.
- 101 78 or 79 or 80 or 81 or 82 or 83 or 84 or 85 or 86 or 87 or 88 or 89 or 90 or 91 or 92 or 93 or 94 or 95 or 96 or 97 or 98 or 99 or 100
- 102 Cholinesterase inhibitors/
- 103 Cholinesterase Inhibitor*.ti,ab.
- 104 Anticholinesterase*.ti,ab.
- 105 Galantamine/
- 106 Galantamine.ti,ab.

- 107 rivastigmine.ti,ab.
- 108 donepezil.ti,ab.
- 109 102 or 103 or 104 or 105 or 106 or 107 or 108
- 110 Memantine/
- 111 Memantine.ti,ab.
- 112 110 or 111
- 113 folic acid/
- 114 folic acid.ti,ab.
- 115 folate.ti,ab.
- 116 Vitamin B Complex/
- 117 Thiamine/
- 118 Thiamine.ti,ab.
- 119 Thiamin.ti,ab.
- 120 Thiamine Monophosphate/
- 121 Thiamine Pyrophosphate/
- 122 Thiamine Triphosphate/
- 123 Vitamin B 1.ti,ab.
- 124 Vitamin B1.ti,ab.
- 125 Riboflavin/
- 126 Riboflavin.ti,ab.
- 127 Vitamin B 2.ti,ab.
- 128 Vitamin B2.ti,ab.
- 129 Vitamin B 6/
- 130 Vitamin B 6.ti,ab.
- 131 Vitamin B6.ti,ab.
- 132 Pyridoxine/
- 133 Pyridoxine.ti,ab.
- 134 Vitamin B 12/
- 135 Vitamin B 12.ti,ab.
- 136 Vitamin B12.ti,ab.
- 137 Cobamides/
- 138 Hydroxocobalamin/
- 139 Cobalamin.ti,ab.
- 140 Cyanocobalamin.ti,ab.
- 141 Cobamides.ti,ab.

- 142 Hydroxocobalamin.ti,ab.
- 143 113 or 114 or 115 or 116 or 117 or 118 or 119 or 120 or 121 or 122 or 123 or 124 or 125 or 126 or 127 or 128 or 129 or 130 or 131 or 132 or 133 or 134 or 135 or 136 or 137 or 138 or 139 or 140 or 141 or 142
- 144 Antioxidants/
- 145 Antioxidant*.ti,ab.
- 146 Vitamin E/
- 147 Vitamin E.ti,ab.
- 148 alpha-Tocopherol/
- 149 Tocopherols/
- 150 Tocopherol*.ti,ab.
- 151 Ascorbic acid/
- 152 Ascorbic acid.ti,ab.
- 153 Vitamin C.ti,ab.
- 154 ascorbate.ti,ab.
- 155 beta carotene/
- 156 beta carotene.ti,ab.
- 157 144 or 145 or 146 or 147 or 148 or 149 or 150 or 151 or 152 or 153 or 154 or 155 or 156
- 158 fatty acids, omega-3/ or alpha-linolenic acid/ or docosahexaenoic acids/ or neuroprostanes/ or eicosapentaenoic acid/
- 159 Omega 3.ti,ab.
- 160 n 3 Fatty Acid*.ti,ab.
- 161 Linolenic Acids/
- 162 Linolenic Acid*.ti,ab.
- 163 Fatty Acids, Essential/
- 164 Dietary Fats, Unsaturated/
- 165 Fish Oils/
- 166 fish oil*.ti,ab.
- 167 diet* fatty acid*.ti,ab.
- 168 Diet, Mediterranean/
- 169 Mediterranean diet*.ti,ab.
- 170 158 or 159 or 160 or 161 or 162 or 163 or 164 or 165 or 166 or 167 or 168 or 169
- 171 Exercise/
- 172 Exercise Therapy/
- 173 Exercise Movement Techniques/
- 174 Physical Fitness/

- 175 Cardiorespiratory Fitness/
- 176 Physical Conditioning, Human/
- 177 Walking/
- 178 Stair Climbing/
- 179 Circuit-Based Exercise/
- 180 Resistance Training/
- 181 exercis*.ti,ab.
- 182 physical activity.ti,ab.
- 183 physical training.ti,ab.
- 184 strength training.ti,ab.
- 185 resistance training.ti,ab.
- 186 aerobic training.ti,ab.
- 187 cardiovascular training.ti,ab.
- 188 endurance training.ti,ab.
- 189 flexibility training.ti,ab.
- 190 Relaxation/
- 191 Relaxation Therapy/
- 192 relaxation.ti,ab.
- 193 Tai Ji/
- 194 Tai Chi.ti,ab.
- 195 walking.ti,ab.
- 196 Yoga/
- 197 yoga.ti,ab.
- 198 Dancing/
- 199 (dancing or dance).ti,ab.
- 200 171 or 172 or 173 or 174 or 175 or 176 or 177 or 178 or 179 or 180 or 181 or 182 or 183 or 184 or 185 or 186 or 187 or 188 or 189 or 190 or 191 or 192 or 193 or 194 or 195 or 196 or 197 or 198 or 199
- 201 Caregivers/
- 202 caregiver*.ti,ab.
- 203 caregiving.ti,ab.
- 204 (carer or carers).ti,ab.
- 205 Self-Help Groups/
- 206 self help.ti,ab.
- 207 care giver*.ti,ab.
- 208 Family Therapy/

- 209 family therapy.ti,ab.
- 210 Social Support/
- 211 social support*.ti,ab.
- 212 skills training.ti,ab.
- 213 Health Education/
- 214 health education.ti,ab.
- 215 education.fs.
- 216 education, continuing/ or education, medical, continuing/ or education, nursing, continuing/
- 217 201 or 202 or 203 or 204 or 205 or 206 or 207 or 208 or 209 or 210 or 211 or 212 or 213 or 214 or 215 or 216
- 218 Counseling/
- 219 Directive Counseling/
- 220 Cognitive Therapy/
- 221 cognitive therap*.ti,ab.
- 222 psychotherapy/ or psychotherapy, brief/
- 223 Behavior Therapy/
- 224 behavio* therap*.ti,ab.
- 225 psychotherap*.ti,ab.
- 226 counsel*.ti,ab.
- 227 218 or 219 or 220 or 221 or 222 or 223 or 224 or 225 or 226
- 228 (cognitive* adj3 engage*).ti,ab.
- 229 (creative* adj3 engage*).ti,ab.
- 230 (cognitive* adj3 stimulat*).ti,ab.
- 231 cognitive training.ti,ab.
- 232 cognitive intervention*.ti,ab.
- 233 group reminiscence.ti,ab.
- 234 reality orientation.ti,ab.
- 235 Reality Therapy/
- 236 reality therapy.ti,ab.
- 237 cognitive exercis*.ti,ab.
- 238 228 or 229 or 230 or 231 or 232 or 233 or 234 or 235 or 236 or 237
- 239 Case Management/
- 240 Patient Care Management/
- 241 care manage*.ti,ab.
- 242 case manage*.ti,ab.
- 243 239 or 240 or 241 or 242

- 244 ((multicomponent or multi component or multidisciplinary or multi disciplinary or multimodal or multi modal) adj3 (treatment* or program* or intervention*)).ti,ab.
- 245 26 or 44 or 47 or 77 or 101 or 109 or 112 or 143 or 157 or 170 or 200 or 217 or 227 or 238 or 243 or 244
- 246 16 and 245
- 247 clinical trials as topic/ or controlled clinical trials as topic/ or randomized controlled trials as topic/
- 248 meta-analysis as topic/
- 249 (clinical trial or controlled clinical trial or meta analysis or randomized controlled trial or pragmatic clinical trial).pt.
- 250 random*.ti,ab.
- 251 control groups/ or double-blind method/ or single-blind method/
- 252 clinical trial*.ti,ab.
- controlled trial*.ti,ab.
- 254 (metaanaly* or meta analy*).ti,ab.
- 255 247 or 248 or 249 or 250 or 251 or 252 or 253 or 254
- 256 246 and 255
- 257 Animals/ not (Humans/ and Animals/)
- 258 256 not 257
- 259 limit 258 to (english language and yr="2012 -Current")
- 260 remove duplicates from 259

Dementia/Mild cognitive impairment

Treatment harms

Ovid Medline, Ovid MEDLINE In-Process & Other Non-Indexed Citations, Ovid MEDLINE Daily Update

- 1 Dementia/
- 2 Alzheimer Disease/
- 3 Dementia, Vascular/
- 4 Dementia, Multi-Infarct/
- 5 Frontotemporal Lobar Degeneration/
- 6 Lewy Body Disease/
- 7 dementia.ti.
- 8 Neurocognitive Disorders/
- 9 Cognition Disorders/
- 10 Cognitive Dysfunction/
- 11 cognitive impairment*.ti.
- 12 cognitive decline.ti.

- 13 cognitive loss.ti.
- 14 cognitive disorder*.ti.
- 15 cognitive dysfunction*.ti.
- 16 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15
- 17 Hydroxymethylglutaryl-CoA Reductase Inhibitors/
- 18 statin*.mp.
- 19 lovastatin.mp.
- 20 simvastatin.mp.
- 21 cerivastatin.mp.
- 22 atorvastatin.mp.
- 23 rosuvastatin.mp.
- 24 pravastatin.mp.
- 25 fluvastatin.mp.
- 26 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25
- 27 Antihypertensive Agents/
- 28 Antihypertensive*.ti,ab.
- 29 Diuretics/
- 30 Diuretic*.ti,ab.
- 31 exp Adrenergic beta-Antagonists/
- 32 Adrenergic beta Antagonist*.ti,ab.
- 33 beta blocker*.ti,ab.
- 34 exp Adrenergic alpha-Antagonists/
- 35 Adrenergic alpha Antagonist*.ti,ab.
- 36 alpha blocker*.ti,ab.
- 37 Angiotensin-Converting Enzyme Inhibitors/
- 38 ace inhibitor*.ti,ab.
- 39 Angiotensin Converting Enzyme Inhibitor*.ti,ab.
- 40 Calcium Channel Blockers/
- 41 Calcium Channel Blocker*.ti,ab.
- 42 Vasodilator Agents/
- 43 Vasodilator*.ti,ab.
- 44 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43
- 45 Aspirin/
- 46 aspirin*.ti,ab.
- 47 45 or 46

- 48 Anti-Inflammatory Agents, Non-Steroidal/
- 49 Nonsteroidal Anti Inflammatory Agent*.ti,ab.
- 50 Non steroidal Anti Inflammatory Agent*.ti,ab.
- 51 Nonsteroidal Antiinflammatory Agent*.ti,ab.
- 52 Non steroidal Antiinflammatory Agent*.ti,ab.
- 53 NSAID*.ti,ab.
- 54 Diclofenac/
- 55 Diclofenac.ti,ab.
- 56 Ibuprofen/
- 57 Ibuprofen.ti,ab.
- 58 Indomethacin/
- 59 Indomethacin.ti,ab.
- 60 Ketoprofen/
- 61 Ketoprofen.ti,ab.
- 62 Ketorolac/
- 63 Ketorolac.ti,ab.
- 64 Naproxen/
- 65 Naproxen.ti,ab.
- 66 Piroxicam/
- 67 Piroxicam.ti,ab.
- 68 Salicylates/
- 69 Salicylate*.ti,ab.
- 70 Sulindac/
- 71 Sulindac.ti,ab.
- 72 Cyclooxygenase Inhibitors/
- 73 Cyclooxygenase Inhibitor*.ti,ab.
- 74 Cyclooxygenase 2 Inhibitors/
- 75 Cyclooxygenase 2 Inhibitor*.ti,ab.
- 76 COX 2 Inhibitor*.ti,ab.
- 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58 or 59 or 60 or 61 or 62 or 63 or 64 or 65 or 66 or
 67 or 68 or 69 or 70 or 71 or 72 or 73 or 74 or 75 or 76
- 78 Gonadal Steroid Hormones/
- 79 Hormone Replacement Therapy/
- 80 Estrogen Replacement Therapy/
- 81 Estradiol/

- 82 Estrogens/
- 83 "Estrogens, Conjugated (USP)"/
- 84 Medroxyprogesterone Acetate/
- 85 Progesterone/
- 86 Progesterone Congeners/
- 87 Androgens/
- 88 Testosterone/
- 89 Dehydroepiandrosterone/
- 90 Dehydroepiandrosterone Sulfate/
- 91 Norethindrone/
- 92 Hormone Replacement Therapy.ti,ab.
- 93 estrogen*.ti,ab.
- 94 Estradiol.ti,ab.
- 95 Medroxyprogesterone.ti,ab.
- 96 Progesterone.ti,ab.
- 97 Androgen*.ti,ab.
- 98 Testosterone.ti,ab.
- 99 Dehydroepiandrosterone.ti,ab.
- 100 Norethindrone.ti,ab.
- 101 78 or 79 or 80 or 81 or 82 or 83 or 84 or 85 or 86 or 87 or 88 or 89 or 90 or 91 or 92 or 93 or 94 or 95 or 96 or 97 or 98 or 99 or 100
- 102 Cholinesterase inhibitors/
- 103 Cholinesterase Inhibitor*.ti,ab.
- 104 Anticholinesterase*.ti,ab.
- 105 Galantamine/
- 106 Galantamine.ti,ab.
- 107 rivastigmine.ti,ab.
- 108 donepezil.ti,ab.
- 109 102 or 103 or 104 or 105 or 106 or 107 or 108
- 110 Memantine/
- 111 Memantine.ti,ab.
- 112 110 or 111
- 113 folic acid/
- 114 folic acid.ti,ab.
- 115 folate.ti,ab.

- 116 Vitamin B Complex/
- 117 Thiamine/
- 118 Thiamine.ti,ab.
- 119 Thiamin.ti,ab.
- 120 Thiamine Monophosphate/
- 121 Thiamine Pyrophosphate/
- 122 Thiamine Triphosphate/
- 123 Vitamin B 1.ti,ab.
- 124 Vitamin B1.ti,ab.
- 125 Riboflavin/
- 126 Riboflavin.ti,ab.
- 127 Vitamin B 2.ti,ab.
- 128 Vitamin B2.ti,ab.
- 129 Vitamin B 6/
- 130 Vitamin B 6.ti,ab.
- 131 Vitamin B6.ti,ab.
- 132 Pyridoxine/
- 133 Pyridoxine.ti,ab.
- 134 Vitamin B 12/
- 135 Vitamin B 12.ti,ab.
- 136 Vitamin B12.ti,ab.
- 137 Cobamides/
- 138 Hydroxocobalamin/
- 139 Cobalamin.ti,ab.
- 140 Cyanocobalamin.ti,ab.
- 141 Cobamides.ti,ab.
- 142 Hydroxocobalamin.ti,ab.
- 143 113 or 114 or 115 or 116 or 117 or 118 or 119 or 120 or 121 or 122 or 123 or 124 or 125 or 126 or 127 or 128 or 129 or 130 or 131 or 132 or 133 or 134 or 135 or 136 or 137 or 138 or 139 or 140 or 141 or 142
- 144 Antioxidants/
- 145 Antioxidant*.ti,ab.
- 146 Vitamin E/
- 147 Vitamin E.ti,ab.
- 148 alpha-Tocopherol/
- 149 Tocopherols/

- 150 Tocopherol*.ti,ab.
- 151 Ascorbic acid/
- 152 Ascorbic acid.ti,ab.
- 153 Vitamin C.ti,ab.
- 154 ascorbate.ti,ab.
- 155 beta carotene/
- 156 beta carotene.ti,ab.
- 157 144 or 145 or 146 or 147 or 148 or 149 or 150 or 151 or 152 or 153 or 154 or 155 or 156
- 158 fatty acids, omega-3/ or alpha-linolenic acid/ or docosahexaenoic acids/ or neuroprostanes/ or eicosapentaenoic acid/
- 159 Omega 3.ti,ab.
- 160 n 3 Fatty Acid*.ti,ab.
- 161 Linolenic Acids/
- 162 Linolenic Acid*.ti,ab.
- 163 Fatty Acids, Essential/
- 164 Dietary Fats, Unsaturated/
- 165 Fish Oils/
- 166 fish oil*.ti,ab.
- 167 diet* fatty acid*.ti,ab.
- 168 Diet, Mediterranean/
- 169 Mediterranean diet*.ti,ab.
- 170 158 or 159 or 160 or 161 or 162 or 163 or 164 or 165 or 166 or 167 or 168 or 169
- 171 Exercise/
- 172 Exercise Therapy/
- 173 Exercise Movement Techniques/
- 174 Physical Fitness/
- 175 Cardiorespiratory Fitness/
- 176 Physical Conditioning, Human/
- 177 Walking/
- 178 Stair Climbing/
- 179 Circuit-Based Exercise/
- 180 Resistance Training/
- 181 exercis*.ti,ab.
- 182 physical activity.ti,ab.
- 183 physical training.ti,ab.

- 184 strength training.ti,ab.
- 185 resistance training.ti,ab.
- 186 aerobic training.ti,ab.
- 187 cardiovascular training.ti,ab.
- 188 endurance training.ti,ab.
- 189 flexibility training.ti,ab.
- 190 Relaxation/
- 191 Relaxation Therapy/
- 192 relaxation.ti,ab.
- 193 Tai Ji/
- 194 Tai Chi.ti,ab.
- 195 walking.ti,ab.
- 196 Yoga/
- 197 yoga.ti,ab.
- 198 Dancing/
- 199 (dancing or dance).ti,ab.
- 200 171 or 172 or 173 or 174 or 175 or 176 or 177 or 178 or 179 or 180 or 181 or 182 or 183 or 184 or 185 or 186 or 187 or 188 or 189 or 190 or 191 or 192 or 193 or 194 or 195 or 196 or 197 or 198 or 199
- 201 Caregivers/
- 202 caregiver*.ti,ab.
- 203 caregiving.ti,ab.
- 204 (carer or carers).ti,ab.
- 205 Self-Help Groups/
- 206 self help.ti,ab.
- 207 care giver*.ti,ab.
- 208 Family Therapy/
- 209 family therapy.ti,ab.
- 210 Social Support/
- 211 social support*.ti,ab.
- 212 skills training.ti,ab.
- 213 Health Education/
- 214 health education.ti,ab.
- 215 education.fs.
- 216 education, continuing/ or education, medical, continuing/ or education, nursing, continuing/
- 217 201 or 202 or 203 or 204 or 205 or 206 or 207 or 208 or 209 or 210 or 211 or 212 or 213 or 214 or 215 or 216

- 218 Counseling/
- 219 Directive Counseling/
- 220 Cognitive Therapy/
- 221 cognitive therap*.ti,ab.
- 222 psychotherapy/ or psychotherapy, brief/
- 223 Behavior Therapy/
- 224 behavio* therap*.ti,ab.
- 225 psychotherap*.ti,ab.
- 226 counsel*.ti,ab.
- 227 218 or 219 or 220 or 221 or 222 or 223 or 224 or 225 or 226
- 228 (cognitive* adj3 engage*).ti,ab.
- 229 (creative* adj3 engage*).ti,ab.
- 230 (cognitive* adj3 stimulat*).ti,ab.
- 231 cognitive training.ti,ab.
- 232 cognitive intervention*.ti,ab.
- 233 group reminiscence.ti,ab.
- 234 reality orientation.ti,ab.
- 235 Reality Therapy/
- 236 reality therapy.ti,ab.
- 237 cognitive exercis*.ti,ab.
- 238 228 or 229 or 230 or 231 or 232 or 233 or 234 or 235 or 236 or 237
- 239 Case Management/
- 240 Patient Care Management/
- 241 care manage*.ti,ab.
- 242 case manage*.ti,ab.
- 243 239 or 240 or 241 or 242
- 244 ((multicomponent or multi component or multidisciplinary or multi disciplinary or multimodal or multi modal) adj3 (treatment* or program* or intervention*)).ti,ab.
- 245 26 or 44 or 47 or 77 or 101 or 109 or 112 or 143 or 157 or 170 or 200 or 217 or 227 or 238 or 243 or 244
- 246 16 and 245
- 247 safety/
- 248 safety.ti,ab.
- 249 adverse event*.ti,ab.
- 250 adverse effects.fs.
- adverse effect*.ti,ab.

- 252 adverse outcome*.ti,ab.
- 253 side effect*.ti,ab.
- 254 product surveillance, postmarketing/
- 255 "Drug-Related Side Effects and Adverse Reactions"/
- 256 Long Term Adverse Effects/
- 257 Adverse reaction*.ti,ab.
- 258 Adverse drug reaction*.ti,ab.
- 259 drug toxicity/
- 260 drug toxicity.ti,ab.
- 261 Harm*.ti,ab.
- 262 247 or 248 or 249 or 250 or 251 or 252 or 253 or 254 or 255 or 256 or 257 or 258 or 259 or 260 or 261
- 263 case-control studies/
- 264 retrospective studies/
- 265 cohort studies/
- 266 longitudinal studies/
- 267 follow-up studies/
- 268 prospective studies/
- 269 Cross-Sectional Studies/
- 270 cohort.ti,ab.
- 271 longitudinal.ti,ab.
- 272 follow up.ti,ab.
- 273 followup.ti,ab.
- 274 prospective*.ti,ab.
- 275 retrospective*.ti,ab.
- 276 comparison group*.ti,ab.
- 277 control group*.ti,ab.
- 278 observational.ti,ab.
- 279 nonrandom*.ti,ab.
- 280 database*.ti,ab.
- 281 population*.ti,ab.
- 282 cross sectional.ti,ab.
- 283 263 or 264 or 265 or 266 or 267 or 268 or 269 or 270 or 271 or 272 or 273 or 274 or 275 or 276 or 277 or 278 or 279 or 280 or 281 or 282
- 284 246 and 262 and 283
- 285 Animals/ not (Humans/ and Animals/)

- 286 284 not 285
- 287 limit 286 to (english language and yr="2012 -Current")
- 288 remove duplicates from 287

Dementia/Mild cognitive impairment

Screening

PsycInfo

- 1 Dementia/
- 2 Dementia with Lewy bodies/
- 3 Senile Dementia/
- 4 Vascular Dementia/
- 5 Alzheimer's Disease/
- 6 Cognitive Impairment/
- 7 cognitive impairment\$.ti.
- 8 cognitive decline.ti.
- 9 cognitive loss.ti.
- 10 cognitive disorder\$.ti.
- 11 or/1-10
- 12 Screening/
- 13 Health Screening/
- 14 Screening Tests/
- 15 (screen\$ or instrument or instruments).ti,ab,id.
- 16 12 or 13 or 14 or 15
- 17 11 and 16
- 18 treatment outcome.md.
- 19 experiment controls/
- 20 controlled trial\$.ti,ab,id,hw.
- 21 clinical trial\$.ti,ab,id,hw.
- 22 random\$.ti,ab,id,hw.
- 23 placebo\$.ti,ab,id,hw.
- 24 meta analy\$.ti,ab,hw,id.
- 25 metaanaly\$.ti,ab,hw,id.
- 26 or/18-25 (238994)
- 27 Psychometrics/
- 28 Test Validity/

- 29 Interrater Reliability/
- 30 validity.ti,ab,id.
- 31 reliability.ti,ab,id.
- 32 psychometrics.ti,ab,id.
- 33 Receiver operat\$.ti,ab,id.
- 34 ROC curve\$.ti,ab,id.
- 35 sensitivit\$.ti,ab,id.
- 36 specificit\$.ti,ab,id.
- 37 predictive value.ti,ab,id.
- 38 accuracy.ti,ab,id.
- 39 false positive\$.ti,ab,id.
- 40 false negative\$.ti,ab,id.
- 41 miss rate\$.ti,ab,id.
- 42 error rate\$.ti,ab,id.
- 43 or/27-42
- 44 Anxiety/
- 45 Anxiety Disorders/
- 46 "Depression (Emotion)"/
- 47 Labeling/ (2507)
- 48 Psychological Stress/
- 49 adverse\$.ti,ab,id.
- 50 harm\$.ti,ab,id.
- 51 anxiety.ti,ab,id.
- 52 depression.ti,ab,id.
- 53 (labeling or labelling or labeled or labelled).ti,ab,id.
- 54 or/44-53
- 55 17 and (26 or 43 or 54)
- 56 17 and 55
- 57 limit 56 to (english language and yr="2012 -Current")

Dementia/Mild cognitive impairment

Treatment

PsycInfo

- 1 Dementia/
- 2 Dementia with Lewy bodies/

- 3 Senile Dementia/
- 4 Vascular Dementia/
- 5 Alzheimer's Disease/
- 6 Cognitive Impairment/
- 7 cognitive impairment\$.ti.
- 8 cognitive decline.ti.
- 9 cognitive loss.ti.
- 10 cognitive disorder\$.ti.
- 11 or/1-10
- 12 (multicomponent\$ or multidisciplinary or multimodal or multi component or multi disciplinary or multi modal).mp.
- 13 (case management or care management).mp.
- 14 (cognitive training or cognitive intervention\$ or counseling or cognitive therapy).mp.
- 15 (reminiscence or reality therapy).mp.
- 16 (Cognitive\$ adj3 engage\$).mp.
- 17 (behavio\$ therap\$ or cognitive behavio\$ therap\$ or psychotherapy).mp.
- 18 (Caregiv\$ or carer).mp.
- 19 support group\$.mp.
- 20 (self help or family therapy or social support).mp.
- 21 (health education or continuing education).mp.
- 22 (exercis\$ or physical activity).mp.
- 23 ((physical or strength or resistance or aerobic or cardiovascular or endurance or flexibility) adj training).mp.
- 24 (relaxation or tai chi or walking or yoga or dancing or dance).mp.
- 25 (Caregiv\$ or carer).mp.
- 26 (self help or family therapy or social support or support group*).mp.
- 27 (health education or continuing education or skills training).mp.
- 28 (behavio\$ therap\$ or cognitive behavio\$ therap\$ or psychotherapy).mp.
- 29 (cognitive training or cognitive intervention\$ or counseling or cognitive therap\$).mp.
- 30 (Cognitive\$ adj3 (engage\$ or stimulat\$)).mp.
- 31 (creative adj4 engage\$).mp.
- 32 (creative adj3 engage\$).mp.
- 33 (reminiscence or reality therapy or reality orientation).mp.
- 34 (case management or care management).mp.
- 35 (multicomponent or multidisciplinary or multimodal or multi component or multi disciplinary or multi modal).mp.
- 36 or/12-35
- 37 11 and 36

- 38 treatment outcome.md.
- 39 experiment controls/
- 40 controlled trial\$.ti,ab,id,hw.
- 41 clinical trial\$.ti,ab,id,hw.
- 42 random\$.ti,ab,id,hw.
- 43 placebo\$.ti,ab,id,hw.
- 44 meta analy\$.ti,ab,hw,id.
- 45 metaanaly\$.ti,ab,hw,id.
- 46 or/38-45
- 47 37 and 46
- 48 Anxiety/
- 49 Anxiety Disorders/
- 50 "Depression (Emotion)"/
- 51 Psychological Stress/
- 52 exp "side effects (treatment)"/
- 53 safety.ti,ab,id.
- 54 adverse\$.ti,ab,id.
- 55 harm\$.ti,ab,id.
- 56 anxiety.ti,ab,id.
- 57 depression.ti,ab,id.
- 58 or/48-57
- 59 37 and 58
- 60 47 or 59
- 61 limit 60 to (english language and yr="2012 -Current")

PubMed, publisher-supplied records

- #26 #25 AND English[Language] AND ("2012"[Date Publication] : "3000"[Date Publication])
- #25 #24 AND publisher[sb]
- #24 #5 OR #7 OR #23
- #23 #1 AND #22
- #22 #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20 OR #21

- #21 (exercis*[tiab] OR "physical activity"[tiab] OR "physical training"[tiab] OR "strength training"[tiab] OR "resistance training"[tiab] OR "aerobic training"[tiab] OR "cardiovascular training"[tiab] OR "endurance training"[tiab] OR "flexibility training"[tiab] OR relaxation[tiab] OR walking[tiab] OR yoga[tiab] OR "tai chi"[tiab] OR danc*[tiab]
- #20 multicomponent[tiab] OR multidisciplinary[tiab] OR multimodal[tiab] OR "multi component"[tiab] OR "multi disciplinary"[tiab] OR "multi modal"[tiab]
- #19 "case management"[tiab] OR "care management"[tiab]
- #18 engage*[tiab] OR "cognitive exercise"[tiab] OR "cognitive exercises"[tiab]
- #17 counsel*[tiab] OR psychotherapy[tiab] OR behavio* therap*[tiab] OR cognitive therapy*[tiab]
- #16 caregiv*[tiab] OR carer*[tiab] OR "self help"[tiab] OR "family therapy"[tiab] OR "social support"[tiab] OR "skills training"[tiab] OR education[tiab]
- #15 omega*[tiab] OR "fatty acid"[tiab] OR "fatty acids"[tiab] OR linolenic[tiab] OR "mediterranean diet"[tiab]
- #14 antioxidant*[tiab] OR "vitamin e"[tiab] OR "ascorbic acid"[tiab] OR ascorbate[tiab] OR "vitamin c"[tiab] OR "beta carotene"[tiab]
- #13 folic[tiab] OR folate[tiab] OR "vitamin b"[tiab] OR bl[tiab] OR b2[tiab] OR b6[tiab] OR b12[tiab]
- #12 cholinesterase[tiab] OR donepezil[tiab] OR galantamine[tiab] OR memantine[tiab]
- #11 hormone*[tiab] OR estrogen*[tiab] OR estradiol[tiab] OR Medroxyprogesterone[tiab] OR Progesterone[tiab] OR androgen*[tiab] OR testosterone[tiab] OR Dehydroepiandrosterone[tiab] OR Norethindrone[tiab]
- #10 aspirin[tiab]
- #9 nsaid*[tiab] OR nonsteroidal[tiab]
- #8 statin*[tiab] OR antihypertensive*[tiab] OR diuretic*[tiab] OR beta blocker*[tiab] OR alpha blocker*[tiab] OR ace inhibitor*[tiab] OR "calcium channel"[tiab] OR vasodilator*[tiab]
- #7 #1 AND #6
- #6 sensitivit*[tiab] OR "ROC Curve"[tiab] OR "predictive value"[tiab] OR accuracy[tiab] OR false negative*[tiab] OR false positive*[tiab] OR diagnostic error*[tiab] OR reproducibility[tiab] OR reference value*[tiab] OR reference value*[tiab] OR reference standard*[tiab] OR observer variation*[tiab]
- #5 #3 OR #4
- #4 (cognitive[ti] AND screen*[ti])
- #3 #1 AND #2
- #2 screen*[tiab] OR instrument[tiab] OR instruments[tiab] OR assess*[ti] OR tool*[ti] OR test*[ti] OR evaluat*[ti] OR questionnaire*[ti]
- #1 dementia[ti] OR "cognitive impairment"[ti] OR "cognitively impaired"[ti] OR "cognitive impairments"[ti] OR "cognitive loss"[ti] OR "cognitive decline"[ti] OR "cognitive disorder"[ti] OR "cognitive disorders"[ti] OR mci[ti]

Appendix A Table 1. Inclusion and Exclusion Criteria

	Included	Excluded
Condition	 KQs 1–3: Any cognitive impairment (mild cognitive impairment* or dementia[†]) KQs 4, 5: Mild cognitive impairment* or mild to moderate dementia[†] 	KQs 4, 5: Severe dementia
Populations	KQs 1–3: Community-dwelling older adults (including those residing in independent living facilities) age \geq 65 years (or studies with a mean age \geq 65 years) without a current diagnosis of mild cognitive impairment or dementia; informal caregivers taking some responsibility for the care of the patient, such as a spouse, partner, relative, or friend KQs 4–5: Community-dwelling older adults (including those residing in independent living facilities) age \geq 65 years (or studies with a mean age \geq 65 years) with a current diagnosis of mild cognitive impairment or dementia; informal caregivers taking some responsibility for the care of the patient, such as a spouse, partner, relative, or friend	 Studies comprised exclusively of persons diagnosed with depression or psychosis, alcohol use disorder, HIV/AIDS, Down syndrome, posttraumatic brain injury, metabolic disorders, Parkinson's disease, Huntington's disease, or stroke Persons living in special settings outside of the community (e.g., hospitals, nursing or care homes, rehabilitation centers, other long-term care facilities) Professional caregivers who are formally or professionally trained and paid a salary
Settings	Primary care outpatient settings (ambulatory care), home, residential care facilities, assisted living facilities, and adult foster care	All KQs: Hospitals, intermediate care facilities (e.g., nursing homes, rehabilitation facilities, subacute care facilities), emergency departments, or other settings not generalizable to primary care KQs 1–3: Studies in which participants are recruited from memory, dementia, geropsychiatry, or neurology clinics
Screening	Screening instruments that can be delivered in primary care in ≤10 minutes by the clinician or ≤20 minutes by the patient; informant instruments	Screening instruments that take >10 minutes for clinician administration or >20 minutes for self-administration; biomarkers (cerebrospinal fluid, blood plasma, urine) or imaging (computed tomography, magnetic resonance imaging, positron emission tomography)
Interventions	 Use of medications approved by the U.S. Food and Drug Administration (alone or in combination) for the treatment of dementia: Acetylcholinesterase inhibitors (donepezil, galantamine, rivastigmine) NMDA (N-methyl-D-aspartate) receptor antagonists (memantine) Use of other medications or dietary supplements: Medications aimed at cardiovascular risk reduction for treatment of vascular dementia (antiplatelet medications, antihypertension medications, HMG- CoA reductase inhibitors) Nonsteroidal anti-inflammatory drugs (ibuprofen, naproxen, indomethacin, celecoxib) Gonadal steroids (estrogen, progesterone, testosterone) Vitamins, minerals, and antioxidants (B vitamins and folate, vitamins C and E, beta-carotene, omega-3 fatty acids) Cessation of medications that may be contributing to cognitive impairment (e.g., anticholinergic medications, benzodiazepines) Nonpharmacologic interventions aimed primarily at the patient, including cognitive training, rehabilitation, or stimulation, with or without motor skills training interventions; exercise interventions; nutrition counseling; multidisciplinary care 	 Herbal supplements (e.g., ginkgo biloba) Medical foods or fluids or nutrition therapy (e.g., meal replacement therapy) Experimental or emerging therapies (e.g., amyloid disease-modifying treatments) Interventions aimed at noncognitive symptom management (e.g., music, light, pet, reminiscence, or psychodynamic interpersonal therapy; nighttime home monitoring systems; Snoezelen®

Appendix A Table 1. Inclusion and Exclusion Criteria

	Included	Excluded
	interventions involving assessment and care	
	coordination; and education-only interventions	
	 Nonpharmacologic interventions aimed primarily at 	
	the caregiver or caregiver-patient dyad	
Comparisons	KQs 1, 3: No screening, usual care	KQs 4, 5: Active intervention
	KQ 2: Reference standard (clinical assessment or	
	neuropsychologic testing with explicit diagnostic	
	criteria, with or without expert consensus/conference) KQs 3–5:	
	No intervention	
	Usual care	
	Wait list	
	Attention control	
	Minimal intervention	
Outcomes	KQs 1, 4:	KQs 1, 4:
Outcomes	Decisionmaking outcomes:	Decisionmaking outcomes: Cost-related
	 For patients and family/caregivers: Health care, 	outcomes
	legal, and financial planning (e.g., advanced	Patient-related outcomes: Cost-related
	directives); safety planning; living arrangements	outcomes; patient satisfaction (other than
	 For clinicians: Health care planning, including 	health-related quality of life); biomarker
	advanced directives; patient and caregiver	protein levels, brain matter volume, and
	education; safety planning; monitored medication	brain cell activity level; function markers
	use; screening and diagnostic decisions (e.g.,	(e.g., Timed Up and Go Test, 6-meter timed
	cancer screening); and other treatment or	walk, Functional Reach Test)
	management decisions	Family/caregiver-related outcomes: Cost-
		related outcomes; family/caregiver
	Patient-related outcomes:	satisfaction (other than caregiver burden and
	Health-related quality of life	health-related quality of life)
	Incident dementia	Societal outcomes: Cost-related outcomes KQ 2: Cost-related outcomes
	Overall dementia severity	KQs 3, 5: Patient or family/caregiver
	Cognitive function	dissatisfaction (other than psychological
	Physical function (e.g., activities of daily living,	harms or patient adherence)
	instrumental activities of daily living)	
	Global function	
	 Dementia-related symptoms/behaviors (e.g., 	
	neuropsychiatric disturbances, insomnia,	
	depression, agitation, verbal aggression, apathy)	
	Safety (falls, other accidents)	
	 Unanticipated health care utilization (emergency use/hospitalizations) 	
	 Institutionalizations/nursing home admissions 	
	 Medication adherence/compliance/errors 	
	Family/caregiver-related outcomes: (a priori defined as	
	primary or secondary outcomes in the trial)	
	 Health-related quality of life 	
	Global stress/distress	
	Caregiver burden	
	Depression	
	Anxiety	
	Societal outcomes: Safety (e.g., automobile accidents)	
	KQ 2: Sensitivity, specificity, likelihood ratios, positive	
	and negative predictive values, area under the curve	
	KQ 3: Paradoxical effects (unwanted or unexpected	
	direction of effects of outcomes), psychological harms	
	(depression, anxiety), and harms due to labeling	
	(psychological harms, insurance status, loss of driving	
	privileges)	

	Included	Excluded
Timing of outcome	 KQ 5: Serious adverse events (e.g., death, serious adverse drug reactions), adverse reactions from medications, unexpected medical attention (e.g., emergency department visits, hospitalizations), paradoxical effects (unwanted or unexpected direction of effects of outcomes), and psychological harms (depression, anxiety) KQs 1, 4: ≥3 months after baseline KQs 3, 5: No minimum followup 	KQs 1, 4: <3 months after baseline
assessment Countries	Studies conducted in countries categorized as "Very High" on the 2014 Human Development Index (as defined by the United Nations Development Programme)	Studies conducted in countries that are not categorized as "Very High" on the 2014 Human Development Index
Study designs	KQs 1, 4: Randomized, controlled trials; nonrandomized, controlled trials KQ 2: Diagnostic accuracy studies KQs 3, 5: Randomized, controlled trials; nonrandomized, controlled trials; open-label extensions of KQ 4 trials; cohort or case-control studies	KQs 1, 4: Observational studies KQ 2: Case-control studies KQ 3, 5: Case series, case reports KQ 5: Cohort or case-control studies with <1,000 participants
Publication language	English	Languages other than English
Study quality	Fair- or good-quality studies	Poor-quality studies (according to design- specific USPSTF criteria)

* Mild cognitive impairment is distinguished from dementia by virtue of causing cognitive impairment that is not severe enough to interfere with independence in daily function, although the nomenclature, definitions, and criteria may vary within the included body of evidence.

† Includes major dementia syndromes due to Alzheimer's disease, vascular dementia, frontotemporal dementia, dementia with Lewy bodies, and dementia of mixed etiology.

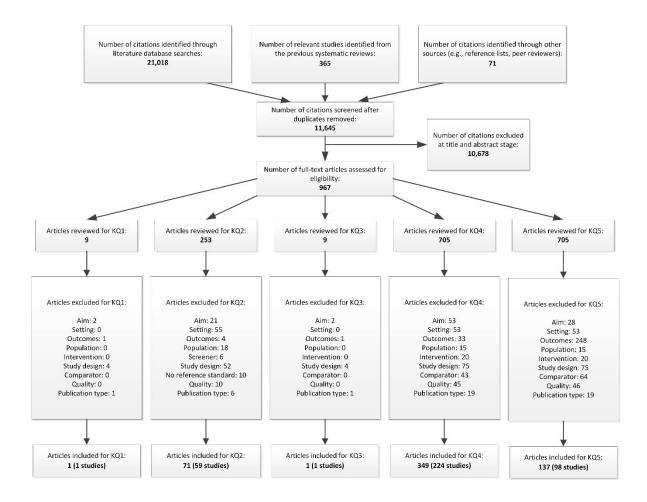
Abbreviations: KQ = key question; USPSTF = United States Preventive Services Task Force

Appendix A Table 2. Study Design–Specific Quality Rating Criteria*

Adapted Quality Criteria		
Bias arising in randomization process or due to confounding		
Delever in here line above to intice		
Balance in baseline characteristics		
No baseline confounding		
No time-varying confounding		
Bias in selecting participants into the study		
 No evidence of biased selection of sample 		
Start of followup and start of intervention coincide		
Bias due to departures form intended interventions		
 Participant intervention status is clearly and explicitly defined and measured 		
Classification of intervention status is unaffected by knowledge of the outcome or risk of the outcome		
Bias in classifying interventions		
Fidelity to intervention protocol		
Participants were analyzed as originally allocated		
Bias from missing data		
 Outcome data are reasonably complete and comparable between groups 		
 Confounding variables that are controlled for in analysis are reasonably complete 		
 Reasons for missing data are similar across groups 		
Missing data are unlikely to bias results		
Bias in measurement of outcomes		
Blinding of outcome assessors		
 Outcomes are measured using consistent and appropriate procedures and instruments across treatment groups 		
No evidence of biased use of inferential statistics		
Bias in reporting results selectively		
No evidence that the measures, analyses, or subgroup analyses are selectively reported		

Appendix A Table 2. Study Design–Specific Quality Rating Criteria*

Study Design	Adapted Quality Criteria			
Diagnostic accuracy studies,				
adapted from the Quality				
	 Was a consecutive or random sample of patients enrolled? 			
	Did the study avoid inappropriate exclusions?			
I ¹¹¹ and II ¹¹² instrument	Index Test			
	Were the index test results interpreted without knowledge of the reference standard results?			
	 If a threshold was used, was it prespecified or was a range of values presented? Reference Standard 			
	Reference Standard			
	 Is the reference standard likely to correctly classify the target condition? 			
	• Were the reference standard results interpreted without knowledge of the index test?			
	• Were staff trained in the use of the reference standard?			
	• Was fidelity of the reference standard monitored or reported?			
	Flow and Timing			
	 Was there an appropriate interval between the index test and reference standard? 			
	 Did all patients receive a reference standard? 			
	 Did all patients receive the same reference standard? 			
	 Were all patients included in the analysis? 			
	Bias arising in the randomization process or due to confounding			
adapted from U.S. Preventive	 Valid random assignment/random sequence generation method used 			
Services Task Force	Allocation concealed			
Manual ¹⁰⁹	Balance in baseline characteristics			
	Bias in selecting participants into the study			
	 CCT only: No evidence of biased selection of sample 			
	Bias due to departures from intended interventions			
	Fidelity to the intervention protocol			
	Low risk of contamination between groups			
	 Participants were analyzed as originally allocated 			
	Bias from missing data			
	No, or minimal, post-randomization exclusions			
	 Outcome data are reasonably complete and comparable between groups 			
	 Reasons for missing data are similar across groups 			
	Missing data are unlikely to bias results			
	Bias in measurement of outcomes			
	Blinding of outcome assessors			
	 Outcomes are measured using consistent and appropriate procedures and instruments across treatment groups 			
	No evidence of biased use of inferential statistics			
	Bias in reporting results selectively			
	No evidence that the measures, analyses, or subgroup analyses are selectively reported			
* All randomized clinical trials	were classified as good, fair, or poor according to the USPSTF Procedure Manual ¹⁰⁹			


Domain/Scale	Description	Number of items; range; direction	Clinical Internetation
Global Cognitive	Memory, orientation, language, praxis, etc.	direction	Clinical Interpretation
Function			
Alzheimer's Disease Assessment Scale- cognitive subscale (ADAS- Cog-11) ^{463, 464}	 Cognitive subscale of the ADAS that includes 11 tasks that include both subject-completed tests and observer-based assessments Specific tasks include word recall, naming objects and fingers, commands, constructional praxis, ideational praxis, orientation, word recognition, and language Most sensitive in moderate-stage patients, but not those in mild stage 	11; 0–70; higher scores worse	Interpretation of score. ⁴⁶⁴ No impairment: 0 Severe impairment: 70 Interpretation of change: ¹⁰⁷ A change of 4 points or more on the ADAS- Cog scale is considered a clinically important improvement for mild to moderate dementia
Mini-Mental State Exam (MMSE) ⁴⁶⁵	 Clinician administered patient evaluation Assesses 5 cognitive domains: orientation, memory (registration and recall), attention/calculation, language, and visuospatial abilities 	11; 0–30; higher scores better	Interpretation of score. ⁴⁶⁵ No impairment: 30 Severe impairment: 0 Interpretation of change: ¹⁰⁷ A change of 3 points or more is considered clinically important
Global Function	Summary outcome assessment of overall severity of condition		Any improvement in global function is considered clinical improvement; however, results depend on an individual physician's perception.
Clinician's Interview-Based Impression of Change with Caregiver Input (CIBIC+) ⁴⁶⁶	semi-structured interview covering change in cognition, behavior, function	NA (unstructured interview); 1–7; higher scores worse	Interpretation of score. ⁴⁶⁶ Marked improvement: 1 Moderate improvement: 2 Minimal improvement: 3 No change: 4 Minimal worsening: 5 Moderate worsening: 6 Marked worsening: 7
Clinical Dementia Rating (CDR)/CDR-Sum of Boxes (CDR-SB) ⁴⁶⁷	 Clinician administered semi-structured interview of patient and a reliable collateral source (e.g., family member) Characterizes six domains of cognitive functional performance applicable to ADRD: memory, orientation, judgement & problem solving, community affairs, home & hobbies, and personal care 	CDR-SB: 6; 0–18; higher scores worse	Interpretation of score. ⁴⁶⁷ CDR: No dementia: 0 Questionable dementia: 0.5 Mild dementia: 1 Moderate dementia: 2 Severe dementia: 3
Global Deterioration Scale (GDS) ⁴⁶⁸		NA (unstructured interview); 1–7; higher scores worse	<i>Interpretation of score.</i> ⁴⁶⁸ No decline: 1 Very mild cognitive decline: 2

Domain/Scale	Description	Number of items; range; direction	Clinical Interpretation
	 Provides caregivers an overview of the stages of cognitive function from a primary degenerative dementia such as AD 	direction	Clinical Interpretation Mild cognitive decline (MCI): 3 Moderate cognitive decline: 4 Moderately severe cognitive decline: 5 Severe cognitive decline: 6 Very severe cognitive decline: 7
Physical Function	Activities of daily living (ADLs) and Instrumental activities of daily living (IADLs)		
Alzheimer's Disease Cooperative Study Activities of Daily Living (ADCS-ADL ₂₃) (23- item version) ⁴⁶⁹	 Informant rated interview developed to evaluate ADL abilities over time and detect changes in patients with mild-to-moderate AD, such as using household appliances, choosing clothes to wear, bathing, and toileting 	23; 0–78; higher scores better	<i>Interpretation of score.</i> ⁴⁶⁹ Higher scores indicate less functional impairment
Disability Assessment for Dementia (DAD) ⁴⁷⁰		40; 0–100; higher scores better	<i>Interpretation of score.</i> ⁴⁷⁰ Higher scores indicate less functional disability
Lawton & Brody Instrumental Activities of Daily Living Scale (Lawton IADL) ⁴⁷¹	 Information obtained through self-report or surrogate report Measures 8 domains of function: ability to use telephone, shopping, food preparation, housekeeping, laundry, mode of transportation, responsibility for own medications, and ability to handle finances 	8; 0–8-point scale; higher scores better	Interpretation of score: ⁴⁷¹ Low function, dependent: 0 High function, independent: 8
Patient Mental Health and Neuropsychiatric Symptoms	Depression and composite neuropsychiatric symptom scores		
Cornell Scale for Depression in Dementia (CSDD) ⁴⁷²	 Information obtained from interview of a caregiver/informant as well as form direct observation and interview of the patient Designed to assess major depression in elderly people with dementia based on mood-related signs, behavioral disturbance, physical signs, cyclic functions, and ideational disturbance 	19; 0–38; higher scores worse	Interpretation of score. ⁴⁷² Absence of significant depression symptoms: <6 Probable depression: ≥10 Definite major depression: ≥18

Domain/Scale	Description	Number of items; range; direction	Clinical Interpretation
Geriatric Depression Scale (GDS)/GDS-15 item (GDS- 15) ⁴⁷³		GDS: 30; 0–30; higher scores worse GDS-15: 15; 0–15; higher scores worse	Interpretation of score: GDS: Normal: 0–9 Mild depression: 10–19 Severe depression: ≥20 GDS-15: Normal: 0–5 Presence of depression (indicates further evaluation needed): 6–10
Neuropsychiatric Inventory (NPI-10 ⁴⁷⁴ or NPI-12 ⁴⁷⁵)	behavioral symptom domains rated on a scale	NPI-10: 10; 0–120; higher scores worse NPI-12: 12; 0–144; higher scores worse	Definite depression: ≥11 Higher scores indicate more behavioral disturbance for both NPI and RMBPC. Unclear interpretation of specific scores.
Revised Memory and Behavior Problems Checklist (RMBPC) (Total Number of Behavioral and Memory Problems or Total Frequency of Memory and Behavioral Problems) ⁴⁷⁶	 Caregiver-administered paper-and-pencil measure Portion of the RMBPC focused on the frequency and total number of problematic behaviors (memory-related problems, depression, and disruptive behaviors) in patients with dementia 	RMBPC (Total): 24; 0–24; higher scores worse RMBPC (Frequency): 24; 0–96; higher scores worse	
Caregiver Depressive Symptomatology			
Center for Epidemiologic Studies – Depression Scale (CES-D) ⁴⁷⁷	 depressive symptomatology in caregivers Scores represent depressed affect, absence of positive affect or anhedonia, somatic activity or inactivity, and interpersonal challenges 	20; 0–60; higher scores worse	Interpretation of score: ^{354, 477} Clinically significant depression: ≥16
Beck Depression Inventory (BDI-I, II) ⁴⁷⁸	 Self-rated scale that evaluates key symptoms of depression including mood, pessimism, sense of failure, self-dissatisfaction, guilt, punishment, self-dislike, self-accusation, suicidal ideas, 	21; 0–63; higher scores worse	Interpretation of score: Minimal depression: 0–13 Mild depression: 14–19 Moderate depression: 20–28

	- · · ·	Number of items; range;	
Domain/Scale	Description	direction	Clinical Interpretation
	crying, irritability, social withdrawal, indecisiveness, body image change, work difficulty, insomnia, fatigability, loss of appetite, weight loss, somatic preoccupation, and loss of libido		Severe depression: 29–63
Caregiver Burden			
Zarit Burden Interview-22 item (Zarit-22) ⁴⁷⁹	 Caregiver-rated or clinician-administered interview Measures perceived social, physical, financial, and emotional burden of caregiving 	22; 0–88; higher scores worse	Higher scores indicate greater caregiver burden for Zarit-22 and RMBPC. Unclear interpretation of specific scores.
Revised Memory and Behavior Problems Checklist (RMBPC) – Total caregiver reaction to problem behaviors ⁴⁷⁶	 Caregiver-administered paper-and-pencil measure Portion of the RMBPC focused on the caregiver's reaction to problematic behaviors (memory-related problems, depression, and disruptive behaviors) in patients with dementia 	24; 0–96; higher scores worse	
Patient and Caregiver Quality of Life			
Quality of Life in Alzheimer's Disease (QOL- AD) ⁴⁸⁰	 Patients and caregivers typically complete the QOL-AD separately 13-items that measure the domains of physical condition, mood, memory, functional abilities, interpersonal relationships, ability to participate in meaningful activities, financial situation, and global assessments of self as a whole and QOL as a whole 	13; 13–52; higher scores better	Higher scores indicate better quality of life for all listed QOL instruments. Unclear interpretation of specific scores.
Dementia Quality of Life (DEMQOL) ⁴⁸¹	 Patient- or proxy-reported Addresses 5 domains: daily activities and looking after yourself, health and well-being, cognitive functioning, social relationships and self-concept 		
EuroQOL-5 dimensions (EQ-5D) ⁴⁸²	 Patient- or proxy-reported health-related quality of life Has 2 core components: a description of the respondent's own health using a health state classification system with 5 dimensions (mobility, self-care, usual activities, pain/discomfort, and anxiety/depression) and a rating on a visual analog thermometer scale 	5; 0–100; higher scores better	
Short Form Health Survey – 36 Item (SF-36)/Short Form	 Patient- or proxy-reported (patient); self- administered (caregiver) 	SF-36: 36; 0–100; higher scores better	

Domain/Scale	Description	Number of items; range; direction	Clinical Interpretation
Health Survey –12 Item (SF-12) ⁴⁸³	5	SF-12: 12; 0–100; higher scores better	

Below is a list of included studies and their ancillary publications (indented below main results publication):

KQ1 and KQ3

1. Fowler N, Perkins A, Gao S, et al. Risks and benefits of screening for dementia in primary care: the IU CHOICE trial. J Am Geriatr Soc. 2019; Article in Press.

KQ2

- 1. Ayalon L. The IQCODE Versus a Single-Item Informant Measure to Discriminate Between Cognitively Intact Individuals and Individuals With Dementia or Cognitive Impairment. J Geriatr Psychiatry Neurol. 2011;24(3):168-73. PMID: 21856971. http://dx.doi.org/10.1177/0891988711418506
- 2. Ball LJ, Ogden A, Mandi D, et al. The validation of a mailed health survey for screening of dementia of the Alzheimer's type. J Am Geriatr Soc. 2001;49(6):798-802. PMID: 11454121. http://dx.doi.org/10.1046/j.1532-5415.2001.49159.x
- 3. Borson S, Scanlan JM, Watanabe J, et al. Improving identification of cognitive impairment in primary care. Int J Geriatr Psychiatry. 2006;21(4):349-55. PMID: 16534774. http://dx.doi.org/10.1002/gps.1470
- 4. Brodaty H, Pond D, Kemp NM, et al. The GPCOG: a new screening test for dementia designed for general practice. J Am Geriatr Soc. 2002;50(3):530-4. PMID: 11943052. http://dx.doi.org/10.1046/j.1532-5415.2002.50122.x
 - Brodaty H, Kemp NM, Low LF. Characteristics of the GPCOG, a screening tool for cognitive impairment. Int J Geriatr Psychiatry. 2004;19(9):870-4. PMID: 15352145. http://dx.doi.org/10.1002/gps.1167
- 5. Buschke H, Kuslansky G, Katz M, et al. Screening for dementia with the memory impairment screen. Neurology. 1999;52(2):231-8. PMID: 9932936. http://dx.doi.org/10.1212/WNL.52.2.231
- Callahan CM, Unverzagt FW, Hui SL, et al. Six-item screener to identify cognitive impairment among potential subjects for clinical research. Med Care. 2002;40(9):771-81.
 PMID: 12218768. http://dx.doi.org/10.1097/01.MLR.0000024610.33213.C8
- Chan QL, Xu X, Shaik MA, et al. Clinical utility of the informant AD8 as a dementia case finding instrument in primary healthcare. J Alzheimers Dis Rep. 2016;49(1):121-7. PMID: 26444776. http://dx.doi.org/10.3233/JAD-150390
 - a. Chan QL, Shaik MA, Xu J, et al. The Combined Utility of a Brief Functional Measure and Performance-Based Screening Test for Case Finding of Cognitive Impairment in Primary Healthcare. J Am Med Dir Assoc. 2016;17(4):372.e9-11. PMID: 26857297. http://dx.doi.org/10.1016/j.jamda.2015.12.095
- Cook SE, Marsiske M, McCoy KJ. The use of the Modified Telephone Interview for Cognitive Status (TICS-M) in the detection of amnestic mild cognitive impairment. J Geriatr Psychiatry Neurol. 2009;22(2):103-9. PMID: 19417219. http://dx.doi.org/10.1177/0891988708328214

- 9. Cruz-Orduna I, Bellon JM, Torrero P, et al. Detecting MCI and dementia in primary care: efficiency of the MMS, the FAQ and the IQCODE. Fam Pract. 2012;29(4):401-6. PMID: 22121012. http://dx.doi.org/10.1093/fampra/cmr114
 - a. Olazaran J, Torrero P, Cruz I, et al. Mild cognitive impairment and dementia in primary care: the value of medical history. Fam Pract. 2011;28(4):385-92. PMID: 21402661. http://dx.doi.org/10.1093/fampra/cmr005
- Cullen B, Fahy S, Cunningham CJ, et al. Screening for dementia in an Irish community sample using MMSE: a comparison of norm-adjusted versus fixed cut-points. Int J Geriatr Psychiatry. 2005;20(4):371-6. PMID: 15799072. http://dx.doi.org/10.1002/gps.1291
 - a. Kirby M, Bruce I, Radic A, et al. Mental disorders among the community-dwelling elderly in Dublin. Br J Psychiatry. 1997;171:369-72. PMID: 9373428. http://dx.doi.org/10.1192/bjp.171.4.369
- Cummings-Vaughn LA, Chavakula NN, Malmstrom TK, et al. Veterans Affairs Saint Louis University Mental Status examination compared with the Montreal Cognitive Assessment and the Short Test of Mental Status. J Am Soc Geriatr Dent. 2014;62(7):1341-6. PMID: 24916485. http://dx.doi.org/10.1111/jgs.12874
- 12. Del Ser T, Sanchez-Sanchez F, Garcia de Yebenes MJ, et al. Validation of the sevenminute screen neurocognitive battery for the diagnosis of dementia in a Spanish population-based sample. Dement Geriatr Cogn Disord. 2006;22(5-6):454-64. PMID: 16988506. http://dx.doi.org/10.1159/000095858
- Donnelly K, Donnelly JP, Cory E. Primary care screening for cognitive impairment in elderly veterans. Am J Alzheimers Dis Other Demen. 2008;23(3):218-26. PMID: 18375531. http://dx.doi.org/10.1177/1533317508315932
- 14. Ehreke L, Luck T, Luppa M, et al. Clock drawing test screening utility for mild cognitive impairment according to different scoring systems: results of the Leipzig Longitudinal Study of the Aged (LEILA 75+). Int Psychogeriatr. 2011;23(10):1592-601. PMID: 21813037. http://dx.doi.org/10.1017/S104161021100144X
- Ehreke L, Luppa M, Luck T, et al. Is the clock drawing test appropriate for screening for mild cognitive impairment?--Results of the German study on Ageing, Cognition and Dementia in Primary Care Patients (AgeCoDe). Dement Geriatr Cogn Disord. 2009;28(4):365-72. PMID: 19887799. http://dx.doi.org/10.1159/000253484
 - a. Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240-6. PMID: 15324367. http://dx.doi.org/10.1111/j.1365-2796.2004.01380.x
- Erkinjuntti T, Sulkava R, Wikstrom J, et al. Short Portable Mental Status Questionnaire as a screening test for dementia and delirium among the elderly. J Am Geriatr Soc. 1987;35(5):412-6. PMID: 3571790. http://dx.doi.org/10.1111/j.1532-5415.1987.tb04662.x
- 17. Fillenbaum G, Heyman A, Williams K, et al. Sensitivity and specificity of standardized screens of cognitive impairment and dementia among elderly black and white community

residents. J Clin Epidemiol. 1990;43(7):651-60. PMID: 2370572. http://dx.doi.org/10.1016/0895-4356(90)90035-N

- 18. Fong TG, Jones RN, Rudolph JL, et al. Development and validation of a brief cognitive assessment tool: the sweet 16. Arch Intern Med. 2011;171(5):432-7. PMID: 21059967. http://dx.doi.org/10.1001/archinternmed.2010.423
- Fuchs A, Wiese B, Altiner A, et al. Cued Recall and Other Cognitive Tasks to Facilitate Dementia Recognition in Primary Care. J Am Geriatr Soc. 2012:130-5. PMID: 22150245. http://dx.doi.org/10.1111/j.1532-5415.2011.03765.x
- 20. Gagnon M, Letenneur L, Dartigues JF, et al. Validity of the Mini-Mental State examination as a screening instrument for cognitive impairment and dementia in French elderly community residents. Neuroepidemiology. 1990;9(3):143-50. PMID: 2402325. http://dx.doi.org/10.1159/000110764
- 21. Galvin JE, Roe CM, Powlishta KK, et al. The AD8: a brief informant interview to detect dementia. Neurology. 2005;65(4):559-64. PMID: 16116116. http://dx.doi.org/10.1212/01.wnl.0000172958.95282.2a
- 22. Grut M, Fratiglioni L, Viitanen M, et al. Accuracy of the Mini-Mental Status Examination as a screening test for dementia in a Swedish elderly population. Acta Neurol Scand. 1993;87(4):312-7. PMID: 8503262. http://dx.doi.org/10.1111/j.1600-0404.1993.tb05514.x
- Heun R, Papassotiropoulos A, Jennssen F. The validity of psychometric instruments for detection of dementia in the elderly general population. Int J Geriatr Psychiatry. 1998;13(6):368-80. PMID: 9658272.
 - a. Heun R, Hardt J, Muller H, et al. Selection bias during recruitment of elderly subjects from the general population for psychiatric interviews. Eur Arch Psychiatry Clin Neurosci. 1997;247(2):87-92. PMID: 9177954.
- 24. Holsinger T, Plassman BL, Stechuchak KM, et al. Screening for Cognitive Impairment: Comparing the Performance of Four Instruments in Primary Care. J Am Geriatr Soc. 2012;60(6):1027-36. PMID: 22646750. http://dx.doi.org/10.1111/j.1532-5415.2012.03967.x
- 25. Hooijer C, Dinkgreve M, Jonker C, et al. Short screening tests for dementia in the elderly population. I. A comparison between AMTS, MMSE, MSQ and SPMSQ. Int J Geriatr Psychiatry. 1992;7(8):559-71. PMID: None. http://dx.doi.org/10.1002/gps.930070805
- 26. Hsu JL, Fan YC, Huang YL, et al. Improved predictive ability of the Montreal Cognitive Assessment for diagnosing dementia in a community-based study. Alzheimers Res Ther. 2015;7(1):69. PMID: 26549573. http://dx.doi.org/10.1186/s13195-015-0156-8
- 27. Jeong SK, Cho KH, Kim JM. The usefulness of the Korean version of modified Mini-Mental State Examination (K-mMMSE) for dementia screening in community dwelling elderly people. BMC Public Health. 2004;4:31. PMID: 15283869. http://dx.doi.org/10.1186/1471-2458-4-31
- 28. Jorm AF, Broe GA, Creasy H, et al. Further data on the validity of the informant questionnaire on cognitive decline in the elderly (IQCODE). Int J Geriatr Psychiatry.

1996;11(2):131-9. PMID: None. http://dx.doi.org/10.1002/(SICI)1099-1166(199602)11:2<131::AID-GPS294>3.0.CO;2-5

- 29. Juva K, Makela M, Erkinjuntti T, et al. Functional assessment scales in detecting dementia. Age Ageing. 1997;26(5):393-400. PMID: 9351484.
- 30. Kahle-Wrobleski K, Corrada MM, Li B, et al. Sensitivity and specificity of the minimental state examination for identifying dementia in the oldest-old: the 90+ study. J Am Geriatr Soc. 2007;55(2):284-9. PMID: 17302668. http://dx.doi.org/10.1111/j.1532-5415.2007.01049
- 31. Kaufer DI, Williams CS, Braaten AJ, et al. Cognitive screening for dementia and mild cognitive impairment in assisted living: comparison of 3 tests. J Am Med Dir Assoc. 2008;9(8):586-93. PMID: 19083293. http://dx.doi.org/10.1016/j.jamda.2008.05.006
 - a. Zimmerman S, Sloane PD, Williams CS, et al. Residential care/assisted living staff may detect undiagnosed dementia using the minimum data set cognition scale. J Am Geriatr Soc. 2007;55(9):1349-55. PMID: 17767676. http://dx.doi.org/10.1111/j.1532-5415.2007.01289.x
- 32. Kay DW, Henderson AS, Scott R, et al. Dementia and depression among the elderly living in the Hobart community: the effect of the diagnostic criteria on the prevalence rates. Psychol Med. 1985;15(4):771-88. PMID: 4080881.
- 33. Kirby M, Denihan A, Bruce I, et al. The clock drawing test in primary care: sensitivity in dementia detection and specificity against normal and depressed elderly. Int J Geriatr Psychiatry. 2001;16(10):935-40. PMID: 11607936.
- Kuslansky G, Buschke H, Katz M, et al. Screening for Alzheimer's disease: the memory impairment screen versus the conventional three-word memory test. J Am Geriatr Soc. 2002;50(6):1086-91. PMID: 12110070. http://dx.doi.org/10.1046/j.1532-5415.2002.50265.x
- 35. Lam LC, Tam CW, Lui VW, et al. Screening of mild cognitive impairment in Chinese older adults--a multistage validation of the Chinese abbreviated mild cognitive impairment test. Neuroepidemiology. 2008;30(1):6-12. PMID: 18204291. http://dx.doi.org/10.1159/000113300
- 36. Lee JY, Dong WL, Cho SJ, et al. Brief screening for mild cognitive impairment in elderly outpatient clinic: validation of the Korean version of the Montreal Cognitive Assessment. J Geriatr Psychiatry Neurol. 2008;21(2):104-10. PMID: 18474719. http://dx.doi.org/10.1177/0891988708316855
- 37. Lee KS, Kim EA, Hong CH, et al. Clock drawing test in mild cognitive impairment: quantitative analysis of four scoring methods and qualitative analysis. Dement Geriatr Cogn Disord. 2008;26(6):483-9. PMID: 18987468. http://dx.doi.org/10.1159/000167879
- 38. Lipton RB, Katz MJ, Kuslansky G, et al. Screening for dementia by telephone using the memory impairment screen. J Am Geriatr Soc. 2003;51(10):1382-90. PMID: 14511157. http://dx.doi.org/10.1046/j.1532-5415.2003.51455.x
- 39. Manly JJ, Schupf N, Stern Y, et al. Telephone-based identification of mild cognitive impairment and dementia in a multicultural cohort. Arch Neurol. 2011;68(5):607-14. PMID: 21555635. http://dx.doi.org/10.1001/archneurol.2011.88

- Manly JJ, Bell-McGinty S, Tang MX, et al. Implementing diagnostic criteria and estimating frequency of mild cognitive impairment in an urban community. Arch Neurol. 2005;62(11):1739-46. PMID: 16286549. http://dx.doi.org/10.1001/archneur.62.11.1739
- b. Tang MX, Cross P, Andrews H, et al. Incidence of AD in African-Americans, Caribbean Hispanics, and Caucasians in northern Manhattan. Neurology. 2001;56(1):49-56. PMID: 11148235. http://dx.doi.org/10.1212/WNL.56.1.49
- Mao HF, Chang LH, Tsai AY, et al. Diagnostic accuracy of Instrumental Activities of Daily Living for dementia in community-dwelling older adults. Age Ageing. 2018. PMID: 29528375. http://dx.doi.org/10.1093/ageing/afy021
- 41. Markwick A, Zamboni G, de Jager CA. Profiles of cognitive subtest impairment in the Montreal Cognitive Assessment (MoCA) in a research cohort with normal Mini-Mental State Examination (MMSE) scores. J Clin Exp Neuropsychol. 2012;34(7):750-7. PMID: 22468719. http://dx.doi.org/10.1080/13803395.2012.672966
- 42. McDowell I, Kristjansson B, Hill GB, et al. Community screening for dementia: the Mini Mental State Exam (MMSE) and Modified Mini-Mental State Exam (3MS) compared. J Clin Epidemiol. 1997;50(4):377-83. PMID: 9179095. http://dx.doi.org/10.1016/S0895-4356(97)00060-7
- 43. Morales JM, Bermejo F, Romero M, et al. Screening of dementia in community-dwelling elderly through informant report. Int J Geriatr Psychiatry. 1997;12(8):808-16. PMID: 9283925.
- 44. Ozer S, Noonan K, Burke M, et al. The validity of the Memory Alteration Test and the Test Your Memory test for community-based identification of amnestic mild cognitive impairment. Alzheimers Dement. 2016;12(9):987-95. PMID: 27149906. http://dx.doi.org/10.1016/j.jalz.2016.03.014
- 45. Ranson JM, Kuźma E, Hamilton W, et al. Predictors of dementia misclassification when using brief cognitive assessments. Neurol Clin Pract. 2018;9(1):1-9. PMID: None. http://dx.doi.org/10.1212/CPJ.00000000000566
- 46. Rait G, Burns A, Baldwin R, et al. Validating screening instruments for cognitive impairment in older South Asians in the United Kingdom. Int J Geriatr Psychiatry. 2000;15(1):54-62. PMID: 10637405.
- 47. Rait G, Morley M, Burns A, et al. Screening for cognitive impairment in older African-Caribbeans. Psychol Med. 2000;30(4):957-63. PMID: 11037103.
- 48. Reischies FM, Geiselmann B. Age-related cognitive decline and vision impairment affecting the detection of dementia syndrome in old age. Br J Psychiatry. 1997;171:449-51. PMID: 9463604. http://dx.doi.org/10.1192/bjp.171.5.449
- 49. Rideaux T, Beaudreau SA, Fernandez S, et al. Utility of the abbreviated Fuld Object Memory Evaluation and MMSE for detection of dementia and cognitive impairment not dementia in diverse ethnic groups. J Alzheimers Dis. 2012;31(2):371-86. PMID: 22555374. http://dx.doi.org/10.3233/JAD-2012-112180

- 50. Saxton J, Morrow L, Eschman A, et al. Computer assessment of mild cognitive impairment. Postgrad Med. 2009;121(2):177-85. PMID: 19332976. http://dx.doi.org/10.3810/pgm.2009.03.1990
- 51. Solomon PR, Brush M, Calvo V, et al. Identifying dementia in the primary care practice. Int Psychogeriatr. 2000;12(4):483-93. PMID: 11263715.
- 52. Stein J, Luppa M, Kaduszkiewicz H, et al. Is the Short Form of the Mini-Mental State Examination (MMSE) a better screening instrument for dementia in older primary care patients than the original MMSE? Results of the German study on ageing, cognition, and dementia in primary care patients (AgeCoDe). Psychol Assess. 2015;27(3):895-904. PMID: 25822830. http://dx.doi.org/10.1037/pas0000076
- 53. Swearer JM, Drachman DA, Li L, et al. Screening for dementia in "real world" settings: the cognitive assessment screening test: CAST. Clin Neuropsychol. 2002;16(2):128-35. PMID: 12221476. http://dx.doi.org/10.1076/clin.16.2.128.13235
- 54. Tariq SH, Tumosa N, Chibnall JT, et al. Comparison of the Saint Louis University mental status examination and the mini-mental state examination for detecting dementia and mild neurocognitive disorder--a pilot study. Am J Geriatr Psychiatry. 2006;14(11):900-10. PMID: 17068312. http://dx.doi.org/10.1097/01.JGP.0000221510.33817.86
 - Malmstrom TK, Voss VB, Cruz-Oliver DM, et al. The Rapid Cognitive Screen (RCS): A Point-of-Care Screening for Dementia and Mild Cognitive Impairment. J Nutr Health Aging. 2015;19(7):741-4. PMID: 26193857. http://dx.doi.org/10.1007/s12603-015-0564-2
- 55. Tokuhara KG, Valcour VG, Masaki KH, et al. Utility of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) for dementia in a Japanese-American population. Hawaii Med J. 2006;65(3):72-5. PMID: 16724448.
- 56. Vannier-Nitenberg C, Dauphinot V, Bongue B, et al. Performance of cognitive tests, individually and combined, for the detection of cognitive disorders amongst community-dwelling elderly people with memory complaints: the EVATEM study. Eur J Neurol. 2016;23(3):554-61. PMID: 26518736. http://dx.doi.org/10.1111/ene.12888
 - a. Vannier-Nitenberg C, Dauphinot V, Bongue B, et al. Early detection of memory impairment in people over 65 years old consulting at Health Examination Centers for the French health insurance: the EVATEM protocol. BMC Geriatr. 2013;13:55.
 PMID: 23742705. http://dx.doi.org/10.1186/1471-2318-13-55
- 57. Vercambre MN, Cuvelier H, Gayon YA, et al. Validation study of a French version of the modified telephone interview for cognitive status (F-TICS-m) in elderly women. Int J Geriatr Psychiatry. 2010;25(11):1142-9. PMID: 20054838. http://dx.doi.org/10.10002/gps.2447
 - a. Vercambre MN, Boutron-Ruault MC, Ritchie K, et al. Long-term association of food and nutrient intakes with cognitive and functional decline: a 13-year follow-up study of elderly French women. Br J Nutr. 2009;102(3):419-27. PMID: 19203415. http://dx.doi.org/10.1017/S0007114508201959
- 58. Waite LM, Broe GA, Casey B, et al. Screening for Dementia Using an Informant Interview. Neuropsychology, development, and cognition Section B, Aging,

neuropsychology and cognition. 1998;5(3):194-202. PMID: 25233059. http://dx.doi.org/10.1076/anec.5.3.194.614

59. Wolf-Klein GP, Silverstone FA, Levy AP, et al. Screening for Alzheimer's disease by clock drawing. J Am Geriatr Soc. 1989;37(8):730-4. PMID: 2754158. http://dx.doi.org/10.1111/j.1532-5415.1989.tb02234.x

KQ4 & KQ5

AChEIs and Memantine

- 1. Agid Y, Dubois B, Anand R, et al. Efficacy and tolerability of rivastigmine in patients with dementia of the Alzheimer type. Curr Ther Res Clin Exp. 1998;59:837-45. PMID: None. http://dx.doi.org/10.1016/S0011-393X(98)85048-0
- 2. Auchus AP, Brashear HR, Salloway S, et al. Galantamine treatment of vascular dementia: a randomized trial. Neurology. 2007;69(5):448-58. PMID: 17664404. http://dx.doi.org/10.1212/01.wnl.0000266625.31615.f6
- 3. Bakchine S, Loft H. Memantine treatment in patients with mild to moderate Alzheimer's disease: results of a randomised, double-blind, placebo-controlled 6-month study.[Republished from J Alzheimers Dis. 2007 Jul;11(4):471-9; PMID: 17656827]. J Alzheimers Dis. 2008;13(1):97-107. PMID: 18334761. http://dx.doi.org/10.3233/JAD-2008-13110
- 4. Ballard C, Sauter M, Scheltens P, et al. Efficacy, safety and tolerability of rivastigmine capsules in patients with probable vascular dementia: the VantagE study. Curr Med Res Opin. 2008;24(9):2561-74. PMID: 18674411. http://dx.doi.org/10.1185/03007990802328142
- 5. Black S, Roman GC, Geldmacher DS, et al. Efficacy and tolerability of donepezil in vascular dementia: positive results of a 24-week, multicenter, international, randomized, placebo-controlled clinical trial. Stroke. 2003;34(10):2323-30. PMID: 12970516. http://dx.doi.org/10.1161/01.STR.0000091396.95360.E1
- 6. Brodaty H, Corey-Bloom J, Potocnik FC, et al. Galantamine prolonged-release formulation in the treatment of mild to moderate Alzheimer's disease. Dement Geriatr Cogn Disord. 2005;20(2-3):120-32. PMID: 15990426. http://dx.doi.org/10.1159/000086613
 - a. Kavanagh S, Howe I, Brashear HR, et al. Long-term response to galantamine in relation to short-term efficacy data: pooled analysis in patients with mild to moderate Alzheimer's disease. Curr Alzheimer Res. 2011;8(2):175-86. PMID: 21222607. http://dx.doi.org/10.2174/156720511795256044
 - Kavanagh S, Gaudig M, Van BB, et al. Galantamine and behavior in Alzheimer disease: analysis of four trials. Acta Neurol Scand. 2011;124(5):302-8. PMID: 21615354. http://dx.doi.org/10.1111/j.1600-0404.2011.01525.x
- Burns A, Rossor M, Hecker J, et al. The effects of donepezil in Alzheimer's disease results from a multinational trial. Dement Geriatr Cogn Disord. 1999;10(3):237-44.
 PMID: 10325453. http://dx.doi.org/10.1159/000017126

- Choi SH, Park KW, Na DL, et al. Tolerability and efficacy of memantine add-on therapy to rivastigmine transdermal patches in mild to moderate Alzheimer's disease: a multicenter, randomized, open-label, parallel-group study. Curr Med Res Opin. 2011;27(7):1375-83. PMID: 21561398. http://dx.doi.org/10.1185/03007995.2011.582484
- 9. Corey-Bloom J, Anand R, Veach J. A randomized trial evaluating the efficacy and safety of ENA 713 (rivastigmine tartrate), a new acetylcholinesterase inhibitor, in patients with mild to moderately severe Alzheimer's disease. Int J Geriatr Psychopharmacol. 1998;1(2):55-65. PMID: None.
- 10. Doody RS, Ferris SH, Salloway S, et al. Donepezil treatment of patients with MCI: a 48week randomized, placebo-controlled trial. Neurology. 2009;72(18):1555-61. PMID: 19176895. http://dx.doi.org/10.1212/01.wnl.0000344650.95823.03
- 11. Dysken MW, Sano M, Asthana S, et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA. 2014;311(1):33-44. PMID: 24381967. http://dx.doi.org/10.1001/jama.2013.282834
 - a. Dysken MW, Guarino PD, Vertrees JE, et al. Vitamin E and memantine in Alzheimer's disease: clinical trial methods and baseline data. Alzheimers Dement. 2014;10(1):36-44. PMID: 23583234. http://dx.doi.org/10.1016/j.jalz.2013.01.014
- 12. Erkinjuntti T, Kurz A, Gauthier S, et al. Efficacy of galantamine in probable vascular dementia and Alzheimer's disease combined with cerebrovascular disease: a randomised trial. Lancet. 2002;359(9314):1283-90. PMID: 11965273. http://dx.doi.org/10.1016/S0140-6736(02)08267-3
 - Bullock R, Erkinjuntti T, Lilienfeld S. Management of patients with Alzheimer's disease plus cerebrovascular disease: 12-month treatment with Galantamine. Dement Geriatr Cogn Disord. 2004;17(1-2):29-34. PMID: 14560062. http://dx.doi.org/10.1159/000074140
 - b. Erkinjuntti T, Gauthier S, Bullock R, et al. Galantamine treatment in Alzheimer's disease with cerebrovascular disease: responder analyses from a randomized, controlled trial (GAL-INT-6). J Psychopharmacol. 2008;22(7):761-8. PMID: 18308781. http://dx.doi.org/10.1177/0269881107083028
 - c. Erkinjuntti T, Kurz A, Small GW, et al. An open-label extension trial of galantamine in patients with probable vascular dementia and mixed dementia. Clin Ther. 2003;25(6):1765-82. PMID: 12860497. http://dx.doi.org/10.1016/S0149-2918(03)80168-6
 - d. Kavanagh S, Howe I, Brashear HR, et al. Long-term response to galantamine in relation to short-term efficacy data: pooled analysis in patients with mild to moderate Alzheimer's disease. Curr Alzheimer Res. 2011;8(2):175-86. PMID: 21222607. http://dx.doi.org/10.2174/156720511795256044
 - Kavanagh S, Gaudig M, Van BB, et al. Galantamine and behavior in Alzheimer disease: analysis of four trials. Acta Neurol Scand. 2011;124(5):302-8. PMID: 21615354. http://dx.doi.org/10.1111/j.1600-0404.2011.01525.x
 - f. Kurz A. Non-cognitive benefits of galantamine (Reminyl-®) treatment in vascular dementia. Acta Neurol Scand. 2002;106(Suppl178):19-24. PMID: 12492788.

- g. Small G, Erkinjuntti T, Kurz A, et al. Galantamine in the Treatment of Cognitive Decline in Patients with Vascular Dementia or Alzheimer's Disease with Cerebrovascular Disease. CNS Drugs. 2003;17(12):905-14. PMID: 12962529. http://dx.doi.org/10.2165/00023210-200317120-00004
- Feldman H, Gauthier S, Hecker J, et al. A 24-week, randomized, double-blind study of donepezil in moderate to severe Alzheimer's disease.[Erratum appears in Neurology 2001 Dec 11;57(11):2153]. Neurology. 2001;57(4):613-20. PMID: 11524468. http://dx.doi.org/10.1212/WNL.57.4.613
- 14. Feldman HH, Lane R, Group S. Rivastigmine: a placebo controlled trial of twice daily and three times daily regimens in patients with Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2007;78(10):1056-63. PMID: 17353259. http://dx.doi.org/10.1136/jnnp.2006.099424
- 15. Ferris S, Schneider L, Farmer M, et al. A double-blind, placebo-controlled trial of memantine in age-associated memory impairment (memantine in AAMI). Int J Geriatr Psychiatry. 2007;22(5):448-55. PMID: 17117395. http://dx.doi.org/10.1002/gps.1711
- 16. Gill SS, Anderson GM, Fischer HD, et al. Syncope and its consequences in patients with dementia receiving cholinesterase inhibitors: a population-based cohort study. Arch Intern Med. 2009;169(9):867-73. PMID: 19433698. http://dx.doi.org/10.1001/archinternmed.2009.43
- Hager K, Baseman A, Nye J, et al. Effects of galantamine in a 2-year, randomized, placebo-controlled study in Alzheimer's disease. Neuropsychiatr Dis Treat. 2014;10:391-401. PMID: 24591834. http://dx.doi.org/10.2147/NDT.S57909
- Hernandez RK, Farwell W, Cantor MD, et al. Cholinesterase inhibitors and incidence of bradycardia in patients with dementia in the veterans affairs new England healthcare system. J Am Geriatr Soc. 2009;57(11):1997-2003. PMID: 19793162. http://dx.doi.org/10.1111/j.1532-5415.2009.02488.x
- 19. Herrmann N, Gauthier S, Boneva N, et al. A randomized, double-blind, placebocontrolled trial of memantine in a behaviorally enriched sample of patients with moderate-to-severe Alzheimer's disease. Int Psychogeriatr. 2013;25(6):919-27. PMID: 23472619. http://dx.doi.org/10.1017/S1041610213000239
- 20. Holmes C, Wilkinson D, Dean C, et al. The efficacy of donepezil in the treatment of neuropsychiatric symptoms in Alzheimer disease. Neurology. 2004;63(2):214-9. PMID: 15277611. http://dx.doi.org/10.1212/01.WNL.0000129990.32253.7B
- 21. Ikeda M, Mori E, Matsuo K, et al. Donepezil for dementia with Lewy bodies: a randomized, placebo-controlled, confirmatory phase III trial. Alzheimers Res Ther. 2015;7(1):4. PMID: 25713599. http://dx.doi.org/10.1186/s13195-014-0083-0
 - a. Mori E, Ikeda M, Nagai R, et al. Long-term donepezil use for dementia with Lewy bodies: results from an open-label extension of Phase III trial. Alzheimers Res Ther. 2015;7(1):5. PMID: 25713600. http://dx.doi.org/10.1186/s13195-014-0081-2
 - b. Mori E, Ikeda M, Nakagawa M, et al. Pretreatment Cognitive Profile Likely to Benefit from Donepezil Treatment in Dementia with Lewy Bodies: Pooled Analyses of Two Randomized Controlled Trials. Dement Geriatr Cogn Disord. 2016;42(1-2):58-68. PMID: 27537084. http://dx.doi.org/10.1159/000447586

- c. Mori E, Ikeda M, Nakai K, et al. Increased plasma donepezil concentration improves cognitive function in patients with dementia with Lewy bodies: An exploratory pharmacokinetic/pharmacodynamic analysis in a phase 3 randomized controlled trial. J Neurol Sci. 2016;366:184-90. PMID: 27288803. http://dx.doi.org/10.1016/j.jns.2016.05.001
- 22. Krishnan KR, Charles HC, Doraiswamy PM, et al. Randomized, placebo-controlled trial of the effects of donepezil on neuronal markers and hippocampal volumes in Alzheimer's disease. Am J Psychiatry. 2003;160(11):2003-11. PMID: 14594748. http://dx.doi.org/10.1176/appi.ajp.160.11.2003
- 23. Mazza M, Capuano A, Bria P, et al. Ginkgo biloba and donepezil: a comparison in the treatment of Alzheimer's dementia in a randomized placebo-controlled double-blind study. Eur J Neurol. 2006;13(9):981-5. PMID: 16930364. http://dx.doi.org/10.1111/j.1468-1331.2006.01409.x
- 24. McKeith I, Del Ser T, Spano P, et al. Efficacy of rivastigmine in dementia with Lewy bodies: a randomised, double-blind, placebo-controlled international study. Lancet. 2000;356(9247):2031-6. PMID: 11145488. http://dx.doi.org/10.1016/S0140-6736(00)03399-7
- Mohs RC, Doody RS, Morris JC, et al. A 1-year, placebo-controlled preservation of function survival study of donepezil in AD patients. Neurology. 2001;57(3):481-8.
 PMID: 11502917. http://dx.doi.org/10.1212/WNL.57.3.481
- 26. Mok V, Wong A, Ho S, et al. Rivastigmine in Chinese patients with subcortical vascular dementia. Neuropsychiatr Dis Treat. 2007;3(6):943-8. PMID: 19300631. http://dx.doi.org/10.2147/NDT.S2221
- 27. Mori E, Ikeda M, Kosaka K. Donepezil for dementia with Lewy bodies: a randomized, placebo-controlled trial. Ann Neurol. 2012;72(1):41-52. PMID: 22829268. http://dx.doi.org/10.1002/ana.23557
 - a. Ikeda M, Mori E, Kosaka K, et al. Long-term safety and efficacy of donepezil in patients with dementia with Lewy bodies: results from a 52-week, open-label, multicenter extension study. Dement Geriatr Cogn Disord. 2013;36(3-4):229-41. PMID: 23949147. http://dx.doi.org/10.1159/000351672
- 28. Orgogozo JM, Rigaud AS, Stoffler A, et al. Efficacy and safety of memantine in patients with mild to moderate vascular dementia: a randomized, placebo-controlled trial (MMM 300). Stroke. 2002;33(7):1834-9. PMID: 12105362. http://dx.doi.org/10.1161/01.STR.0000020094.08790.49
- 29. Peskind ER, Potkin SG, Pomara N, et al. Memantine treatment in mild to moderate Alzheimer disease: a 24-week randomized, controlled trial. Am J Geriatr Psychiatry. 2006;14(8):704-15. PMID: 16861375. http://dx.doi.org/10.1097/01.JGP.0000224350.82719.83
 - a. Pomara N, Ott BR, Peskind E, et al. Memantine treatment of cognitive symptoms in mild to moderate Alzheimer disease: secondary analyses from a placebo-controlled randomized trial. Alzheimer Dis Assoc Disord. 2007;21(1):60-4. PMID: 17334274. http://dx.doi.org/10.1097/WAD.0b013e318032cf29

- 30. Peters O, Fuentes M, Joachim L, et al. Combined treatment with memantine and galantamine-CR compared with galantamine-CR only in antidementia drug naive patients with mild-to-moderate Alzheimer's disease. Alzheimers Dement (N Y). 2015;1(3):198-204. PMID: 29854939. http://dx.doi.org/10.1016/j.trci.2015.10.001
- 31. Petersen RC, Thomas RG, Grundman M, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. NEJM. 2005;352(23):2379-88. PMID: 15829527. http://dx.doi.org/10.1056/NEJMoa050151
 - Lu PH, Edland SD, Teng E, et al. Donepezil delays progression to AD in MCI subjects with depressive symptoms. Neurology. 2009;72(24):2115-21. PMID: 19528519. http://dx.doi.org/10.1212/WNL.0b013e3181aa52d3
- 32. Porsteinsson AP, Grossberg GT, Mintzer J, et al. Memantine treatment in patients with mild to moderate Alzheimer's disease already receiving a cholinesterase inhibitor: a randomized, double-blind, placebo-controlled trial. Curr Alzheimer Res. 2008;5(1):83-9. PMID: 18288936. http://dx.doi.org/10.2174/156720508783884576
 - Atri A, Molinuevo J, Lemming O, et al. Memantine in patients with Alzheimer's disease receiving donepezil: New analyses of efficacy and safety for combination therapy. Alzheimers Res Ther. 2013;5(6). PMID: 23336974. http://dx.doi.org/10.1186/alzrt160
- 33. Raskind MA, Peskind ER, Wessel T, et al. Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. The Galantamine USA-1 Study Group. Neurology. 2000;54(12):2261-8. PMID: 10881250. http://dx.doi.org/10.1212/WNL.54.12.2261
 - Kavanagh S, Howe I, Brashear HR, et al. Long-term response to galantamine in relation to short-term efficacy data: pooled analysis in patients with mild to moderate Alzheimer's disease. Curr Alzheimer Res. 2011;8(2):175-86. PMID: 21222607. http://dx.doi.org/10.2174/156720511795256044
 - B. Raskind MA, Peskind ER, Truyen L, et al. The cognitive benefits of galantamine are sustained for at least 36 months: a long-term extension trial. Arch Neurol. 2004;61(2):252-6. PMID: 14967774. http://dx.doi.org/10.1001/archneur.61.2.252
 - c. Sano M, Wilcock GK, Van BB, et al. The effects of galantamine treatment on caregiver time in Alzheimer's disease. Int J Geriatr Psychiatry. 2003;18(10):942-50. PMID: 14533127. http://dx.doi.org/10.1002/gps.1000
 - d. Winblad B, Jelic V, Kershaw P, et al. Effects of statins on cognitive function in patients with Alzheimer's disease in galantamine clinical trials. Drugs Aging. 2007;24(1):57-61. PMID: 17233547. http://dx.doi.org/10.2165/00002512-200724010-00004
- 34. Rockwood K, Fay S, Song X, et al. Attainment of treatment goals by people with Alzheimer's disease receiving galantamine: a randomized controlled trial. CMAJ. 2006;174(8):1099-105. PMID: 16554498. http://dx.doi.org/10.1503/cmaj.051432
 - Rockwood K, Fay S, Jarrett P, et al. Effect of galantamine on verbal repetition in AD: a secondary analysis of the VISTA trial. Neurology. 2007;68(14):1116-21. PMID: 17404193. http://dx.doi.org/10.1212/01.wnl.0000258661.61577.b7

- 35. Rockwood K, Mintzer J, Truyen L, et al. Effects of a flexible galantamine dose in Alzheimer's disease: a randomised, controlled trial. J Neurol Neurosurg Psychiatry. 2001;71(5):589-95. PMID: 11606667. http://dx.doi.org/10.1136/jnnp.71.5.589
 - Kavanagh S, Howe I, Brashear HR, et al. Long-term response to galantamine in relation to short-term efficacy data: pooled analysis in patients with mild to moderate Alzheimer's disease. Curr Alzheimer Res. 2011;8(2):175-86. PMID: 21222607. http://dx.doi.org/10.2174/156720511795256044
 - Kavanagh S, Gaudig M, Van BB, et al. Galantamine and behavior in Alzheimer disease: analysis of four trials. Acta Neurol Scand. 2011;124(5):302-8. PMID: 21615354. http://dx.doi.org/10.1111/j.1600-0404.2011.01525.x
 - c. Raskind MA, Peskind ER, Truyen L, et al. The cognitive benefits of galantamine are sustained for at least 36 months: a long-term extension trial. Arch Neurol. 2004;61(2):252-6. PMID: 14967774. http://dx.doi.org/10.1001/archneur.61.2.252
- 36. Rogers SL, Doody RS, Mohs RC, et al. Donepezil improves cognition and global function in Alzheimer disease: a 15-week, double-blind, placebo-controlled study. Donepezil Study Group. Arch Intern Med. 1998;158(9):1021-31. PMID: 9588436. http://dx.doi.org/10.1001/archinte.158.9.1021
 - a. Geldmacher DS, Provenzano G, McRae T, et al. Donepezil is associated with delayed nursing home placement in patients with Alzheimer's disease. J Am Geriatr Soc. 2003;51(7):937-44. PMID: 12834513. http://dx.doi.org/10.1046/j.1365-2389.2003.51306.x
- 37. Rogers SL, Friedhoff LT. The efficacy and safety of donepezil in patients with Alzheimer's disease: results of a US Multicentre, Randomized, Double-Blind, Placebo-Controlled Trial. The Donepezil Study Group. Dementia. 1996;7(6):293-303. PMID: 8915035. http://dx.doi.org/10.1159/000106895
- 38. Rosler M, Anand R, Cicin-Sain A, et al. Efficacy and safety of rivastigmine in patients with Alzheimer's disease: international randomised controlled trial.[Erratum appears in BMJ 2001 Jun 16;322(7300):1456]. BMJ. 1999;318(7184):633-8. PMID: 10066203. http://dx.doi.org/10.1136/bmj.318.7184.633
 - a. Erkinjuntti T, Skoog I, Lane R, et al. Rivastigmine in patients with Alzheimer's disease and concurrent hypertension. Int J Clin Pract. 2002;56(10):791-6. PMID: 12510954.
- 39. Salloway S, Ferris S, Kluger A, et al. Efficacy of donepezil in mild cognitive impairment: a randomized placebo-controlled trial. Neurology. 2004;63(4):651-7. PMID: 15326237. http://dx.doi.org/10.1212/01.WNL.0000134664.80320.92
 - a. Salloway S, Correia S, Richardson S. Key lessons learned from short-term treatment trials of cholinesterase inhibitors for amnestic MCI. Int Psychogeriatr. 2008;20(1):40-6. PMID: 17597552. http://dx.doi.org/10.1017/S1041610207005650
- 40. Saxton J, Hofbauer RK, Woodward M, et al. Memantine and functional communication in Alzheimer's disease: results of a 12-week, international, randomized clinical trial. J Alzheimers Dis. 2012;28(1):109-18. PMID: 21955815. http://dx.doi.org/10.3233/JAD-2011-110947

- 41. Seltzer B, Zolnouni P, Nunez M, et al. Efficacy of donepezil in early-stage Alzheimer disease: a randomized placebo-controlled trial. Arch Neurol. 2004;61(12):1852-6. PMID: 15596605. http://dx.doi.org/10.1001/archneur.61.12.1852
- 42. Tariot PN, Solomon PR, Morris JC, et al. A 5-month, randomized, placebo-controlled trial of galantamine in AD. The Galantamine USA-10 Study Group. Neurology. 2000;54(12):2269-76. PMID: 10881251. http://dx.doi.org/10.1212/WNL.54.12.2269
 - Aronson S, Van BB, Kavanagh S, et al. Optimal dosing of galantamine in patients with mild or moderate Alzheimer's disease: post Hoc analysis of a randomized, double-blind, placebo-controlled trial. Drugs Aging. 2009;26(3):231-9. PMID: 19358618. http://dx.doi.org/10.2165/00002512-200926030-00004
 - b. Cummings JL, Schneider L, Tariot PN, et al. Reduction of behavioral disturbances and caregiver distress by galantamine in patients with Alzheimer's disease. Am J Psychiatry. 2004;161(3):532-8. PMID: 14992980. http://dx.doi.org/10.1176/appi.ajp.161.3.532
 - c. Galasko D, Kershaw PR, Schneider L, et al. Galantamine Maintains Ability to Perform Activities of Daily Living in Patients with Alzheimer's Disease. J Am Geriatr Soc. 2004;52(7):1070-6. PMID: 15209643. http://dx.doi.org/10.1111/j.1532-5415.2004.52303.x
 - d. Kavanagh S, Howe I, Brashear HR, et al. Long-term response to galantamine in relation to short-term efficacy data: pooled analysis in patients with mild to moderate Alzheimer's disease. Curr Alzheimer Res. 2011;8(2):175-86. PMID: 21222607. http://dx.doi.org/10.2174/156720511795256044
 - e. Kavanagh S, Gaudig M, Van BB, et al. Galantamine and behavior in Alzheimer disease: analysis of four trials. Acta Neurol Scand. 2011;124(5):302-8. PMID: 21615354. http://dx.doi.org/10.1111/j.1600-0404.2011.01525.x
 - f. Winblad B, Jelic V, Kershaw P, et al. Effects of statins on cognitive function in patients with Alzheimer's disease in galantamine clinical trials. Drugs Aging. 2007;24(1):57-61. PMID: 17233547. http://dx.doi.org/10.2165/00002512-200724010-00004
- 43. Thavorn K, Gomes T, Camacho X, et al. Upper gastrointestinal bleeding in elderly adults with dementia receiving cholinesterase inhibitors: a population-based cohort study. J Am Geriatr Soc. 2014;62(2):382-4. PMID: 24521369. http://dx.doi.org/10.1111/jgs.12670
- 44. Tune L, Tiseo PJ, Ieni J, et al. Donepezil HCl (E2020) maintains functional brain activity in patients with Alzheimer disease: results of a 24-week, double-blind, placebo-controlled study. Am J Geriatr Psychiatry. 2003;11(2):169-77. PMID: 12611746. http://dx.doi.org/10.1097/00019442-200303000-00007
- 45. Wilcock G, Mobius HJ, Stoffler A. A double-blind, placebo-controlled multicentre study of memantine in mild to moderate vascular dementia (MMM500). Int Clin Psychopharmacol. 2002;17(6):297-305. PMID: 12409683. http://dx.doi.org/10.1212/WNL.54.12.2269
- 46. Wilcock GK, Lilienfeld S, Gaens E. Efficacy and safety of galantamine in patients with mild to moderate Alzheimer's disease: multicentre randomised controlled trial. Galantamine International-1 Study Group.[Erratum appears in BMJ 2001 Feb

17;322(7283):405]. BMJ. 2000;321(7274):1445-9. PMID: 11110737. http://dx.doi.org/10.1136/bmj.321.7274.1445

- a. Joffres C, Bucks RS, Haworth J, et al. Patterns of clinically detectable treatment effects with galantamine: a qualitative analysis. Dement Geriatr Cogn Disord. 2003;15(1):26-33. PMID: 12457076. http://dx.doi.org/10.1159/000066673
- Kavanagh S, Howe I, Brashear HR, et al. Long-term response to galantamine in relation to short-term efficacy data: pooled analysis in patients with mild to moderate Alzheimer's disease. Curr Alzheimer Res. 2011;8(2):175-86. PMID: 21222607. http://dx.doi.org/10.2174/156720511795256044
- c. Sano M, Wilcock GK, Van BB, et al. The effects of galantamine treatment on caregiver time in Alzheimer's disease. Int J Geriatr Psychiatry. 2003;18(10):942-50.
 PMID: 14533127. http://dx.doi.org/10.1002/gps.1000
- d. Winblad B, Jelic V, Kershaw P, et al. Effects of statins on cognitive function in patients with Alzheimer's disease in galantamine clinical trials. Drugs Aging. 2007;24(1):57-61. PMID: 17233547. http://dx.doi.org/10.2165/00002512-200724010-00004
- 47. Wilkinson D, Doody R, Helme R, et al. Donepezil in vascular dementia: A randomized, placebo-controlled study. Neurology. 2003;61(4):479-86. PMID: 12939421. http://dx.doi.org/10.1212/01.WNL.0000078943.50032.FC
- Wilkinson D, Fox NC, Barkhof F, et al. Memantine and brain atrophy in Alzheimer's disease: a 1-year randomized controlled trial. J Alzheimers Dis. 2012;29(2):459-69.
 PMID: 22269160. http://dx.doi.org/10.3233/JAD-2011-111616
- 49. Wilkinson D, Murray J. Galantamine: a randomized, double-blind, dose comparison in patients with Alzheimer's disease. Int J Geriatr Psychiatry. 2001;16(9):852-7. PMID: 11571763. http://dx.doi.org/10.1002/gps.409
- 50. Winblad B, Cummings J, Andreasen N, et al. A six-month double-blind, randomized, placebo-controlled study of a transdermal patch in Alzheimer's disease--rivastigmine patch versus capsule. Int J Geriatr Psychiatry. 2007;22(5):456-67. PMID: 17380489. http://dx.doi.org/10.1002/gps.1788
 - Alva G, Grossberg GT, Schmitt FA, et al. Efficacy of rivastigmine transdermal patch on activities of daily living: item responder analyses. Int J Geriatr Psychiatry. 2011;26(4):356-63. PMID: 21312297. http://dx.doi.org/10.1002/gps.2534
 - b. Cummings JL, Ferris SH, Farlow MR, et al. Effects of rivastigmine transdermal patch and capsule on aspects of clinical global impression of change in Alzheimer's disease: a retrospective analysis. Dement Geriatr Cogn Disord. 2010;29(5):406-12. PMID: 20502014. http://dx.doi.org/10.1159/000296073
 - c. Farlow MR, Grossberg GT, Meng X, et al. Rivastigmine transdermal patch and capsule in Alzheimer's disease: influence of disease stage on response to therapy. Int J Geriatr Psychiatry. 2011;26(12):1236-43. PMID: 22068922. http://dx.doi.org/10.1002/gps.2669

- d. Grossberg G, Meng X, Olin JT. Impact of rivastigmine patch and capsules on activities of daily living in Alzheimer's disease. Am J Alzheimers Dis Other Demen. 2011;26(1):65-71. PMID: 21282280. http://dx.doi.org/10.1177/1533317510391240
- e. Grossberg GT, Olin JT, Somogyi M, et al. Dose effects associated with rivastigmine transdermal patch in patients with mild-to-moderate Alzheimer's disease. Int J Clin Pract. 2011;65(4):465-71. PMID: 21309961. http://dx.doi.org/10.1111/j.1742-1241.2011.02641.x
- f. Lee JH, Sevigny J. Effects of body weight on tolerability of rivastigmine transdermal patch: a post-hoc analysis of a double-blind trial in patients with Alzheimer disease. Alzheimers Dis Assoc Disord. 2011;25(1):58-62. PMID: 20975519. http://dx.doi.org/10.1097/WAD.0b013e3181f32829
- 51. Winblad B, Engedal K, Soininen H, et al. A 1-year, randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology. 2001;57(3):489-95. PMID: 11502918. http://dx.doi.org/10.1212/WNL.57.3.489

Other Medications and Supplements

- Aisen PS, Schafer KA, Grundman M, et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA. 2003;289(21):2819-26. PMID: 12783912. http://dx.doi.org/10.1001/jama.289.21.2819
- Aisen PS, Schneider LS, Sano M, et al. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA. 2008;300(15):1774-83. PMID: 18854539. http://dx.doi.org/10.1001/jama.300.15.1774
- 3. Connelly PJ, Prentice NP, Cousland G, et al. A randomised double-blind placebocontrolled trial of folic acid supplementation of cholinesterase inhibitors in Alzheimer's disease. Int J Geriatr Psychiatry. 2008;23(2):155-60. PMID: 17600848. http://dx.doi.org/10.1002/gps.1856
- 4. de Jager CA, Oulhaj A, Jacoby R, et al. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry. 2012;27(6):592-600. PMID: 21780182. http://dx.doi.org/10.1002/gps.2758
- 5. de Jong D, Jansen R, Hoefnagels W, et al. No effect of one-year treatment with indomethacin on Alzheimer's disease progression: a randomized controlled trial. PLoS One. 2008;3(1):e1475. PMID: 18213383. http://dx.doi.org/10.1371/journal.pone.0001475
- 6. Dysken MW, Sano M, Asthana S, et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA. 2014;311(1):33-44. PMID: 24381967. http://dx.doi.org/10.1001/jama.2013.282834
 - a. Dysken MW, Guarino PD, Vertrees JE, et al. Vitamin E and memantine in Alzheimer's disease: clinical trial methods and baseline data. Alzheimers Dement. 2014;10(1):36-44. PMID: 23583234. http://dx.doi.org/10.1016/j.jalz.2013.01.014
- Feldman HH, Doody RS, Kivipelto M, et al. Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease: LEADe. Neurology. 2010;74(12):956-64. PMID: 20200346. http://dx.doi.org/10.1212/WNL.0b013e3181d6476a

- Jones RW, Kivipelto M, Feldman H, et al. The Atorvastatin/Donepezil in Alzheimer's Disease Study (LEADe): design and baseline characteristics. Alzheimers Dement. 2008;4(2):145-53. PMID: 18631958. http://dx.doi.org/10.1016/j.jalz.2008.02.001
- 8. Freund-Levi Y, Eriksdotter-Jonhagen M, Cederholm T, et al. Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch Neurol. 2006;63(10):1402-8. PMID: 17030655. http://dx.doi.org/10.1001/archneur.63.10.1402
 - a. Freund-Levi Y, Basun H, Cederholm T, et al. Omega-3 supplementation in mild to moderate Alzheimer's disease: effects on neuropsychiatric symptoms. Int J Geriatr Psychiatry. 2008;23(2):161-9. PMID: 17582225. http://dx.doi.org/10.1002/gps.1857
- 9. Henderson VW, Ala T, Sainani KL, et al. Raloxifene for women with Alzheimer disease: A randomized controlled pilot trial. Neurology. 2015;85(22):1937-44. PMID: 26537053. http://dx.doi.org/10.1212/WNL.00000000002171
- Henderson VW, Paganini-Hill A, Miller BL, et al. Estrogen for Alzheimer's disease in women: randomized, double-blind, placebo-controlled trial. Neurology. 2000;54(2):295-301. PMID: 10668686. http://dx.doi.org/10.1212/WNL.54.2.295
- Kwok T, Lee J, Law CB, et al. A randomized placebo controlled trial of homocysteine lowering to reduce cognitive decline in older demented people. Clinical nutrition (Edinburgh, Scotland). 2011;30(3):297-302. PMID: 21216507. http://dx.doi.org/10.1016/j.clnu.2010.12.004
- Lu PH, Masterman DA, Mulnard R, et al. Effects of testosterone on cognition and mood in male patients with mild Alzheimer disease and healthy elderly men. Arch Neurol. 2006;63(2):177-85. PMID: 16344336. http://dx.doi.org/10.1001/archneur.63.2.nct50002
- Moonen JE, Foster-Dingley JC, de Ruijter W, et al. Effect of Discontinuation of Antihypertensive Treatment in Elderly People on Cognitive Functioning--the DANTE Study Leiden: A Randomized Clinical Trial.[Erratum appears in JAMA Intern Med. 2016 Feb;176(2):284; PMID: 26830247]. JAMA Intern Med. 2015;175(10):1622-30. PMID: 26301603. http://dx.doi.org/10.1001/jamainternmed.2015.4103
- Mulnard RA, Cotman CW, Kawas C, et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: A randomized controlled trial [Erratum appears in JAMA 2000 Nov 22-29;284(20):2597]. JAMA. 2000;283(8):1007-15. PMID: 10697060. http://dx.doi.org/10.1001/jama.283.8.1007
- 15. Pasqualetti P, Bonomini C, Dal Forno G, et al. A randomized controlled study on effects of ibuprofen on cognitive progression of Alzheimer's disease. Aging Clin Exp Res. 2009;21(2):102-10. PMID: 19448381.
- 16. Petersen RC, Thomas RG, Grundman M, et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. NEJM. 2005;352(23):2379-88. PMID: 15829527. http://dx.doi.org/10.1056/NEJMoa050151
 - Lu PH, Edland SD, Teng E, et al. Donepezil delays progression to AD in MCI subjects with depressive symptoms. Neurology. 2009;72(24):2115-21. PMID: 19528519. http://dx.doi.org/10.1212/WNL.0b013e3181aa52d3

- Phillips MA, Childs CE, Calder PC, et al. No Effect of Omega-3 Fatty Acid Supplementation on Cognition and Mood in Individuals with Cognitive Impairment and Probable Alzheimer's Disease: A Randomised Controlled Trial. Int J Mol Sci. 2015;16(10):24600-13. PMID: 26501267. http://dx.doi.org/10.3390/ijms161024600
- Quinn JF, Raman R, Thomas RG, et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA. 2010;304(17):1903-11. PMID: 21045096. http://dx.doi.org/10.1001/jama.2010.1510
- Sano M, Bell KL, Galasko D, et al. A randomized, double-blind, placebo-controlled trial of simvastatin to treat Alzheimer disease. Neurology. 2011;77(6):556-63. PMID: 21795660. http://dx.doi.org/10.1212/WNL.0b013e318228bf11
- 20. Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study. NEJM. 1997;336(17):1216-22. PMID: 9110909. http://dx.doi.org/10.1056/NEJM199704243361704
- Shinto L, Quinn J, Montine T, et al. A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer's disease. J Alzheimers Dis. 2014;38(1):111-20. PMID: 24077434. http://dx.doi.org/10.3233/JAD-130722
- 22. Simons M, Schwarzler F, Lutjohann D, et al. Treatment with simvastatin in normocholesterolemic patients with Alzheimer's disease: A 26-week randomized, placebo-controlled, double-blind trial. Ann Neurol. 2002;52(3):346-50. PMID: 12205648. http://dx.doi.org/10.1002/ana.10292
- Sinn N, Milte CM, Street SJ, et al. Effects of n-3 fatty acids, EPA v. DHA, on depressive symptoms, quality of life, memory and executive function in older adults with mild cognitive impairment: a 6-month randomised controlled trial. Br J Nutr. 2012;107(11):1682-93. PMID: 21929835. http://dx.doi.org/10.1017/S0007114511004788
- 24. Soininen H, West C, Robbins J, et al. Long-term efficacy and safety of celecoxib in Alzheimer's disease. Dement Geriatr Cogn Dis. 2007;23(1):8-21. PMID: 17068392. http://dx.doi.org/10.1159/000096588
- 25. Sparks DL, Sabbagh MN, Connor DJ, et al. Atorvastatin for the treatment of mild to moderate Alzheimer disease: preliminary results. Arch Neurol. 2005;62(5):753-7. PMID: 15883262. http://dx.doi.org/10.1001/archneur.62.5.753
 - a. Sparks DL, Connor DJ, Sabbagh MN, et al. Circulating cholesterol levels, apolipoprotein E genotype and dementia severity influence the benefit of atorvastatin treatment in Alzheimer's disease: results of the Alzheimer's Disease Cholesterol-Lowering Treatment (ADCLT) trial. Acta Neurol Scand. 2006;114(Suppl 185):3-7. PMID: 16866904. http://dx.doi.org/10.1111/j.1600-0404.2006.00690.x
 - b. Sparks DL, Sabbagh M, Connor D, et al. Statin therapy in Alzheimer's disease. Acta Neurol Scand. 2006;114(Suppl 185):78-86. PMID: 16866915. http://dx.doi.org/10.1111/j.1600-0404.2006.00689.x
- 26. Sun Y, Lu CJ, Chien KL, et al. Efficacy of multivitamin supplementation containing vitamins B6 and B12 and folic acid as adjunctive treatment with a cholinesterase inhibitor in Alzheimer's disease: a 26-week, randomized, double-blind, placebo-

controlled study in Taiwanese patients. Clin Ther. 2007;29(10):2204-14. PMID: 18042476. http://dx.doi.org/10.1016/j.clinthera.2007.10.012

- 27. Valen-Sendstad A, Engedal K, Stray-Pedersen B, et al. Effects of hormone therapy on depressive symptoms and cognitive functions in women with Alzheimer disease: a 12 month randomized, double-blind, placebo-controlled study of low-dose estradiol and norethisterone. Am J Geriatr Psychiatry. 2010;18(1):11-20. PMID: 20094015. http://dx.doi.org/10.1097/JGP.0b013e3181beaaf4
- 28. Wang PN, Liao SQ, Liu RS, et al. Effects of estrogen on cognition, mood, and cerebral blood flow in AD: a controlled study. Neurology. 2000;54(11):2061-6. PMID: 10851363. http://dx.doi.org/10.1212/WNL.54.11.2061
- 29. Yurko-Mauro K, McCarthy D, Rom D, et al. Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement. 2010;6(6):456-64. PMID: 20434961. http://dx.doi.org/10.1016/j.jalz.2010.01.013

Nonpharmacologic Patient-Level Interventions

- 1. Amieva H, Robert PH, Grandoulier AS, et al. Group and individual cognitive therapies in Alzheimer's disease: the ETNA3 randomized trial. Int Psychogeriatr. 2016;28(5):707-17. PMID: 26572551. http://dx.doi.org/10.1017/S1041610215001830
 - Amieva H, Dartigues JF. ETNA3, a clinical randomized study assessing three cognitive-oriented therapies in dementia: rationale and general design. Rev Neurol (Paris). 2013;169(10):752-6. PMID: 24011983. http://dx.doi.org/10.1016/j.neurol.2013.07.011
- Baker LD, Frank LL, Foster-Schubert K, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67(1):71-9. PMID: 20065132. http://dx.doi.org/10.1001/archneurol.2009.307
- 3. Bae S, Lee S, Lee S, et al. The effect of a multicomponent intervention to promote community activity on cognitive function in older adults with mild cognitive impairment: A randomized controlled trial. Complement Ther Med. 2019;42:164-9. PMID: 30670238. http://dx.doi.org/10.1016/j.ctim.2018.11.011
- 4. Bellantonio S, Kenny AM, Fortinsky RH, et al. Efficacy of a geriatrics team intervention for residents in dementia-specific assisted living facilities: effect on unanticipated transitions. J Am Geriatr Soc. 2008;56(3):523-8. PMID: 18179497. http://dx.doi.org/10.1111/j.1532-5415.2007.01591.x
- 5. Belleville S, Hudon C, Bier N, et al. MEMO+: Efficacy, Durability and Effect of Cognitive Training and Psychosocial Intervention in Individuals with Mild Cognitive Impairment. J Am Geriatr Soc. 2018;66(4):655-63. PMID: 29313875. http://dx.doi.org/10.1111/jgs.15192
 - Bier N, Grenier S, Brodeur C, et al. Measuring the impact of cognitive and psychosocial interventions in persons with mild cognitive impairment with a randomized single-blind controlled trial: rationale and design of the MEMO+ study. Int Psychogeriatr. 2015;27(3):511-25. PMID: 25268968. http://dx.doi.org/10.1017/S1041610214001902

- 6. Bergamaschi S, Arcara G, Calza A, et al. One-year repeated cycles of cognitive training (CT) for Alzheimer's disease. Aging Clin Exp Res. 2013;25(4):421-6. PMID: 23784727. http://dx.doi.org/10.1007/s40520-013-0065-2
- 7. Blumenthal JA, Smith PJ, Mabe S, et al. Lifestyle and neurocognition in older adults with cognitive impairments: A randomized trial. Neurology. 2018. PMID: 30568005. http://dx.doi.org/10.1212/WNL.00000000006784
- Burgener SC, Yang Y, Gilbert R, et al. The effects of a multimodal intervention on outcomes of persons with early-stage dementia. Am J Alzheimers Dis Other Demen. 2008;23(4):382-94. PMID: 18453642. http://dx.doi.org/10.1177/1533317508317527
- 9. Buschert VC, Friese U, Teipel SJ, et al. Effects of a newly developed cognitive intervention in amnestic mild cognitive impairment and mild Alzheimer's disease: a pilot study. J Alzheimers Dis. 2011;25(4):679-94. PMID: 21483095. http://dx.doi.org/10.3233/JAD-2011-100999
- Cahn-Weiner DA, Malloy PF, Rebok GW, et al. Results of a randomized placebocontrolled study of memory training for mildly impaired Alzheimer's disease patients. Appl Neuropsychol. 2003;10(4):215-23. PMID: 14690802. http://dx.doi.org/10.1207/s15324826an1004_3
- 11. Cavallo M, Hunter EM, van der Hiele K, et al. Computerized structured cognitive training in patients affected by early-stage Alzheimer's disease is feasible and effective: A randomized controlled study. Archives of clinical neuropsychology : the official journal of the National Academy of Neuropsychologists. 2016;31(8):868-76. PMID: 27600448. http://dx.doi.org/10.1093/arclin/acw072
- Chapman SB, Weiner MF, Rackley A, et al. Effects of cognitive-communication stimulation for Alzheimer's disease patients treated with donepezil. J Speech Lang Hear Res. 2004;47(5):1149-63. PMID: 15603468. http://dx.doi.org/10.1044/1092-4388(2004/085)
- 13. Cove J, Jacobi N, Donovan H, et al. Effectiveness of weekly cognitive stimulation therapy for people with dementia and the additional impact of enhancing cognitive stimulation therapy with a carer training program. Clin Interv Aging. 2014;9:2143-50. PMID: 25525349. http://dx.doi.org/10.2147/CIA.S66232
- 14. Dawson NT. Examining the effects of a moderate-intensity home-based functional exercise intervention on cognition and function in individuals with dementia. Diss Abstr Int. 2016;76(12-A(E)):No Pagination Specified. PMID: None.
- Doi T, Verghese J, Makizako H, et al. Effects of Cognitive Leisure Activity on Cognition in Mild Cognitive Impairment: Results of a Randomized Controlled Trial. J Am Med Dir Assoc. 2017;18(8):686-91. PMID: 28396179. http://dx.doi.org/10.1016/j.jamda.2017.02.013
- 16. Duggleby W, Ploeg J, McAiney C, et al. Web-Based Intervention for Family Carers of Persons with Dementia and Multiple Chronic Conditions (My Tools 4 Care): Pragmatic Randomized Controlled Trial. J Med Internet Res. 2018;20(6):e10484. PMID: 29959111. http://dx.doi.org/10.2196/10484
- 17. Fiatarone Singh MA, Gates N, Saigal N, et al. The Study of Mental and Resistance Training (SMART) study-resistance training and/or cognitive training in mild cognitive

impairment: a randomized, double-blind, double-sham controlled trial. J Am Med Dir Assoc. 2014;15(12):873-80. PMID: 25444575. http://dx.doi.org/10.1016/j.jamda.2014.09.010

- Gates NJ, Valenzuela M, Sachdev PS, et al. Study of Mental Activity and Regular Training (SMART) in at risk individuals: a randomised double blind, sham controlled, longitudinal trial. BMC Geriatr. 2011;11:19. PMID: 21510896. http://dx.doi.org/10.1186/1471-2318-11-19
- b. Fiatarone Singh MA, Gates N, Saigal N, et al. Erratum: The study of mental and resistance training (smart) study-resistance training and/or cognitive training in mild cognitive impairment: a randomized, double-blind, double-sham controlled trial. J Am Med Dir Assoc 2014;15: 873-880. J Am Med Dir Assoc. 2016;17(8):765-6. PMID: None. http://dx.doi.org/10.1016/j.jamda.2016.03.003
- c. Mavros Y, Gates N, Wilson GC, et al. Mediation of Cognitive Function Improvements by Strength Gains After Resistance Training in Older Adults with Mild Cognitive Impairment: Outcomes of the Study of Mental and Resistance Training. J Am Geriatr Soc. 2017;65(3):550-9. PMID: 28304092. http://dx.doi.org/10.1111/jgs.14542
- 18. Greenaway MC, Duncan NL, Smith GE. The memory support system for mild cognitive impairment: randomized trial of a cognitive rehabilitation intervention. Int J Geriatr Psychiatry. 2012. PMID: 22678947. http://dx.doi.org/10.1002/gps.3838
- Herrera C, Chambon C, Michel BF, et al. Positive effects of computer-based cognitive training in adults with mild cognitive impairment. Neuropsychologia. 2012;50(8):1871-81. PMID: 22525705. http://dx.doi.org/10.1016/j.neuropsychologia.2012.04.012
- 20. Ho RTH, Fong TCT, Chan WC, et al. Psychophysiological effects of Dance Movement Therapy and physical exercise on older adults with mild dementia: A randomized controlled trial. J Gerontol B Psychol Sci Soc Sci. 2018. PMID: 30496547. http://dx.doi.org/10.1093/geronb/gby145
- Hoffmann K, Sobol NA, Frederiksen KS, et al. Moderate-to-High Intensity Physical Exercise in Patients with Alzheimer's Disease: A Randomized Controlled Trial. J Alzheimers Dis. 2016;50(2):443-53. PMID: 26682695. http://dx.doi.org/10.3233/JAD-150817
 - a. Hoffmann K, Frederiksen KS, Sobol NA, et al. Preserving cognition, quality of life, physical health and functional ability in Alzheimer's disease: the effect of physical exercise (ADEX trial): rationale and design. Neuroepidemiology. 2013;41(3-4):198-207. PMID: 24135720. http://dx.doi.org/10.1159/000354632
- Holthoff VA, Marschner K, Scharf M, et al. Effects of physical activity training in patients with Alzheimer's dementia: results of a pilot RCT study. PLoS One. 2015;10(4):e0121478. PMID: 25884637. http://dx.doi.org/10.1371/journal.pone.0121478
- Hong SG, Kim JH, Jun TW. Effects of 12-Week Resistance Exercise on Electroencephalogram Patterns and Cognitive Function in the Elderly With Mild Cognitive Impairment: A Randomized Controlled Trial. Clinical journal of sport medicine : official journal of the Canadian Academy of Sport Medicine. 2017. PMID: 28727639. http://dx.doi.org/10.1097/jsm.00000000000476

- 24. Hyer L, Scott C, Atkinson MM, et al. Cognitive training program to improve working memory in older adults with MCI. Clinical Gerontologist. 2016;39(5):410-27. PMID: 29471774. http://dx.doi.org/10.1080/07317115.2015.1120257
- 25. Jelcic N, Cagnin A, Meneghello F, et al. Effects of lexical-semantic treatment on memory in early Alzheimer disease: an observer-blinded randomized controlled trial. Neurorehabil Neural Repair. 2012;26(8):949-56. PMID: 22460609. http://dx.doi.org/10.1177/1545968312440146
- 26. Jeong JH, Na HR, Choi SH, et al. Group- and Home-Based Cognitive Intervention for Patients with Mild Cognitive Impairment: A Randomized Controlled Trial. Psychother Psychosom. 2016;85(4):198-207. PMID: 27230861. http://dx.doi.org/10.1159/000442261
- 27. Jha A, Jan F, Gale T, et al. Effectiveness of a recovery-orientated psychiatric intervention package on the wellbeing of people with early dementia: a preliminary randomised controlled trial. Int J Geriatr Psychiatry. 2013;28(6):589-96. PMID: 22847712. http://dx.doi.org/10.1002/gps.3863
- Kallio EL, Ohman H, Hietanen M, et al. Effects of Cognitive Training on Cognition and Quality of Life of Older Persons with Dementia. J Am Geriatr Soc. 2018;66(4):664-70. PMID: 29345724. http://dx.doi.org/10.1111/jgs.15196
- 29. Karssemeijer EGA, Aaronson JA, Bossers WJR, et al. The quest for synergy between physical exercise and cognitive stimulation via exergaming in people with dementia: a randomized controlled trial. Alzheimers Res Ther. 2019;11(1):3. PMID: 30611286. http://dx.doi.org/10.1186/s13195-018-0454-z
 - a. Karssemeijer EG, Bossers WJ, Aaronson JA, et al. The effect of an interactive cycling training on cognitive functioning in older adults with mild dementia: study protocol for a randomized controlled trial. BMC Geriatr. 2017;17(1):73. PMID: 28327083. http://dx.doi.org/10.1186/s12877-017-0464-x
- 30. Kinsella GJ, Mullaly E, Rand E, et al. Early intervention for mild cognitive impairment: a randomised controlled trial. J Neurol Neurosurg Psychiatry. 2009;80(7):730-6. PMID: 19332424. http://dx.doi.org/10.1136/jnnp.2008.148346
- 31. Kurz A, Thone-Otto A, Cramer B, et al. CORDIAL: cognitive rehabilitation and cognitive-behavioral treatment for early dementia in Alzheimer disease: a multicenter, randomized, controlled trial. Alzheimer Dis Assoc Disord. 2012;26(3):246-53. PMID: 21986341. http://dx.doi.org/10.1097/WAD.0b013e318231e46e
- 32. Lam LC, Chau RC, Wong BM, et al. Interim follow-up of a randomized controlled trial comparing Chinese style mind body (Tai Chi) and stretching exercises on cognitive function in subjects at risk of progressive cognitive decline. Int J Geriatr Psychiatry. 2011;26(7):733-40. PMID: 21495078. http://dx.doi.org/10.1002/gps.2602
- 33. Lamb SE, Sheehan B, Atherton N, et al. Dementia And Physical Activity (DAPA) trial of moderate to high intensity exercise training for people with dementia: randomised controlled trial. BMJ. 2018;361:K1675. PMID: 29769247. http://dx.doi.org/10.1136/bmj.k1675
 - a. Atherton N, Bridle C, Brown D, et al. Dementia and Physical Activity (DAPA) an exercise intervention to improve cognition in people with mild to moderate dementia:

study protocol for a randomized controlled trial. Trials. 2016;17:165. PMID: 27015659. http://dx.doi.org/10.1186/s13063-016-1288-2

- b. Khan I, Petrou S, Khan K, et al. Does Structured Exercise Improve Cognitive Impairment in People with Mild to Moderate Dementia? A Cost-Effectiveness Analysis from a Confirmatory Randomised Controlled Trial: The Dementia and Physical Activity (DAPA) Trial. Pharmacoecon Open. 2018. PMID: 30206826. http://dx.doi.org/10.1007/s41669-018-0097-9
- c. Lamb SE, Mistry D, Alleyne S, et al. Aerobic and strength training exercise programme for cognitive impairment in people with mild to moderate dementia: the DAPA RCT. Health Technol Assess. 2018;22(28):1-202. PMID: 29848412. http://dx.doi.org/10.3310/hta22280
- 34. Lautenschlager NT, Cox KL, Flicker L, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial.[Erratum appears in JAMA. 2009 Jan 21;301(3):276]. JAMA. 2008;300(9):1027-37. PMID: 18768414. http://dx.doi.org/10.1001/jama.300.9.1027
- 35. Lazarou I, Parastatidis T, Tsolaki A, et al. International Ballroom Dancing Against Neurodegeneration: A Randomized Controlled Trial in Greek Community-Dwelling Elders With Mild Cognitive impairment. Am J Alzheimers Dis Other Demen. 2017:1533317517725813. PMID: 28840742. http://dx.doi.org/10.1177/1533317517725813
- 36. Liu-Ambrose T, Best JR, Davis JC, et al. Aerobic exercise and vascular cognitive impairment: A randomized controlled trial. Neurology. 2016;[Epub ahead of print]. PMID: 27760869. http://dx.doi.org/10.1212/wnl.00000000003332
 - Barha CK, Hsiung GR, Best JR, et al. Sex Difference in Aerobic Exercise Efficacy to Improve Cognition in Older Adults with Vascular Cognitive Impairment: Secondary Analysis of a Randomized Controlled Trial. J Alzheimers Dis. 2017;60(4):1397-410.
 PMID: 29036816. http://dx.doi.org/10.3233/JAD-170221
 - b. Liu-Ambrose T, Eng JJ, Boyd LA, et al. Promotion of the mind through exercise (PROMoTE): a proof-of-concept randomized controlled trial of aerobic exercise training in older adults with vascular cognitive impairment. BMC Neurol. 2010;10:14. PMID: 20158920. http://dx.doi.org/10.1186/1471-2377-10-14
- 37. Marshall A, Spreadbury J, Cheston R, et al. A pilot randomised controlled trial to compare changes in quality of life for participants with early diagnosis dementia who attend a 'Living Well with Dementia' group compared to waiting-list control. Aging Ment Health. 2015;19(6):526-35. PMID: 25196239. http://dx.doi.org/10.1080/13607863.2014.954527
- 38. Morris JK, Vidoni ED, Johnson DK, et al. Aerobic exercise for Alzheimer's disease: A randomized controlled pilot trial. PLoS One. 2017;12(2):e0170547. PMID: 28187125. http://dx.doi.org/10.1371/journal.pone.0170547
 - a. Vidoni ED, Van Sciver A, Johnson DK, et al. A community-based approach to trials of aerobic exercise in aging and Alzheimer's disease. Contemp Clin Trials. 2012;33(6):1105-16. PMID: 22903151. http://dx.doi.org/10.1016/j.cct.2012.08.002

- 39. Nousia A, Siokas V, Aretouli E, et al. Beneficial Effect of Multidomain Cognitive Training on the Neuropsychological Performance of Patients with Early-Stage Alzheimer's Disease. Neural Plast. 2018;2018:2845176. PMID: 30123243. http://dx.doi.org/10.1155/2018/2845176
- 40. Olazaran J, Muniz R, Reisberg B, et al. Benefits of cognitive-motor intervention in MCI and mild to moderate Alzheimer disease. Neurology. 2004;63(12):2348-53. PMID: 15623698. http://dx.doi.org/10.1212/01.WNL.0000147478.03911.28
 - a. Olazaran J, Muniz R. Cognitive intervention in the initial stages of Alzheimer's disease. Res Pract Alzheimers Dis. 2006;11:376-80. PMID: None.
- 41. Orrell M, Aguirre E, Spector A, et al. Maintenance cognitive stimulation therapy for dementia: single-blind, multicentre, pragmatic randomised controlled trial. Br J Psychiatry. 2014;204(6):454-61. PMID: 24676963. http://dx.doi.org/10.1192/bjp.bp.113.137414
 - a. Aguirre E, Hoare Z, Spector A, et al. The effects of a Cognitive Stimulation Therapy [CST] programme for people with dementia on family caregivers' health. BMC Geriatrics. 2014;14:31. PMID: 24628705. http://dx.doi.org/10.1186/1471-2318-14-31
 - Aguirre E, Spector A, Hoe J, et al. Maintenance Cognitive Stimulation Therapy (CST) for dementia: a single-blind, multi-centre, randomized controlled trial of Maintenance CST vs. CST for dementia. Trials. 2010;11:46. PMID: 20426866. http://dx.doi.org/10.1186/1745-6215-11-46
 - c. Orrell M, Hoe J, Charlesworth G, et al. Support at Home: Interventions to Enhance Life in Dementia (SHIELD) - evidence, development and evaluation of complex interventions. Programme Grants Appl Res. 2017;5(5). PMID: 28211659. http://dx.doi.org/10.3310/pgfar05050
- 42. Orrell M, Yates L, Leung P, et al. The impact of individual Cognitive Stimulation Therapy (iCST) on cognition, quality of life, caregiver health, and family relationships in dementia: A randomised controlled trial. PLoS Med. 2017;14(3):e1002269. PMID: 28350796. http://dx.doi.org/10.1371/journal.pmed.1002269
 - Orgeta V, Leung P, Yates L, et al. Individual cognitive stimulation therapy for dementia: a clinical effectiveness and cost-effectiveness pragmatic, multicentre, randomised controlled trial. Health Technol Assess. 2015;19(64):1-108. PMID: 26292178. http://dx.doi.org/10.3310/hta19640
 - b. Orrell M, Yates LA, Burns A, et al. Individual Cognitive Stimulation Therapy for dementia (iCST): study protocol for a randomized controlled trial. Trials. 2012;13:172. PMID: 22998983. http://dx.doi.org/10.1186/1745-6215-13-172
- 43. Pantoni L, Poggesi A, Diciotti S, et al. Effect of Attention Training in Mild Cognitive Impairment Patients with Subcortical Vascular Changes: The RehAtt Study. J Alzheimers Dis. 2017;60(2):615-24. PMID: 28869475. http://dx.doi.org/10.3233/JAD-170428
 - a. Salvadori E, Poggesi A, Valenti R, et al. The rehabilitation of attention in patients with mild cognitive impairment and brain subcortical vascular changes using the Attention Process Training-II. The RehAtt Study: rationale, design and methodology. Neurol Sci. 2016;37(10):1653-62. PMID: 27371187. http://dx.doi.org/10.1007/s10072-016-2649-z

- Pitkälä KH, Pöysti MM, Laakkonen ML, et al. Effects of the Finnish Alzheimer disease exercise trial (FINALEX): a randomized controlled trial. JAMA Intern Med. 2013;173(10):894-901. PMID: 23589097. http://dx.doi.org/10.1001/jamainternmed.2013.359
 - a. Ohman H, Savikko N, Strandberg T, et al. Effects of frequent and long-term exercise on neuropsychiatric symptoms in patients with Alzheimer's disease - Secondary analyses of a randomized, controlled trial (FINALEX). Eur Geriatr Med. 2017;Date of Publication: October 16. PMID: None. http://dx.doi.org/10.1016/j.eurger.2017.01.004
 - b. Ohman H, Savikko N, Strandberg T, et al. Effects of Exercise on Functional Performance and Fall Rate in Subjects with Mild or Advanced Alzheimer's Disease: Secondary Analyses of a Randomized Controlled Study. Dement Geriatr Cogn Disord. 2016;41(3-4):233-41. PMID: 27160164. http://dx.doi.org/10.1159/000445712
 - c. Ohman H, Savikko N, Strandberg TE, et al. Effects of Exercise on Cognition: The Finnish Alzheimer Disease Exercise Trial: A Randomized, Controlled Trial. J Am Geriatr Soc. 2016;64(4):731-8. PMID: 27037872. http://dx.doi.org/10.1111/jgs.14059
 - d. Pertilla N, Ohman H, Strandberg T, et al. Severity of frailty and the outcome of exercise intervention among participants with Alzheimer disease: a sub-group analysis of a randomized controlled trial. Eur Geriatr Med. 2016;7(2):117-21. PMID: None. http://dx.doi.org/10.1016/j.eurger.2015.12.014
 - Pitkala KH, Raivio MM, Laakkonen ML, et al. Exercise rehabilitation on homedwelling patients with Alzheimer's disease--a randomized, controlled trial. Study protocol. Trials. 2010;11:92. PMID: 20925948. http://dx.doi.org/10.1186/1745-6215-11-92
 - f. Pitkala K, Raivio M, Laakkonen M, et al. Exercise rehabilitation on home-dwelling patients with Alzheimer disease: A randomized, controlled trial. Baseline findings and feasibility. Eur Geriatr Med. 2011;2(6):338-43. PMID: None. http://dx.doi.org/10.1016/j.eurger.2011.07.012
- 45. Quayhagen MP, Quayhagen M, Corbeil RR, et al. A dyadic remediation program for care recipients with dementia. Nurs Res. 1995;44(3):153-9. PMID: 7761291.
- 46. Quinn C, Toms G, Jones C, et al. A pilot randomized controlled trial of a selfmanagement group intervention for people with early-stage dementia (The SMART study). Int Psychogeriatr. 2016;28(5):787-800. PMID: 26674087. http://dx.doi.org/10.1017/S1041610215002094
 - a. Quinn C, Anderson D, Toms G, et al. Self-management in early-stage dementia: a pilot randomised controlled trial of the efficacy and cost-effectiveness of a self-management group intervention (the SMART study). Trials. 2014;15:74. PMID: 24606601. http://dx.doi.org/10.1186/1745-6215-15-74
- 47. Rapp S, Brenes G, Marsh AP. Memory enhancement training for older adults with mild cognitive impairment: a preliminary study. Aging Ment Health. 2002;6(1):5-11. PMID: 11827617. http://dx.doi.org/10.1080/13607860120101077

- 48. Richard E, Kuiper R, Dijkgraaf MG, et al. Vascular care in patients with Alzheimer's disease with cerebrovascular lesions-a randomized clinical trial. J Am Geriatr Soc. 2009;57(5):797-805. PMID: 19484836.
 - Richard E, Van den HE, Moll van Charante EP, et al. Prevention of dementia by intensive vascular care (PreDIVA): a cluster-randomized trial in progress. Alzheimer Dis Assoc Disord. 2009;23(3):198-204. PMID: 19812459. http://dx.doi.org/10.1097/WAD.0b013e31819783a4
- 49. Rovner BW, Casten RJ, Hegel MT, et al. Preventing Cognitive Decline in Black Individuals With Mild Cognitive Impairment: A Randomized Clinical Trial. JAMA Neurol. 2018. PMID: 30208380. http://dx.doi.org/10.1001/jamaneurol.2018.2513
- 50. Schwenk M, Zieschang T, Oster P, et al. Dual-task performances can be improved in patients with dementia: a randomized controlled trial. Neurology. 2010;74(24):1961-8. PMID: 20445152. http://dx.doi.org/10.1212/WNL.0b013e3181e39696
- 51. Shimada H, Makizako H, Doi T, et al. Effects of Combined Physical and Cognitive Exercises on Cognition and Mobility in Patients With Mild Cognitive Impairment: A Randomized Clinical Trial. J Am Med Dir Assoc. 2018;19(7):584-91. PMID: 29153754. http://dx.doi.org/10.1016/j.jamda.2017.09.019
- 52. Siu MY, Lee DTF. Effects of tai chi on cognition and instrumental activities of daily living in community dwelling older people with mild cognitive impairment. BMC Geriatr. 2018;18(1):37. PMID: 29394884. http://dx.doi.org/10.1186/s12877-018-0720-8
- 53. Straubmeier M, Behrndt E-M, Seidl H, et al. Non-pharmacological treatment in people with cognitive impairment: Results from the randomized controlled German Day Care Study. Dtsch. 2017;114(48):815-21. PMID: 29249224. http://dx.doi.org/10.3238/arztebl.2017.0815
 - Behrndt EM, Straubmeier M, Seidl H, et al. The German day-care study: multicomponent non-drug therapy for people with cognitive impairment in day-care centres supplemented with caregiver counselling (DeTaMAKS) - study protocol of a cluster-randomised controlled trial. BMC Health Serv Res. 2017;17(1):492. PMID: 28716141. http://dx.doi.org/10.1186/s12913-017-2422-x
- 54. Suzuki T, Shimada H, Makizako H, et al. Effects of multicomponent exercise on cognitive function in WMS-LM older adults with amnestic mild cognitive impairment: a randomized controlled trial. BMC Neurol. 2012;12(1):128. PMID: 23113898. http://dx.doi.org/10.1186/1471-2377-12-128
 - a. Suzuki T, Shimada H, Makizako H, et al. A randomized controlled trial of multicomponent exercise in older adults with mild cognitive impairment. PLoS One. 2013;8(4):e61483. PMID: 23585901. http://dx.doi.org/10.1371/journal.pone.0061483
- 55. Train the Brain Consortium. Randomized trial on the effects of a combined physical/cognitive training in aged MCI subjects: the Train the Brain study. Sci. 2017;7:39471. PMID: 28045051. http://dx.doi.org/10.1038/srep39471
- 56. Troyer AK, Murphy KJ, Anderson ND, et al. Changing everyday memory behaviour in amnestic mild cognitive impairment: a randomised controlled trial. Neuropsychol Rehabil. 2008;18(1):65-88. PMID: 17943615. http://dx.doi.org/10.1080/09602010701409684

- 57. Tsantali E, Economidis D, Rigopoulou S. Testing the benefits of cognitive training vs. Cognitive stimulation in mild Alzheimer's disease: A randomised controlled trial. Brain Impair. 2017;18(2):188-96. PMID: None. http://dx.doi.org/10.1017/BrImp.2017.6
- 58. Tsolaki M, Kounti F, Agogiatou C, et al. Effectiveness of nonpharmacological approaches in patients with mild cognitive impairment. Neurodegener Dis. 2011;8(3):138-45. PMID: 21135531. http://dx.doi.org/10.1159/000320575
- 59. Venturelli M, Lanza M, Muti E, et al. Positive effects of physical training in activity of daily living-dependent older adults. Exp Aging Res. 2010;36(2):190-205. PMID: 20209421. http://dx.doi.org/10.1080/03610731003613771
- 60. Vidovich MR, Lautenschlager NT, Flicker L, et al. The PACE study: a randomized clinical trial of cognitive activity strategy training for older people with mild cognitive impairment. Am J Geriatr Psychiatry. 2015;23(4):360-72. PMID: 24801607. http://dx.doi.org/10.1016/j.jagp.2014.04.002
 - Vidovich MR, Lautenschlager NT, Flicker L, et al. The PACE study: a randomised clinical trial of cognitive activity (CA) for older adults with mild cognitive impairment (MCI). Trials. 2009;10:114. PMID: 20003398. http://dx.doi.org/10.1186/1745-6215-10-114
- 61. Vreugdenhil A, Cannell J, Davies A, et al. A community-based exercise programme to improve functional ability in people with Alzheimer's disease: a randomized controlled trial. Scand J Caring Sci. 2012;26(1):12-9. PMID: 21564154. http://dx.doi.org/10.1111/j.1471-6712.2011.00895.x
- 62. Wolfs CAG, Kessels A, Dirksen CD, et al. Integrated multidisciplinary diagnostic approach for dementia care: Randomised controlled trial. Br J Psychiatry. 2008;192(4):300-5. PMID: 18378994. http://dx.doi.org/10.1192/bjp.bp.107.035204

Caregiver and Caregiver-Patient Dyad Interventions

- 1. Barnes CJ, Markham C. A pilot study to evaluate the effectiveness of an individualized and cognitive behavioural communication intervention for informal carers of people with dementia: The Talking Sense programme. Int J Lang Commun Disord. 2018;53(3):615-27. PMID: 29460337. http://dx.doi.org/10.1111/1460-6984.12375
- Bass DM, Clark PA, Looman WJ, et al. The Cleveland Alzheimer's managed care demonstration: outcomes after 12 months of implementation. Gerontologist. 2003;43(1):73-85. PMID: 12604748. http://dx.doi.org/10.1093/geront/43.1.73
 - Bass DM, Judge KS, Snow AL, et al. A controlled trial of Partners in Dementia Care: veteran outcomes after six and twelve months. Alzheimers Res Ther. 2014;6(1):9.
 PMID: 24764496. http://dx.doi.org/10.1186/alzrt242
- 3. Belle SH, Burgio L, Burns R, et al. Enhancing the quality of life of dementia caregivers from different ethnic or racial groups: a randomized, controlled trial.[Summary for patients in Ann Intern Med. 2006 Nov 21;145(10):I39; PMID: 17116914]. Ann Int Med. 2006;145(10):727-38. PMID: 17116917. http://dx.doi.org/10.7326/0003-4819-145-10-200611210-00005

- Basu R, Hochhalter AK, Stevens AB. The Impact of the REACH II Intervention on Caregivers' Perceived Health. J Appl Gerontol. 2015;34(5):590-608. PMID: 24652899. http://dx.doi.org/10.1177/0733464813499640
- Elliott AF, Burgio LD, DeCoster J. Enhancing caregiver health: findings from the resources for enhancing Alzheimer's caregiver health II intervention. J Am Geriatr Soc. 2010;58(1):30-7. PMID: 20122038. http://dx.doi.org/10.1111/j.1532-5415.2009.02631.x
- c. Hatch DJ, DeHart WB, Norton MC. Subjective stressors moderate effectiveness of a multi-component, multi-site intervention on caregiver depression and burden. Int J Geriatr Psychiatry. 2014;29(4):406-13. PMID: 23983230. http://dx.doi.org/10.1002/gps.4019
- 4. Berwig M, Heinrich S, Spahlholz J, et al. Individualized support for informal caregivers of people with dementia effectiveness of the German adaptation of REACH II. BMC Geriatr. 2017;17(1):286. PMID: 29233097. http://dx.doi.org/10.1186/s12877-017-0678-y
 - a. Heinrich S, Berwig M, Simon A, et al. German adaptation of the Resources for Enhancing Alzheimer's Caregiver Health II: study protocol of a single-centred, randomised controlled trial. BMC Geriatr. 2014;14:21. PMID: 24520910. http://dx.doi.org/10.1186/1471-2318-14-21
- 5. Brennan PF, Moore SM, Smyth KA. The effects of a special computer network on caregivers of persons with Alzheimer's disease. Nurs Res. 1995;44(3):166-72. PMID: 7761293. http://dx.doi.org/10.1097/00006199-199505000-00007
 - a. Bass DM, McClendon MJ, Brennan PF, et al. The buffering effect of a computer support network on caregiver strain. J Aging Health. 1998;10(1):20-43. PMID: 10182416. http://dx.doi.org/10.1177/089826439801000102
- Bruvik FK, Allore HG, Ranhoff AH, et al. The effect of psychosocial support intervention on depression in patients with dementia and their family caregivers: an assessor-blinded randomized controlled trial. Dement Geriatr Cogn Dis Extra. 2013;3(1):386-97. PMID: 24348500. http://dx.doi.org/10.1159/000355912
- Burgio L, Stevens A, Guy D, et al. Impact of two psychosocial interventions on white and African American family caregivers of individuals with dementia. Gerontologist. 2003;43(4):568-79. PMID: 12937335.
 - a. Gitlin LN, Belle SH, Burgio LD, et al. Effect of multicomponent interventions on caregiver burden and depression: the REACH multisite initiative at 6-month follow-up. Psychol Aging. 2003;18(3):361-74. PMID: 14518800. http://dx.doi.org/10.1037/0882-7974.18.3.361
 - b. Wisniewski SR, Belle SH, Coon DW, et al. The Resources for Enhancing Alzheimer's Caregiver Health (REACH): project design and baseline characteristics. Psychol Aging. 2003;18(3):375-84. PMID: 14518801. http://dx.doi.org/10.1037/0882-7974.18.3.375
- Callahan CM, Boustani MA, Unverzagt FW, et al. Effectiveness of collaborative care for older adults with Alzheimer disease in primary care: a randomized controlled trial. JAMA. 2006;295(18):2148-57. PMID: 16684985. http://dx.doi.org/10.1001/jama.295.18.2148

- 9. Chang BL. Cognitive-behavioral intervention for homebound caregivers of persons with dementia. Nurs Res. 1999;48(3):173-82. PMID: 10337848. http://dx.doi.org/10.1097/00006199-199905000-00007
- 10. Charlesworth G, Shepstone L, Wilson E, et al. Befriending carers of people with dementia: randomised controlled trial. BMJ. 2008;336(7656):1295-7. PMID: 18505757. http://dx.doi.org/10.1136/bmj.39549.548831.AE
 - a. Charlesworth G, Shepstone L, Wilson E, et al. Does befriending by trained lay workers improve psychological well-being and quality of life for carers of people with dementia, and at what cost? A randomised controlled trial. Health Technol Assess. 2008;12(4):iii, v-iii,78. PMID: 18284895.
- Chien WT, Lee IY. Randomized controlled trial of a dementia care programme for families of home-resided older people with dementia. J Adv Nurs. 2011;67(4):774-87.
 PMID: 21198803. http://dx.doi.org/10.1111/j.1365-2648.2010.05537.x
- 12. Chien WT, Lee YM. A disease management program for families of persons in Hong Kong with dementia. Psychiatr Serv. 2008;59(4):433-6. PMID: 18378844. http://dx.doi.org/10.1176/ps.2008.59.4.433
- 13. Chu H, Yang CY, Liao YH, et al. The effects of a support group on dementia caregivers' burden and depression. J Aging Health. 2011;23(2):228-41. PMID: 20847363. http://dx.doi.org/10.1177/0898264310381522
- 14. Chu P, Edwards J, Levin R, et al. The use of clinical case management for early state Alzheimer's patients and their families. Am J Alzheimers Dis Other Demen. 2000;15(5):284-90. PMID: None. http://dx.doi.org/10.1177/153331750001500506
- Connell CM, Janevic MR. Effects of a telephone-based exercise intervention for dementia caregiving wives: A randomized controlled trial. J Appl Gerontol. 2009;28(2):171-94. PMID: 21709757. http://dx.doi.org/10.1177/0733464808326951
- 16. Coon DW, Thompson L, Steffen A, et al. Anger and depression management: psychoeducational skill training interventions for women caregivers of a relative with dementia. Gerontologist. 2003;43(5):678-89. PMID: 14570964. http://dx.doi.org/10.1093/geront/43.5.678
- 17. Cristancho-Lacroix V, Wrobel J, Cantegreil-Kallen I, et al. A web-based psychoeducational program for informal caregivers of patients with Alzheimer's disease: a pilot randomized controlled trial. J Med Internet Res. 2015;17(5):e117. PMID: 25967983. http://dx.doi.org/10.2196/jmir.3717
 - a. Cristancho-Lacroix V, Kerherve H, de Rotrou J, et al. Evaluating the efficacy of a web-based program (diapason) for informal caregivers of patients with Alzheimer's disease: protocol for a randomized clinical trial. JMIR Res Protoc. 2013;2(2):e55. PMID: 24317497. http://dx.doi.org/10.2196/resprot.2978
- De Rotrou J, Cantegreil I, Faucounau V, et al. Do patients diagnosed with Alzheimer's disease benefit from a psycho-educational programme for family caregivers? A randomised controlled study. Int J Geriatr Psychiatry. 2011;26(8):833-42. PMID: 20922772. http://dx.doi.org/10.1002/gps.2611

- 19. Ducharme FC, Levesque LL, Lachance LM, et al. "Learning to become a family caregiver" efficacy of an intervention program for caregivers following diagnosis of dementia in a relative. Gerontologist. 2011;51(4):484-94. PMID: 21383112. http://dx.doi.org/10.1093/geront/gnr014
 - a. Ducharme F, Lachance L, Levesque L, et al. Persistent and delayed effects of a psycho-educational program for family caregivers at disclosure of dementia diagnosis in a relative: a six-month follow-up study. Healthy Aging Res. 2012;1(2). PMID: None. http://dx.doi.org/10.12715/har.2012.1.2
 - b. Ducharme F, Lachance L, Levesque L, et al. Maintaining the potential of a psychoeducational program: efficacy of a booster session after an intervention offered family caregivers at disclosure of a relative's dementia diagnosis. Aging Ment Health. 2015;19(3):207-16. PMID: 24943996. http://dx.doi.org/10.1080/13607863.2014.922527
- 20. Duggleby W, Ploeg J, McAiney C, et al. Web-Based Intervention for Family Carers of Persons with Dementia and Multiple Chronic Conditions (My Tools 4 Care): Pragmatic Randomized Controlled Trial. J Med Internet Res. 2018;20(6):e10484. PMID: 29959111. http://dx.doi.org/10.2196/10484
 - Duggleby W, Ploeg J, McAiney C, et al. Web-Based Intervention for Family Carers of Persons with Dementia and Multiple Chronic Conditions (My Tools 4 Care): Pragmatic Randomized Controlled Trial. J Med Internet Res. 2018;20(6):e10484. PMID: 29959111. http://dx.doi.org/10.2196/10484
- Eloniemi-Sulkava U, Notkola IL, Hentinen M, et al. Effects of supporting communityliving demented patients and their caregivers: a randomized trial. J Am Geriatr Soc. 2001;49(10):1282-7. PMID: 11890485. http://dx.doi.org/10.1046/j.1532-5415.2001.49255.x
- Eloniemi-Sulkava U, Saarenheimo M, Laakkonen ML, et al. Family care as collaboration: effectiveness of a multicomponent support program for elderly couples with dementia. Randomized controlled intervention study. J Am Geriatr Soc. 2009;57(12):2200-8. PMID: 20121986. http://dx.doi.org/10.1111/j.1532-5415.2009.02564.x
- Finkel S, Czaja SJ, Schulz R, et al. E-care: a telecommunications technology intervention for family caregivers of dementia patients. Am J Geriatr Psychiatry. 2007;15(5):443-8.
 PMID: 17463195. http://dx.doi.org/10.1097/JGP.0b013e3180437d87
- 24. Fortinsky RH, Kulldorff M, Kleppinger A, et al. Dementia care consultation for family caregivers: collaborative model linking an Alzheimer's association chapter with primary care physicians. Aging Ment Health. 2009;13(2):162-70. PMID: 19347683. http://dx.doi.org/10.1080/13607860902746160
- 25. Fung W, Chien W. The effectiveness of a mutual support group for family caregivers of a relative with dementia. Arch Psychiatr Nurs. 2002;16(3):134-44. PMID: 12037799. http://dx.doi.org/10.1053/apnu.2002.32951
- 26. Gallagher-Thompson D, Coon DW, Solano N, et al. Change in indices of distress among Latino and Anglo female caregivers of elderly relatives with dementia: site-specific

results from the REACH national collaborative study. Gerontologist. 2003;43(4):580-91. PMID: 12937336. http://dx.doi.org/10.1093/geront/43.4.580

- a. Gitlin LN, Belle SH, Burgio LD, et al. Effect of multicomponent interventions on caregiver burden and depression: the REACH multisite initiative at 6-month followup. Psychol Aging. 2003;18(3):361-74. PMID: 14518800. http://dx.doi.org/10.1037/0882-7974.18.3.361
- b. Wisniewski SR, Belle SH, Coon DW, et al. The Resources for Enhancing Alzheimer's Caregiver Health (REACH): project design and baseline characteristics. Psychol Aging. 2003;18(3):375-84. PMID: 14518801. http://dx.doi.org/10.1037/0882-7974.18.3.375
- 27. Gallagher-Thompson D, Gray HL, Dupart T, et al. Effectiveness of cognitive/behavioral small group intervention for reduction of depression and stress in non-Hispanic White and Hispanic/Latino women dementia family caregivers: Outcomes and mediators of change. J Ration Emot Cogn Behav Ther. 2008;26(4):286-303. PMID: 25067886. http://dx.doi.org/10.1007/s10942-008-0087-4
- 28. Gallagher-Thompson D, Wang PC, Liu W, et al. Effectiveness of a psychoeducational skill training DVD program to reduce stress in Chinese American dementia caregivers: results of a preliminary study. Aging Ment Health. 2010;14(3):263-73. PMID: 20425645. http://dx.doi.org/10.1080/13607860903420989
- 29. Garand L, Rinaldo DE, Alberth MM, et al. Effects of problem solving therapy on mental health outcomes in family caregivers of persons with a new diagnosis of mild cognitive impairment or early dementia: a randomized controlled trial. Am J Geriatr Psychiatry. 2014;22(8):771-81. PMID: 24119856. http://dx.doi.org/10.1016/j.jagp.2013.07.007
- 30. Gaugler JE, Reese M, Mittelman MS. Effects of the NYU caregiver intervention-adult child on residential care placement. Gerontologist. 2013;53(6):985-97. PMID: 23339050. http://dx.doi.org/10.1093/geront/gns193
 - Gaugler JE, Reese M, Mittelman MS. Effects of the Minnesota Adaptation of the NYU Caregiver Intervention on Depressive Symptoms and Quality of Life for Adult Child Caregivers of Persons with Dementia. Alzheimers Res Ther. 2015;23(11):1179-92. PMID: 26238226. http://dx.doi.org/10.1016/j.jagp.2015.06.007
 - b. Gaugler JE, Reese M, Mittelman MS. Effects of the Minnesota Adaptation of the NYU Caregiver Intervention on Primary Subjective Stress of Adult Child Caregivers of Persons With Dementia. Gerontologist. 2016;56(3):461-74. PMID: 25628299. http://dx.doi.org/10.1093/geront/gnu125
 - c. Gaugler JE, Reese M, Mittelman MS. Process Evaluation of the NYU Caregiver Intervention-Adult Child. Gerontologist. 2018;58(2):e107-e17. PMID: 29562359. http://dx.doi.org/10.1093/geront/gnx048
 - d. Gaugler JE, Reese M, Mittelman MS. The Effects of a Comprehensive Psychosocial Intervention on Secondary Stressors and Social Support for Adult Child Caregivers of Persons With Dementia. Innov Aging. 2018;2(2):igy015. PMID: 30009268. http://dx.doi.org/10.1093/geroni/igy015

- Gitlin LN, Arthur P, Piersol C, et al. Targeting Behavioral Symptoms and Functional Decline in Dementia: A Randomized Clinical Trial. J Am Geriatr Soc. 2018;66(2):339-45. PMID: 29192967. http://dx.doi.org/10.1111/jgs.15194
- 32. Gitlin LN, Corcoran M, Winter L, et al. A randomized, controlled trial of a home environmental intervention: effect on efficacy and upset in caregivers and on daily function of persons with dementia. Gerontologist. 2001;41(1):4-14. PMID: 11220813. http://dx.doi.org/10.1093/geront/41.1.4
 - a. Gitlin LN, Mann WC, Vogel WB, et al. A non-pharmacologic approach to address challenging behaviors of Veterans with dementia: description of the tailored activity program-VA randomized trial. BMC Geriatr. 2013;13:96. PMID: 24060106. http://dx.doi.org/10.1186/1471-2318-13-96
- 33. Gitlin LN, Winter L, Burke J, et al. Tailored activities to manage neuropsychiatric behaviors in persons with dementia and reduce caregiver burden: a randomized pilot study. Am J Geriatr Psychiatry. 2008;16(3):229-39. PMID: 18310553. http://dx.doi.org/10.1097/JGP.0b013e318160da72
- 34. Gitlin LN, Winter L, Corcoran M, et al. Effects of the home environmental skill-building program on the caregiver-care recipient dyad: 6-month outcomes from the Philadelphia REACH Initiative. Gerontologist. 2003;43(4):532-46. PMID: 12937332. http://dx.doi.org/10.1093/geront/43.4.532
 - a. Gitlin LN, Belle SH, Burgio LD, et al. Effect of multicomponent interventions on caregiver burden and depression: the REACH multisite initiative at 6-month follow-up. Psychol Aging. 2003;18(3):361-74. PMID: 14518800. http://dx.doi.org/10.1037/0882-7974.18.3.361
 - b. Wisniewski SR, Belle SH, Coon DW, et al. The Resources for Enhancing Alzheimer's Caregiver Health (REACH): project design and baseline characteristics. Psychol Aging. 2003;18(3):375-84. PMID: 14518801. http://dx.doi.org/10.1037/0882-7974.18.3.375
- 35. Gitlin LN, Winter L, Dennis MP, et al. A biobehavioral home-based intervention and the well-being of patients with dementia and their caregivers: the COPE randomized trial. JAMA. 2010;304(9):983-91. PMID: 20810376. http://dx.doi.org/10.1001/jama.2010.1253
 - a. Gitlin LN, Rose K. Impact of caregiver readiness on outcomes of a nonpharmacological intervention to address behavioral symptoms in persons with dementia. Int J Geriatr Psychiatry. 2016;31(9):1056-63. PMID: 26833933. http://dx.doi.org/10.1002/gps.4422
- 36. Gitlin LN, Winter L, Dennis MP, et al. Targeting and managing behavioral symptoms in individuals with dementia: a randomized trial of a nonpharmacological intervention. J Am Geriatr Soc. 2010;58(8):1465-74. PMID: 20662955. http://dx.doi.org/10.1111/j.1532-5415.2010.02971.x
- Graff MJ, Vernooij-Dassen MJ, Thijssen M, et al. Community based occupational therapy for patients with dementia and their care givers: randomised controlled trial. BMJ. 2006;333(7580):1196. PMID: 17114212. http://dx.doi.org/10.1136/bmj.39001.688843.BE

- a. Graff MJ, Vernooij-Dassen MJ, Thijssen M, et al. Effects of community occupational therapy on quality of life, mood, and health status in dementia patients and their caregivers: a randomized controlled trial. J Gerontol. 2007;62(9):1002-9. PMID: 17895439. http://dx.doi.org/10.1093/gerona/62.9.1002
- 38. Hebert R, Levesque L, Vezina J, et al. Efficacy of a psychoeducative group program for caregivers of demented persons living at home: a randomized controlled trial. J Gerontol B Psychol Sci Soc Sci. 2003;58(1):S58-S67. PMID: 12496309. http://dx.doi.org/10.1093/geronb/58.1.S58
- 39. Hepburn KW, Lewis M, Narayan S, et al. Partners in Caregiving: A Psychoeducation Program Affecting Dementia Family Caregivers' Distress and Caregiving Outlook. Clin Gerontol. 2005;29(1):53-69. PMID: None. http://dx.doi.org/10.1300/J018v29n01_05
- 40. Hirano A, Suzuki Y, Kuzuya M, et al. Influence of regular exercise on subjective sense of burden and physical symptoms in community-dwelling caregivers of dementia patients: a randomized controlled trial. Arch Gerontol Geriatr. 2011;53(2):e158-e63. PMID: 20850878. http://dx.doi.org/10.1016/j.archger.2010.08.004
- 41. Jansen AP, van Hout HP, Nijpels G, et al. Effectiveness of case management among older adults with early symptoms of dementia and their primary informal caregivers: A randomized clinical trial. Int J Nurs Stud. 2011;48(8):933-43. PMID: 21356537. http://dx.doi.org/10.1016/j.ijnurstu.2011.02.004
 - Jansen AP, van Hout HP, van Marwijk HW, et al. (Cost)-effectiveness of casemanagement by district nurses among primary informal caregivers of older adults with dementia symptoms and the older adults who receive informal care: design of a randomized controlled trial [ISCRTN83135728]. BMC Public Health. 2005;5:133. PMID: 16343336. http://dx.doi.org/10.1186/1471-2458-5-133
- 42. Joling KJ, van Marwijk HW, Smit F, et al. Does a family meetings intervention prevent depression and anxiety in family caregivers of dementia patients? A randomized trial. PLoS One. 2012;7(1):e30936. PMID: 22303473. http://dx.doi.org/10.1371/journal.pone.0030936
 - a. Joling KJ, van Marwijk HW, van der Horst HE, et al. Effectiveness of family meetings for family caregivers on delaying time to nursing home placement of dementia patients: a randomized trial. PLoS One. 2012;7(8):e42145. PMID: 22876304. http://dx.doi.org/10.1371/journal.pone.0042145
- Judge KS, Yarry SJ, Looman WJ, et al. Improved Strain and Psychosocial Outcomes for Caregivers of Individuals with Dementia: Findings from Project ANSWERS. Gerontologist. 2013;53(2):280-92. PMID: 22899427. http://dx.doi.org/10.1093/geront/gns076
 - Dawson NT, Powers SM, Krestar M, et al. Predictors of self-reported psychosocial outcomes in individuals with dementia. Gerontologist. 2013;53(5):748-59. PMID: 23107792. http://dx.doi.org/10.1093/geront/gns137
 - b. Judge KS, Yarry SJ, Orsulic-Jeras S. Acceptability and feasibility results of a strength-based skills training program for dementia caregiving dyads. Gerontologist. 2010;50(3):408-17. PMID: 19808841. http://dx.doi.org/10.1093/geront/gnp138

- 44. King AC, Baumann K, O'Sullivan P, et al. Effects of Moderate-Intensity Exercise on Physiological, Behavioral, and Emotional Responses to Family Caregiving. J Gerontol A Biol Sci Med Sci. 2002;57(1):M26-M36. PMID: 11773209. http://dx.doi.org/10.1093/gerona/57.1.M26
 - a. Castro CM, Wilcox S, O'Sullivan P, et al. An exercise program for women who are caring for relatives with dementia. Psychosom Med. 2002;64(3):458-68. PMID: 12021419.
- 45. Koivisto AM, Hallikainen I, Valimaki T, et al. Early psychosocial intervention does not delay institutionalization in persons with mild Alzheimer disease and has impact on neither disease progression nor caregivers' well-being: ALSOVA 3-year follow-up. Int J Geriatr Psychiatry. 2016;31(3):273-83. PMID: 26177825. http://dx.doi.org/10.1002/gps.4321
- 46. Kurz A, Wagenpfeil S, Hallauer J, et al. Evaluation of a brief educational program for dementia carers: the AENEAS study. Int J Geriatr Psychiatry. 2010;25(8):861-9. PMID: 19946869. http://dx.doi.org/10.1002/gps.2428
- Kwok T, Wong B, Ip I, et al. Telephone-delivered psychoeducational intervention for Hong Kong Chinese dementia caregivers: a single-blinded randomized controlled trial. Clin Interv Aging. 2013;8:1191-7. PMID: 24072965. http://dx.doi.org/10.2147/CIA.S48264
- 48. Laakkonen ML, Kautiainen H, Holtta E, et al. Effects of Self-Management Groups for People with Dementia and Their Spouses--Randomized Controlled Trial. J Am Geriatr Soc. 2016;64(4):752-60. PMID: 27060101. http://dx.doi.org/10.1111/jgs.14055
 - a. Laakkonen ML, Holtta EH, Savikko N, et al. Psychosocial group intervention to enhance self-management skills of people with dementia and their caregivers: study protocol for a randomized controlled trial. Trials. 2012;13:133. PMID: 22871107. http://dx.doi.org/10.1186/1745-6215-13-133
 - b. Laakkonen M-L, Savikko N, Holtta E, et al. Self-management groups for people with dementia and their spousal caregivers. A randomized, controlled trial. Baseline findings and feasibility. Eur Geriatr Med. 2013;4(6):389-93. PMID: None. http://dx.doi.org/10.1016/j.eurger.2013.09.006
- 49. Lam LC, Lee JS, Chung JC, et al. A randomized controlled trial to examine the effectiveness of case management model for community dwelling older persons with mild dementia in Hong Kong. Int J Geriatr Psychiatry. 2010;25(4):395-402. PMID: 19606455. http://dx.doi.org/10.1002/gps.2352
- 50. Leach M, Francis A, Ziaian T. Transcendental Meditation for the improvement of health and wellbeing in community-dwelling dementia caregivers : a randomised wait-list controlled trial. BMC Complement Altern Med. 2015;15:145. PMID: 25952550. http://dx.doi.org/10.1186/s12906-015-0666-8
 - Leach MJ, Francis A, Ziaian T. Improving the health and well-being of communitydwelling caregivers of dementia sufferers: study protocol of a randomized controlled trial of structured meditation training. J Altern Complement Med. 2014;20(2):136-41.
 PMID: 24044373. http://dx.doi.org/10.1089/act.2014.20302

- 51. Livingston G, Barber J, Rapaport P, et al. Clinical effectiveness of a manual based coping strategy programme (START, STrAtegies for RelaTives) in promoting the mental health of carers of family members with dementia: pragmatic randomised controlled trial. BMJ. 2013;347:f6276. PMID: 24162942. http://dx.doi.org/10.1136/bmj.f6276
 - a. Livingston G, Barber J, Rapaport P, et al. START (STrAtegies for RelaTives) study: a pragmatic randomised controlled trial to determine the clinical effectiveness and cost-effectiveness of a manual-based coping strategy programme in promoting the mental health of carers of people with dementia. Health Technol Assess. 2014;18(61):1-242. PMID: 25300037. http://dx.doi.org/10.3310/hta18610
- LoGiudice D, Waltrowicz W, Brown K, et al. Do memory clinics improve the quality of life of carers? A randomized pilot trial. Int J Geriatr Psychiatry. 1999;14(8):626-32.
 PMID: 10489653. http://dx.doi.org/10.1002/(SICI)1099-1166(199908)14:8<626::AID-GPS990>3.0.CO;2-5
- 53. Losada A, Marquez-Gonzalez M, Romero-Moreno R. Mechanisms of action of a psychological intervention for dementia caregivers: effects of behavioral activation and modification of dysfunctional thoughts. Int J Geriatr Psychiatry

2010:1119-27. PMID: 21061414. http://dx.doi.org/10.1002/gps.2648

- 54. Marriott A, Donaldson C, Tarrier N, et al. Effectiveness of cognitive-behavioural family intervention in reducing the burden of care in carers of patients with Alzheimer's disease. Br J Psychiatry. 2000;176:557-62. PMID: 10974962. http://dx.doi.org/10.1192/bjp.176.6.557
- 55. Martin-Carrasco M, Dominguez-Panchon AI, Gonzalez-Fraile E, et al. Effectiveness of a psychoeducational intervention group program in the reduction of the burden experienced by caregivers of patients with dementia: the EDUCA-II randomized trial. Alzheimer Dis Assoc Disord. 2014;28(1):79-87. PMID: 24113563. http://dx.doi.org/10.1097/WAD.000000000000003
- 56. Martin-Carrasco M, Martin MF, Valero CP, et al. Effectiveness of a psychoeducational intervention program in the reduction of caregiver burden in Alzheimer's disease patients' caregivers. Int J Geriatr Psychiatry. 2009;24(5):489-99. PMID: 18949763. http://dx.doi.org/10.1002/gps.2142
- Martin-Cook K, Davis BA, Hynan LS, et al. A randomized, controlled study of an Alzheimer's caregiver skills training program. Am J Alzheimers Dis Other Demen. 2005;20(4):204-10. PMID: 16136843. http://dx.doi.org/10.1177/153331750502000411
- 58. Martindale-Adams J, Nichols LO, Burns R, et al. A trial of dementia caregiver telephone support. The Canadian journal of nursing research = Revue canadienne de recherche en sciences infirmieres. 2013;45(4):30-48. PMID: 24617278. http://dx.doi.org/10.1177/084456211304500404
- 59. Mavandadi S, Wright EM, Graydon MM, et al. A randomized pilot trial of a telephonebased collaborative care management program for caregivers of individuals with dementia. Psychol Serv. 2017;14(1):102-11. PMID: 28134558. http://dx.doi.org/10.1037/ser0000118

- 60. Meeuwsen EJ, Melis RJ, Van Der Aa GC, et al. Effectiveness of dementia follow-up care by memory clinics or general practitioners: randomised controlled trial. BMJ. 2012;344:e3086. PMID: 22589500. http://dx.doi.org/10.1136/bmj.e3086
- 61. Menn P, Holle R, Kunz S, et al. Dementia care in the general practice setting: a cluster randomized trial on the effectiveness and cost impact of three management strategies. Value Health. 2012;15(6):851-9. PMID: 22999135. http://dx.doi.org/10.1016/j.jval.2012.06.007
 - a. Holle R, Grassel E, Ruckdaschel S, et al. Dementia care initiative in primary practice: study protocol of a cluster randomized trial on dementia management in a general practice setting. BMC Health Serv Res. 2009;9:91. PMID: 19500383. http://dx.doi.org/10.1186/1472-6963-9-91
- 62. Mittelman MS, Roth DL, Coon DW, et al. Sustained benefit of supportive intervention for depressive symptoms in caregivers of patients with Alzheimer's disease. Am J Psychiatry. 2004;161(5):850-6. PMID: 15121650. http://dx.doi.org/10.1176/appi.ajp.161.5.850
 - a. Gaugler JE, Roth DL, Haley WE, et al. Can counseling and support reduce burden and depressive symptoms in caregivers of people with Alzheimer's disease during the transition to institutionalization? Results from the New York University caregiver intervention study. J Am Geriatr Soc. 2008;56(3):421-8. PMID: 18179495. http://dx.doi.org/10.1111/j.1532-5415.2007.01593.x
 - b. Haley WE, Bergman EJ, Roth DL, et al. Long-term effects of bereavement and caregiver intervention on dementia caregiver depressive symptoms. Gerontologist. 2008;48(6):732-40. PMID: 19139247.
 - c. Mittelman MS, Ferris SH, Shulman E, et al. A comprehensive support program: effect on depression in spouse-caregivers of AD patients. Gerontologist. 1995;35(6):792-802. PMID: 8557206. http://dx.doi.org/10.1093/geront/35.6.792
 - d. Mittelman MS, Ferris SH, Shulman E, et al. A family intervention to delay nursing home placement of patients with Alzheimer disease. A randomized controlled trial. JAMA. 1996;276(21):1725-31. PMID: 8940320. http://dx.doi.org/10.1001/jama.1996.03540210033030
 - e. Mittelman MS, Ferris SH, Steinberg G, et al. An intervention that delays institutionalization of Alzheimer's disease patients: treatment of spouse-caregivers. Gerontologist. 1993;33(6):730-40. PMID: 8314099. http://dx.doi.org/10.1093/geront/33.6.730
 - f. Mittelman MS, Haley WE, Clay OJ, et al. Improving caregiver well-being delays nursing home placement of patients with Alzheimer disease. Neurology. 2006;67(9):1592-9. PMID: 17101889. http://dx.doi.org/10.1212/01.wnl.0000242727.81172.91
 - g. Mittelman MS, Roth DL, Clay OJ, et al. Preserving health of Alzheimer caregivers: impact of a spouse caregiver intervention. Am J Geriatr Psychiatry. 2007;15(9):780-9. PMID: 17804831. http://dx.doi.org/10.1097/JGP.0b013e31805d858a
 - h. Mittelman MS, Roth DL, Haley WE, et al. Effects of a caregiver intervention on negative caregiver appraisals of behavior problems in patients with Alzheimer's

disease: results of a randomized trial. J Gerontol B Psychol Sci Soc Sci. 2004;59(1):27-34. PMID: 14722336. http://dx.doi.org/10.1093/geronb/59.1.P2714722336

- 63. Nourhashemi F, Andrieu S, Gillette-Guyonnet S, et al. Effectiveness of a specific care plan in patients with Alzheimer's disease: cluster randomised trial (PLASA study). BMJ. 2010;340:c2466. PMID: 20522656. http://dx.doi.org/10.1136/bmj.c2466
- 64. Nunez-Naveira L, Alonso-Bua B, de Labra C, et al. UnderstAID, an ICT Platform to Help Informal Caregivers of People with Dementia: A Pilot Randomized Controlled Study. Biomed Res Int. 2016;2016:5726465. PMID: 28116300. http://dx.doi.org/10.1155/2016/5726465
- 65. Ostwald SK, Hepburn KW, Caron W, et al. Reducing caregiver burden: a randomized psychoeducational intervention for caregivers of persons with dementia. Gerontologist. 1999;39(3):299-309. PMID: 10396888. http://dx.doi.org/10.1093/geront/39.3.299
 - a. Hepburn KW, Tornatore J, Center B, et al. Dementia family caregiver training: affecting beliefs about caregiving and caregiver outcomes. J Am Geriatr Soc. 2001;49(4):450-7. PMID: 11347790. http://dx.doi.org/10.1046/j.1532-5415.2001.49090.x
- 66. Pillemer K, Jill SJ. Peer support for Alzheimer's caregivers: Is it enough to make a difference? Res Aging. 2002;24(2):171-92. PMID: None. http://dx.doi.org/10.1177/0164027502242001
- 67. Prick AE, de Lange J, Twisk J, et al. The effects of a multi-component dyadic intervention on the psychological distress of family caregivers providing care to people with dementia: a randomized controlled trial. Int Psychogeriatr. 2015;27(12):2031-44. PMID: 26004290. http://dx.doi.org/10.1017/S104161021500071X
 - a. Prick AE, de Lange J, Scherder E, et al. Home-based exercise and support programme for people with dementia and their caregivers: study protocol of a randomised controlled trial. BMC Public Health. 2011;11:894. PMID: 22117691. http://dx.doi.org/10.1186/1471-2458-11-894
 - b. Prick AE, de Lange J, Scherder E, et al. The effects of a multicomponent dyadic intervention on the mood, behavior, and physical health of people with dementia: a randomized controlled trial. Clin Interv Aging. 2016;11:383-95. PMID: 27099480. http://dx.doi.org/10.2147/CIA.S95789
 - c. Prick AE, de Lange J, Scherder E, et al. The Effects of a Multicomponent Dyadic Intervention With Physical Exercise on the Cognitive Functioning of People With Dementia: A Randomized Controlled Trial. J Aging Phys Act. 2017:1-14. PMID: 28120631. http://dx.doi.org/10.1123/japa.2016-0038
 - d. Prick AE, de Lange J, van 't Leven N, et al. Process evaluation of a multicomponent dyadic intervention study with exercise and support for people with dementia and their family caregivers. Trials. 2014;15:401. PMID: 25336121. http://dx.doi.org/10.1186/1745-6215-15-401
- 68. Roberts J, Browne G, Milne C, et al. Problem-solving counseling for caregivers of the cognitively impaired: effective for whom? Nurs Res. 1999;48(3):162-72. PMID: 10337847.

- 69. Samus QM, Johnston D, Black BS, et al. A multidimensional home-based care coordination intervention for elders with memory disorders: the maximizing independence at home (MIND) pilot randomized trial. Am J Geriatr Psychiatry. 2014;22(4):398-414. PMID: 24502822. http://dx.doi.org/10.1016/j.jagp.2013.12.175
 - a. Amjad H, Wong SK, Roth DL, et al. Health Services Utilization in Older Adults with Dementia Receiving Care Coordination: The MIND at Home Trial. Health Serv Res. 2018;53(1):556-79. PMID: 28083879. http://dx.doi.org/10.1111/1475-6773.12647
 - b. Tanner JA, Black BS, Johnston D, et al. A randomized controlled trial of a community-based dementia care coordination intervention: effects of MIND at Home on caregiver outcomes. Am J Geriatr Psychiatry. 2015;23(4):391-402. PMID: 25260557. http://dx.doi.org/10.1016/j.jagp.2014.08.002
- 70. Schoenmakers B, Buntinx F, DeLepeleire J. Supporting family carers of communitydwelling elder with cognitive decline: a randomized controlled trial. Int J Family Med. 2010;2010:184152. PMID: 22332005. http://dx.doi.org/10.1155/2010/184152
- Spalding-Wilson KN, Guzman-Velez E, Angelica J, et al. A novel two-day intervention reduces stress in caregivers of persons with dementia. Alzheimers Dement (N Y). 2018;4:450-60. PMID: 30258974. http://dx.doi.org/10.1016/j.trci.2018.08.004
- 72. Spijker A, Wollersheim H, Teerenstra S, et al. Systematic care for caregivers of patients with dementia: a multicenter, cluster-randomized, controlled trial. Am J Geriatr Psychiatry. 2011:521-31. PMID: 21358385. http://dx.doi.org/10.1097/JGP.0b013e3182110599
- 73. Steffen AM, Gant JR. A telehealth behavioral coaching intervention for neurocognitive disorder family carers. Int J Geriatr Psychiatry. 2016;31(2):195-203. PMID: 26077904. http://dx.doi.org/10.1002/gps.4312
- 74. Teri L, Gibbons LE, McCurry SM, et al. Exercise plus behavioral management in patients with Alzheimer disease: a randomized controlled trial. JAMA. 2003;290(15):2015-22. PMID: 14559955. http://dx.doi.org/10.1001/jama.290.15.2015
- 75. Teri L, McCurry SM, Logsdon R, et al. Training community consultants to help family members improve dementia care: a randomized controlled trial. Gerontologist. 2005;45(6):802-11. PMID: 16326662. http://dx.doi.org/10.1093/geront/45.6.802
- 76. Thyrian JR, Hertel J, Wucherer D, et al. Effectiveness and Safety of Dementia Care Management in Primary Care: A Randomized Clinical Trial. JAMA Psychiatry. 2017;74(10):996-1004. PMID: 28746708. http://dx.doi.org/10.1001/jamapsychiatry.2017.2124
- 77. Tremont G, Davis JD, Papandonatos GD, et al. Psychosocial telephone intervention for dementia caregivers: A randomized, controlled trial. Alzheimers Dement. 2015;11(5):541-8. PMID: 25074341. http://dx.doi.org/10.1016/j.jalz.2014.05.1752
 - a. Tremont G, Davis J, Papandonatos GD, et al. A telephone intervention for dementia caregivers: background, design, and baseline characteristics. Contemp Clin Trials. 2013;36(2):338-47. PMID: 23916916. http://dx.doi.org/10.1016/j.cct.2013.07.011
 - b. Tremont G, Davis JD, Ott BR, et al. Randomized Trial of the Family Intervention: Telephone Tracking-Caregiver for Dementia Caregivers: Use of Community and

Healthcare Resources. J Am Geriatr Soc. 2017;65(5):924-30. PMID: 28008609. http://dx.doi.org/10.1111/jgs.14684

- 78. Ulstein ID, Sandvik L, Wyller TB, et al. A one-year randomized controlled psychosocial intervention study among family carers of dementia patients--effects on patients and carers. Dement Geriatr Cogn Dis Extra. 2007;24(6):469-75. PMID: 17986818. http://dx.doi.org/10.1159/000110740
- 79. Vickrey BG, Mittman BS, Connor KI, et al. The effect of a disease management intervention on quality and outcomes of dementia care: a randomized, controlled trial. Ann Int Med. 2006;145(10):713-26. PMID: 17116916. http://dx.doi.org/10.7326/0003-4819-145-10-200611210-00004
 - a. Duru OK, Ettner SL, Vassar SD, et al. Cost evaluation of a coordinated care management intervention for dementia. Am J Manag Care. 2009;15(8):521-8. PMID: 19670955.
- 80. Voigt-Radloff S, Graff M, Leonhart R, et al. A multicentre RCT on community occupational therapy in Alzheimer's disease: 10 sessions are not better than one consultation. BMJ Open. 2011;1(1):e000096. PMID: 22021760. http://dx.doi.org/10.1136/bmjopen-2011-000096
 - a. Voigt-Radloff S, Graff M, Leonhart R, et al. WHEDA study: effectiveness of occupational therapy at home for older people with dementia and their caregivers--the design of a pragmatic randomised controlled trial evaluating a Dutch programme in seven German centres. BMC Geriatr. 2009;9:44. PMID: 19799779. http://dx.doi.org/10.1186/1471-2318-9-44
- 81. Waldorff FB, Buss DV, Eckermann A, et al. Efficacy of psychosocial intervention in patients with mild Alzheimer's disease: the multicentre, rater blinded, randomised Danish Alzheimer Intervention Study (DAISY). BMJ. 2012;345:e4693. PMID: 22807076. http://dx.doi.org/10.1136/bmj.e4693
 - Phung KTT, Waldorff FB, Buss DV, et al. A three-year follow-up on the efficacy of psychosocial interventions for patients with mild dementia and their caregivers: The multicentre, rater-blinded, randomised Danish Alzheimer Intervention Study (DAISY). BMJ Open. 2013. PMID: 24270834. http://dx.doi.org/10.1136/bmjopen-2013-003584
 - b. Sogaard R, Sorensen J, Waldorff FB, et al. Cost analysis of early psychosocial intervention in Alzheimer's disease. Dement Geriatr Cogn Disord. 2014;37(3-4):141-53. PMID: 24157706. http://dx.doi.org/10.1159/000355368
 - c. Waldemar G, Waldorff FB, Buss DV, et al. The Danish Alzheimer intervention study: rationale, study design and baseline characteristics of the cohort. Neuroepidemiology. 2011;36(1):52-61. PMID: 21196773. http://dx.doi.org/10.1159/000322942
- 82. Wang L-Q, Chien W-T. Randomised controlled trial of a family-led mutual support programme for people with dementia. Journal of clinical nursing. 2011;20(15-16):2362-6. PMID: 21752121. http://dx.doi.org/10.1111/j.1365-2702.2011.03746.x
- 83. Williams VP, Bishop-Fitzpatrick L, Lane JD, et al. Video-based coping skills to reduce health risk and improve psychological and physical well-being in Alzheimer's disease

family caregivers. Psychosom Med. 2010;72(9):897-904. PMID: 20978227. http://dx.doi.org/10.1097/PSY.0b013e3181fc2d09

- 84. Wilz G, Reder M, Meichsner F, et al. The Tele.TAnDem Intervention: Telephone-based CBT for Family Caregivers of People With Dementia. Gerontologist. 2018;58(2):e118-e29. PMID: 29190357. http://dx.doi.org/10.1093/geront/gnx183
 - Meichsner F, Topfer NF, Reder M, et al. Telephone-Based Cognitive Behavioral Intervention Improves Dementia Caregivers' Quality of Life. Am J Alzheimers Dis Other Demen. 2019:1533317518822100. PMID: 30636429. http://dx.doi.org/10.1177/1533317518822100
 - Soellner R, Reder M, Machmer A, et al. The Tele.TAnDem intervention: study protocol for a psychotherapeutic intervention for family caregivers of people with dementia. BMC Nurs. 2015;14:11. PMID: 28428730. http://dx.doi.org/10.1186/s12912-015-0059-9
 - c. Topfer NF, Wilz G. Tele.TAnDem increases the psychosocial resource utilization of dementia caregivers. GeroPsych (Bern). 2018;31(4):173-83. http://dx.doi.org/10.1024/1662-9647/a000197
- 85. Wilz G, Soellner R. Evaluation of a Short-Term Telephone-Based Cognitive Behavioral Intervention for Dementia Family Caregivers. Clin Gerontol. 2016;39(1):25-47. PMID: None. http://dx.doi.org/10.1080/07317115.2015.1101631
 - a. Wilz G, Meichsner F, Soellner R. Are psychotherapeutic effects on family caregivers of people with dementia sustainable? Two-year long-term effects of a telephone-based cognitive behavioral intervention. Aging Ment Health. 2017;21(7):774-81. PMID: 26954588. http://dx.doi.org/10.1080/13607863.2016.1156646
- 86. Winter L, Gitlin LN. Evaluation of a telephone-based support group intervention for female caregivers of community-dwelling individuals with dementia. Am J Alzheimers Dis Other Demen. 2006;21(6):391-7. PMID: 17267370. http://dx.doi.org/10.1177/1533317506291371
- Wright LK, Litaker M, Laraia MT, et al. Continuum of care for Alzheimer's disease: a nurse education and counseling program. Issues Ment Health Nurs. 2001;22(3):231-52. PMID: 11885210. http://dx.doi.org/10.1080/01612840117980
- Xiao LD, De Bellis A, Kyriazopoulos H, et al. The Effect of a Personalized Dementia Care Intervention for Caregivers From Australian Minority Groups. Am J Alzheimers Dis Other Demen. 2016;31(1):57-67. PMID: 25805891. http://dx.doi.org/10.1177/1533317515578256

Appendix D. List of Excluded Studies

Exclusion Code and Definition
E1. Study relevance
E1b. Treatment trial with primary prevention; healthy population without dementia or MCI
E2. Study design
E2a. Not an included study design (be more specific if E2b-E2e apply)
E2b. Comparative effectiveness
E2c. Followup <3 months (does not apply for harms)
E2d. Case-control (for KQ2 only)
E2e. Cohort or case-control n<1000 (KQ5 only)
E2f. No comparator/unexposed group (specific to harms outcomes)
E3. Setting
E3a. Not conducted in 'very high' HDI country
E3b. Intermediate care facility (nursing home, rehabilitation facility, subacute care)
E3c. Other unrepresentative setting (hospital, emergency department; KQ2: memory, dementia clinics)
E4. Population
E4a. Mean age <65 years
E4b. Exclusively among those with depression or psychosis, alcohol use disorder, HIV/AIDS, Down syndrome,
posttraumatic brain injury, metabolic disorders, Parkinson's disease, Huntington's disease, or stroke
E4c. Severe dementia
E4d. Professional caregiver
E4e. Not representative of community-dwelling population (e.g., patients needed to have a sign of cognitive
decline during the clinical investigation) (KQ2 only)
E5. Outcomes: No relevant outcomes
E6a. Screener: Not a relevant screening instrument (e.g., time for test administration too long [>10 min clinician,
>20 min self], assessment battery [vs. screening instrument])
E6b. Intervention: Not one of the specified interventions/treatments
E6c. Intervention aim: Focused on improving symptoms (mood, neuropsychiatric symptoms) or functional
performance or reducing falls
E7b. Does not use a reference standard
E7c. Study quality (general)
E8. Ancillary study to excluded primary study

- Abdel-Aziz, K, Larner, AJ. Six-item cognitive impairment test (6CIT): pragmatic diagnostic accuracy study for dementia and MCI. Int Psychogeriatr. 27(6): 991-7. 2015. PMID: 25630996. https://dx.doi.org/10.1017/S10416102140 02932 KQ2E3c
- Abdin, E, Vaingankar, JA, et al. Validation of the short version of the 10/66 dementia diagnosis in multiethnic Asian older adults in Singapore. BMC Geriatr. 17(1): 94. 2017. PMID: 28431511. https://dx.doi.org/10.1186/s12877-017-0475-7 KQ2E1
- Adachi, H, Shinagawa, S, et al. Comparison of the utility of everyday memory test and the Alzheimer's Disease Assessment Scale-Cognitive part for evaluation of mild cognitive impairment and very mild Alzheimer's disease. Psychiatry Clin Neurosci. 67(3): 148-53. 2013. PMID: 23581865. https://dx.doi.org/10.1111/pcn.12034 KQ2E1
- 4. Adapt-Fs Research Group. Follow-up evaluation of cognitive function in the randomized Alzheimer's Disease Antiinflammatory Prevention Trial and its Follow-up Study. Alzheimer's & Dementia. 11(2): 216-25.e1. 2015. PMID: 25022541. https://dx.doi.org/10.1016/j.jalz.2014.03.0 09 KQ4E1b, KQ5E1b
- Aguiar, P, Monteiro, L, et al. Rivastigmine transdermal patch and physical exercises for Alzheimer's disease: a randomized clinical trial. Curr Alzheimer Res. 11(6): 532-7. 2014. PMID: 24938502. KQ4E3a, KQ5E3a
- Alagiakrishnan, K, Zhao, N, et al. Montreal Cognitive Assessment is superior to Standardized Mini-Mental Status Exam in detecting mild cognitive impairment in the middle-aged and elderly patients with type 2 diabetes mellitus. [Erratum appears in Biomed Res Int. 2014;2014:648472]. Biomed Res Int. 2013(): 186106. 2013. PMID: 23936778. https://dx.doi.org/10.1155/2013/186106 KQ2E4b
- Alva, G, Cummings, JL, et al. Skin reactions at the application site of rivastigmine patch (4.6 mg/24 h, 9.5 mg/24 h or 13.3 mg/24 h): a qualitative analysis of clinical studies in patients with Alzheimer's disease. Int J Clin Pract. 69(5): 518-30. 2015. PMID: 25684069.

https://dx.doi.org/10.1111/ijcp.12621 **KQ4E2a, KQ5E2a**

- Andersen, F, Viitanen, M, et al. The effect of stimulation therapy and donepezil on cognitive function in Alzheimer's disease. A community based RCT with a two-bytwo factorial design. BMC Neurol. 12: 59. 2012. PMID: 22813231. https://dx.doi.org/10.1186/1471-2377-12-59 KQ4E2a, KQ5E2a
- Andrieu, Sandrine, Guyonnet, Sophie, et al. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): A randomised, placebo-controlled trial. The Lancet Neurology. 16(5): 377-389. 2017. https://dx.doi.org/10.1016/S1474-4422%2817%2930040-6 KQ4E1b, KQ5E1b
- 10. Apostolo, JLA, Paiva, DDS, et al. Adaptation and validation into Portuguese language of the six-item cognitive impairment test (6CIT). Aging Ment Health. 1-6. 2017. PMID: 28741373. https://dx.doi.org/10.1080/13607863.2017 .1348473 **KQ2E7b**
- Arabi, Z, Aziz, NA, et al. Early Dementia Questionnaire (EDQ): a new screening instrument for early dementia in primary care practice. BMC Fam Pract. 14: 49. 2013. PMID: 23586732. https://dx.doi.org/10.1186/1471-2296-14-49 KQ2E3a
- Arabi, Z, Syed Abdul Rahman, SA, et al. Reliability and construct validity of the Early Dementia Questionnaire (EDQ). BMC Geriatr. 16(1): 202. 2016. PMID: 27903242. https://dx.doi.org/10.1186/s12877-016-0384-1 KQ2E3a
- Arai, H, Sumitomo, K, et al. Disease state changes and safety of long-term donepezil hydrochloride administration in patients with Alzheimer's disease: interim results from the long-term, large-scale J-GOLD study in Japan. Psychogeriatrics:The Official Journal of the Japanese Psychogeriatric Society. 16(2): 107-15. 2016. PMID: 26114729. https://dx.doi.org/10.1111/psyg.12130 KQ4E2a, KQ5E2a
- 14. Araki, T, Wake, R, et al. The effects of combine treatment of memantine and

donepezil on Alzheimer's disease patients and its relationship with cerebral blood flow in the prefrontal area. Int J Geriatr Psychiatry. 29(9): 881-9. 2014. PMID: 24436135. https://dx.doi.org/10.1002/gps.4074

KQ4E2b, KQ5E2b

- Arcoverde, C, Deslandes, A, et al. Treadmill training as an augmentation treatment for Alzheimer's disease: a pilot randomized controlled study. Arq Neuropsiquiatr. 72(3): 190-6. 2014. PMID: 24676435. KQ4E6b
- Arlt, S, Muller-Thomsen, T, et al. Effect of one-year vitamin C- and Esupplementation on cerebrospinal fluid oxidation parameters and clinical course in Alzheimer's disease. Neurochem Res. 37(12): 2706-14. 2012. PMID: 22878647. https://dx.doi.org/10.1007/s11064-012-0860-8 KQ4E7c, KQ5E7c
- Atri, A, Hendrix, SB, et al. Cumulative, additive benefits of memantine-donepezil combination over component monotherapies in moderate to severe Alzheimer's dementia: a pooled area under the curve analysis. Alzheimers Res Ther. 7(1): 28. 2015. PMID: 25991927. https://dx.doi.org/10.1186/s13195-015-0109-2 KQ4E2a, KQ5E2a
- Awata, S, Sugiyama, M, et al. Development of the dementia assessment sheet for community-based integrated care system. Geriatr Gerontol Int. 16 Suppl 1: 123-31. 2016. PMID: 27018290. https://dx.doi.org/10.1111/ggi.12727 KQ2E6a
- Babacan-Yildiz, G, Isik, AT, et al. COST: Cognitive State Test, a brief screening battery for Alzheimer disease in illiterate and literate patients. Int Psychogeriatr. 25(3): 403-12. 2013. PMID: 23137551. https://dx.doi.org/10.1017/S10416102120 01780 KQ2E3a
- Babai, S, Auriche, P, et al. Comparison of adverse drug reactions with donepezil versus memantine: analysis of the French Pharmacovigilance Database. Therapie. 65(3): 255-259. 2010. PMID: 20699079. KQ5E2f
- 21. Bademli K, Lok N, Canbaz M, et al. Effects of Physical Activity Program on cognitive function and sleep quality in elderly with mild cognitive impairment: A randomized controlled trial. Perspect

Psychiatr Care. 2018. PMID: 30430592. **KQ4E3b, KQ5E3b**

- 22. Bahar-Fuchs, A, Webb, S, et al. Tailored and Adaptive Computerized Cognitive Training in Older Adults at Risk for Dementia: A Randomized Controlled Trial. J Alzheimers Dis. 60(3): 889-911. 2017. PMID: 28922158. https://dx.doi.org/10.3233/JAD-170404 KQ4E2b, KQ5E2b
- 23. Baleztena J, Ruiz-Canela M, Sayon-Orea C, et al. Association between cognitive function and supplementation with omega-3 PUFAs and other nutrients in 75 years old patients: a randomized multicenter study. Plos one. 2018. KQ4E1b, KQ5E1b
- Ballard, C, Margallo-Lana, M, et al. Quetiapine and rivastigmine and cognitive decline in Alzheimer's disease: randomised double blind placebo controlled trial. BMJ. 330(7496): 874. 2005. PMID: 15722369. https://dx.doi.org/10.1136/bmj.38369.459 988.8F KQ4E3b, KQ5E3b
- 25. Ballard, C, Thomas, A, et al. A doubleblind randomized placebo-controlled withdrawal trial comparing memantine and antipsychotics for the long-term treatment of function and neuropsychiatric symptoms in people with Alzheimer's disease (MAIN-AD). J Am Med Dir Assoc. 16(4): 316-22. 2015. PMID: 25523285. https://dx.doi.org/10.1016/j.jamda.2014.11 .002 KQ4E2b, KQ5E2b
- Bamidis, Pd, Fissler, P, et al. Gains in cognition through combined cognitive and physical training: The role of training dosage and severity of neurocognitive disorder. Front Aging Neurosci. 7(Jul). 2015. https://dx.doi.org/10.3389/fnagi 2015.001

https://dx.doi.org/10.3389/fnagi.2015.001 52 **KQ4E1b, KQ5E1b**

- 27. Barban, F, Annicchiarico, R, et al. Protecting cognition from aging and Alzheimer's disease: a computerized cognitive training combined with reminiscence therapy. Int J Geriatr Psychiatry. 31(4): 340-8. 2016. PMID: 26205305. https://dx.doi.org/10.1002/gps.4328 KQ4E7c, KQ5E7c
- Barekatain, M, Alavirad, M, et al. Cognitive rehabilitation in patients with nonamnestic mild cognitive impairment.

Journal of research in medical sciences. 21(7). 2016. **KQ4E3a, KQ5E3a**

- Barnes, DE, Beiser, AS, et al. Development and validation of a brief dementia screening indicator for primary care. Alzheimer's & Dementia. 10(6): 656-665.e1. 2014. PMID: 24491321. https://dx.doi.org/10.1016/j.jalz.2013.11.0 06 KQ2E1
- Barnes, DE, Santos-Modesitt, W, et al. The Mental Activity and eXercise (MAX) trial: a randomized controlled trial to enhance cognitive function in older adults. JAMA Intern Med. 173(9): 797-804. 2013. PMID: 23545598. https://dx.doi.org/10.1001/jamainternmed. 2013.189 KQ4E1b, KQ5E1b
- Bartos A, Fayette D. Validation of the Czech Montreal Cognitive Assessment for Mild Cognitive Impairment due to Alzheimer Disease and Czech Norms in 1,552 Elderly Persons. Dement Geriatr Cogn Disord. 2018;46(5-6):335-45. PMID: 30513529. KQ2E2d
- 32. Bass, DM, Judge, KS, et al. Caregiver outcomes of partners in dementia care: effect of a care coordination program for veterans with dementia and their family members and friends. J Am Geriatr Soc. 61(8): 1377-86. 2013. PMID: 23869899. https://dx.doi.org/10.1111/jgs.12362 KQ2E7c
- Beer, C, Horner, B, et al. A clusterrandomised trial of staff education to improve the quality of life of people with dementia living in residential care: the DIRECT study. PLoS One. 6(11): e28155. 2011. PMID: 22140531. KQ4E3b, KQ5E3b
- 34. Beer, CD, Horner, B, et al. Dementia in residential care: education intervention trial (DIRECT); protocol for a randomised controlled trial. Trials. 11: 63. 2010. PMID: 20500891. KQ4E8, KQ5E8
- Ben-Sadoun, G, Sacco, G, et al. Physical and cognitive stimulation using an Exergame in subjects with normal aging, mild and moderate cognitive impairment. Journal of alzheimers disease. 53(4): 1299-1314. 2016. KQ4E2a, KQ5E2a
- Bergh, S, Selbæk, G, et al. Discontinuation of antidepressants in people with dementia and neuropsychiatric symptoms (DESEP study): double blind, randomised, parallel group, placebo controlled trial. BMJ. 344:

e1566. 2012. PMID: Pubmed 22408266. **KQ4E3b, KQ5E3b**

- Berman SE, Koscik RL, Clark LR, et al. Use of the Quick Dementia Rating System (QDRS) as an Initial Screening Measure in a Longitudinal Cohort at Risk for Alzheimer's Disease. J Alzheimers Dis Rep. 2017;1(1):9-13. PMID: 28819654.
 KQ2E1
- Bernier, PJ, Gourdeau, C, et al. Validation and diagnostic accuracy of predictive curves for age-associated longitudinal cognitive decline in older adults. CMAJ. 189(48): E1472-E1480. 2017. PMID: 29203616. https://dx.doi.org/10.1503/cmaj.160792 KQ2E1
- Blautzik, J, Keeser, D, et al. Functional connectivity increase in the default-mode network of patients with Alzheimer's disease after long-term treatment with Galantamine. Eur Neuropsychopharmacol. 26(3): 602-13. 2016. PMID: 26796681. https://dx.doi.org/10.1016/j.euroneuro.201 5.12.006 KQ4E7c, KQ5E7c
- 40. Blom, MM, Bosmans, JE, et al. Effectiveness and cost-effectiveness of an internet intervention for family caregivers of people with dementia: design of a randomized controlled trial. BMC Psychiatry. 13: 17. 2013. PMID: 23305463. https://dx.doi.org/10.1186/1471-244X-13-17 KQ4E8, KQ5E8
- 41. Blom, MM, Zarit, SH, et al. Effectiveness of an Internet intervention for family caregivers of people with dementia: results of a randomized controlled trial. PLoS ONE [Electronic Resource]. 10(2): e0116622. 2015. PMID: 25679228. https://dx.doi.org/10.1371/journal.pone.01 16622 KQ4E7c, KQ5E7c
- 42. Boada-Rovira, M, Brodaty, H, et al. Efficacy and safety of donepezil in patients with Alzheimer's disease: results of a global, multinational, clinical experience study. Drugs Aging. 21(1): 43-53. 2004. PMID: 14715043. **KQ5E2f**
- 43. Bostrom, G, Conradsson, M, et al. Effects of a high-intensity functional exercise program on depressive symptoms among people with dementia in residential care: a randomized controlled trial. Int J Geriatr Psychiatry. 31(8): 868-78. 2016. PMID: 26644304.

https://dx.doi.org/10.1002/gps.4401 KQ4E6c, KQ5E6c

- Bouman, Z, Hendriks, MP, et al. Clinical validation of the WMS-IV-NL brief cognitive status exam (BCSE) in older adults with MCI or dementia. Int Psychogeriatr. 1-9. 2014. PMID: 25079232. https://dx.doi.org/10.1017/s10416102140 01471 KQ2E2d
- Bourgeois, J, Laye, M, et al. Relearning of Activities of Daily Living: a Comparison of the Effectiveness of Three Learning Methods in Patients with Dementia of the Alzheimer Type. Journal of nutrition, health & aging. 20(1): 48-55. 2016. PMID: Pubmed 26728933. https://dx.doi.org/10.1007/s12603-015-0597-6 KQ4E2b, KQ5E2b
- 46. Boustani, M, Callahan, CM, et al. Implementing a screening and diagnosis program for dementia in primary care. J Gen Intern Med. 20(7): 572-577. 2005. PMID: 16050849. **KQ1E5, KQ3E5**
- Boustani, M, Perkins, AJ, et al. Who refuses the diagnostic assessment for dementia in primary care?. Int J Geriatr Psychiatry. 21(6): 556-563. 2006. PMID: 16783796. KQ3E8
- Bowen, RL, Perry, G, et al. A clinical study of lupron depot in the treatment of women with Alzheimer's disease: preservation of cognitive function in patients taking an acetylcholinesterase inhibitor and treated with high dose lupron over 48 weeks. J Alzheimers Dis. 44(2): 549-60. 2015. PMID: 25310993. https://dx.doi.org/10.3233/JAD-141626 KQ4E7c, KQ5E7c
- 49. Brandt, J, Blehar, J, et al. Further validation of the Internet-based Dementia Risk Assessment. J Alzheimers Dis. 41(3): 937-45. 2014. PMID: 24705550. https://dx.doi.org/10.3233/JAD-140297 KQ2E4e
- Brijoux T, Kricheldorff C, M HL, et al. Supporting Families Living With Dementia in Rural Areas. Dtsch. 2016;113(41):681-7. PMID: 27839534. KQ4E2b, KQ5E2b
- Brijoux, Thomas, Kricheldorff, Cornelia, et al. Supporting families living with dementia in rural areas: A randomized controlled trial of quality of life improvement using qualified volunteers. Dtsch Arztebl Int. 113(41): 681-689. 2016. KQ4E2b, KQ5E2b

- 52. Brinkman, SD, Reese, RJ, et al. Validation of a self-administered computerized system to detect cognitive impairment in older adults. J Appl Gerontol. 33(8): 942-62. 2014. PMID: 25332303. https://dx.doi.org/10.1177/073346481245 5099 KQ2E2a
- 53. Brodaty, H, Connors, MH, et al. Screening for Dementia in Primary Care: A Comparison of the GPCOG and the MMSE. Dement Geriatr Cogn Disord. 42(5-6): 323-330. 2016. PMID: 27811463. https://dx.doi.org/10.1159/000450992 KQ2E7b
- 54. Brodaty, H, Gresham, M, et al. The Prince Henry Hospital dementia caregivers' training programme. Int J Geriatr Psychiatry. 12(2): 183-192. 1997. PMID: 9097211. KQ4E8, KQ5E8
- 55. Brodaty, H, Gresham, M. Effect of a training programme to reduce stress in carers of patients with dementia. BMJ. 299(6712): 1375-1379. 1989. PMID: 2513967. KQ4E3c, KQ5E3c
- 56. Brodaty, H, Mittelman, M, et al. The effects of counseling spouse caregivers of people with Alzheimer disease taking donepezil and of country of residence on rates of admission to nursing homes and mortality. Am J Geriatr Psychiatry. 17(9): 734-743. 2009. PMID: 19705519. **KQ4E8**, **KQ5E8**
- 57. Brown, JM, Lansdall, CJ, et al. The Test Your Memory for Mild Cognitive Impairment (TYM-MCI). J Neurol Neurosurg Psychiatry. 2017. PMID: 28912299. https://dx.doi.org/10.1136/jnnp-2016-315327 KQ2E3c
- Brown, KW, Coogle, CL, et al. A pilot randomized controlled trial of mindfulness-based stress reduction for caregivers of family members with dementia. Aging Ment Health. 20(11): 1157-1166. 2016. PMID: 26211415. https://dx.doi.org/10.1080/13607863.2015 .1065790 KQ4E2b, KQ5E2b
- Brunelle-Hamann, L, Thivierge, S, et al. Impact of a cognitive rehabilitation intervention on neuropsychiatric symptoms in mild to moderate Alzheimer's disease. Neuropsychol Rehabil. 25(5): 677-707. 2015. PMID: 25312605.

https://dx.doi.org/10.1080/09602011.2014 .964731 **KQ4E8, KQ5E8**

- Bunt, S, O'Caoimh, R, et al. Validation of the Dutch version of the quick mild cognitive impairment screen (Qmci-D). BMC Geriatr. 15: 115. 2015. PMID: 26431959. https://dx.doi.org/10.1186/s12877-015-0113-1 KQ2E2d
- Burns, A, Gauthier, S, et al. Efficacy and safety of donepezil over 3 years: an openlabel, multicentre study in patients with Alzheimer's disease. Int J Geriatr Psychiatry. 22(8): 806-812. 2007. PMID: 17199235. KQ4E2f, KQ5E2f
- 62. Buschert, VC, Giegling, I, et al. Long-term observation of a multicomponent cognitive intervention in mild cognitive impairment. J Clin Psychiatry. 73(12): e1492-8. 2012. PMID: 23290333. https://dx.doi.org/10.4088/JCP.11m07270 KQ4E2f, KQ5E2f
- 63. Cabrera, AG, Pena, MC, et al. Early detection of cognitive disorders: Follow-up study. Can J Neurosci Nurs. 37(2): 42-6. 2015. PMID: 26647494. **KQ2E7b**
- 64. Cagnin, A, Cester, A, et al. Effectiveness of switching to the rivastigmine transdermal patch from oral cholinesterase inhibitors: a naturalistic prospective study in Alzheimer's disease. Neurological Sciences. 36(3): 457-63. 2015. PMID: 25394739. https://dx.doi.org/10.1007/s10072-014-2002-3 KQ4E2b, KQ5E2b
- Callahan, CM, Boustani, MA, et al. Alzheimer's disease multiple intervention trial (ADMIT): study protocol for a randomized controlled clinical trial. Trials [Electronic Resource]. 13: 92. 2012.
 PMID: 22737979. https://dx.doi.org/10.1186/1745-6215-13-92 KQ4E2b, KQ5E2b
- Callahan, CM, Boustani, MA, et al. Targeting Functional Decline in Alzheimer Disease: A Randomized Trial. Ann Intern Med. 166(3): 164-171. 2017. PMID: 27893087. https://dx.doi.org/10.7326/M16-0830 KQ4E2b, KQ5E2b
- Campbell, NL, Perkins, AJ, et al. Adherence and Tolerability of Alzheimer's Disease Medications: A Pragmatic Randomized Trial. J Am Geriatr Soc. 65(7): 1497-1504. 2017. PMID: 28295141.

https://dx.doi.org/10.1111/jgs.14827 KQ4E2b, KQ5E2b

- 68. Campo, Nd, Cesari, M, et al. Refining Mild-to-Moderate Alzheimer Disease Screening: a Tool for Clinicians. J Am Med Dir Assoc. 17(10): 913-920. 2016. https://dx.doi.org/10.1016/j.jamda.2016.06 .005 **KQ2E1**
- 69. Caramelli, P, Laks, J, et al. Effects of galantamine and galantamine combined with nimodipine on cognitive speed and quality of life in mixed dementia: a 24-week, randomized, placebo-controlled exploratory trial (the REMIX study). Arq Neuropsiquiatr. 72(6): 411-7. 2014. PMID: 24964105. **KQ4E3a, KQ5E3a**
- 70. Carnero-Pardo, C, Cruz-Orduna, I, et al. Utility of the mini-cog for detection of cognitive impairment in primary care: Data from two spanish studies. Int J Alzheimers Dis. 2013. https://dx.doi.org/10.1155/2013/285462 KQ2E4e
- Carretti, B, Borella, E, et al. Benefits of training working memory in amnestic mild cognitive impairment: specific and transfer effects. Int Psychogeriatr. 25(4): 617-26. 2013. PMID: 23253363. https://dx.doi.org/10.1017/S10416102120 02177 KQ4E2b, KQ5E2b
- Cassidy-Eagle E, Siebern A, Unti L, et al. Neuropsychological Functioning in Older Adults with Mild Cognitive Impairment and Insomnia Randomized to CBT-I or Control Group. Clinical Gerontologist. 2018;41(2):136-44. PMID: 29220627. KQ4E1, KQ5E1
- 73. Castanho, TC, Portugal-Nunes, C, et al. Applicability of the Telephone Interview for Cognitive Status (Modified) in a community sample with low education level: association with an extensive neuropsychological battery. Int J Geriatr Psychiatry. 31(2): 128-36. 2016. PMID: 25963399.

https://dx.doi.org/10.1002/gps.4301 KQ2E7c

 Chaaya, M, Phung, TK, et al. Validation of the Arabic Rowland Universal Dementia Assessment Scale (A-RUDAS) in elderly with mild and moderate dementia. Aging Ment Health. 20(8): 880-7. 2016. PMID: 25984584.

https://dx.doi.org/10.1080/13607863.2015 .1043620 **KQ2E3a**

- Chan, AW, Yu, DS, et al. Tai chi qigong as a means to improve night-time sleep quality among older adults with cognitive impairment: a pilot randomized controlled trial. Clin Interv Aging. 11(): 1277-1286. 2016. PMID: 27698557. https://dx.doi.org/10.2147/CIA.S111927 KQ4E6c, KQ5E6c
- 76. Chan, J, Churcher Clarke, A, et al. A Mindfulness Program Manual for People With Dementia. Behav Modif. 41(6): 764-787. 2017. PMID: 28689469. https://dx.doi.org/10.1177/014544551771 5872 KQ4E2a, KQ5E2a
- 77. Chang W, Teng J. Combined application of tenuigenin and beta-asarone improved the efficacy of memantine in treating moderate-to-severe Alzheimer's disease. Drug Des Devel Ther. 2018;12:455-62. PMID: 29551889. **KQ4E3a**, **KQ5E3a**
- Charernboon, T. Diagnostic Accuracy of the Overlapping Infinity Loops, Wire Cube, and Clock Drawing Tests for Cognitive Impairment in Mild Cognitive Impairment and Dementia. Int J Alzheimers Dis. 2017(): 5289239. 2017. PMID: 28255496. https://dx.doi.org/10.1155/2017/5289239
 KQ2E3a
- Charlesworth, G, Burnell, K, et al. Peer support and reminiscence therapy for people with dementia and their family carers: a factorial pragmatic randomised trial. J Neurol Neurosurg Psychiatry. 87(11): 1218-1228. 2016. PMID: 27521377. https://dx.doi.org/10.1136/jnnp-2016-
- 313736 KQ4E2b, KQ5E2b
 80. Chase, Tn, Farlow, Mr, et al. Donepezil Plus Solifenacin (CPC-201) Treatment for Alzheimer's Disease. Neurotherapeutics. 1-12. 2017. https://dx.doi.org/10.1007/s13311-016-

https://dx.doi.org/10.1007/s13311-016-0511-x **KQ4E2a, KQ5E2a**

- Chen SF, Liu MH, Chen NC, et al. Educational effects on ascertain dementia 8-item informant questionnaire to detect dementia in the Taiwanese population. International Psychogeriatrics. 2018;30(8):1189-97. PMID: 29223190. KQ2E2a
- Chen, CH, Wang, LC, et al. A walk-in screening of dementia in the general population in Taiwan. ScientificWorldJournal. 2014(): 243738. 2014. PMID: 24883363.

https://dx.doi.org/10.1155/2014/243738 KQ2E1

- Chen, H, Liu, S, et al. Folic Acid Supplementation Mitigates Alzheimer's Disease by Reducing Inflammation: A Randomized Controlled Trial. Mediators Inflamm. 2016(): 5912146. 2016. PMID: 27340344. https://dx.doi.org/10.1155/2016/5912146
 KQ4E3a, KQ5E3a
- 84. Chen, HM, Huang, MF, et al. Effectiveness of coping strategies intervention on caregiver burden among caregivers of elderly patients with dementia. Psychogeriatrics:The Official Journal of the Japanese Psychogeriatric Society. 15(1): 20-5. 2015. PMID: 25515800. https://dx.doi.org/10.1111/psyg.12071 KQ4E7c, KQ5E7c
- Cheng, ST, Fung, HH, et al. Short-Term Effects of a Gain-Focused Reappraisal Intervention for Dementia Caregivers: A Double-Blind Cluster-Randomized Controlled Trial. American Journal of Geriatric Psychiatry. 24(9): 740-50. 2016. PMID: 27401052. https://dx.doi.org/10.1016/j.jagp.2016.04.0 12 KQ4E2b, KQ5E2b
- Chenoweth, L, Jeon, YH, et al. PerCEN trial participant perspectives on the implementation and outcomes of personcentered dementia care and environments. Int Psychogeriatr. 27(12): 2045-57. 2015. PMID: 26307245. https://dx.doi.org/10.1017/S10416102150 01350 KQ4E3b, KQ5E3b
- Chenoweth L, Stein-Parbury J, White D, et al. Coaching in self-efficacy improves care responses, health and well-being in dementia carers: a pre/post-test/follow-up study. BMC health services research. 2016;16(pp 166). PMID: 27146060. KQ4E2a, KQ5E2a
- Cherrier, MM, Anderson, K, et al. Testosterone treatment of men with mild cognitive impairment and low testosterone levels. Am J Alzheimers Dis Other Demen. 30(4): 421-30. 2015. PMID: 25392187. https://dx.doi.org/10.1177/153331751455 6874 KQ4E4b, KQ5E4b
- Cheung, G, Clugston, A, et al. Performance of three cognitive screening tools in a sample of older New Zealanders. Int Psychogeriatr. 27(6): 981-

9. 2015. PMID: 25603424. https://dx.doi.org/10.1017/S10416102140 02889 **KQ2E2d**

- 90. Cheung, Karen Siu-Lan, Lau, Bobo Hi-Po, et al. Multicomponent intervention on enhancing dementia caregiver well-being and reducing behavioral problems among Hong Kong Chinese: A translational study based on REACH II. Int J Geriatr Psychiatry. 30(5): 460-469. 2015. https://dx.doi.org/10.1002/gps.4160 KQ4E2a, KQ5E2a
- Cheung DSK, Li B, Lai DWL, et al. Cognitive Stimulating Play Intervention for Dementia: A Feasibility Randomized Controlled Trial. American Journal of Alzheimer's Disease & Other Dementias. 2018:1533317518808036. PMID: 30370782. KQ4E2c, KQ5E2c
- 92. Chew, J, Chong, M-S, et al. Outcomes of a multimodal cognitive and physical rehabilitation program for persons with mild dementia and their caregivers: A goal-oriented approach. Clin Interv Aging. 10(): 1687-94. 2015. https://dx.doi.org/10.2147/CIA.S93914 KQ4E2a, KQ5E2a
- Chhetri JK, de Souto Barreto P, Cantet C, et al. Effects of a 3-year multi-domain intervention with or without omega-3 supplementation on cognitive functions in older subjects with increased CAIDE dementia scores. Journal of Alzheimer's Disease. 2018;64(1):71-8. PMID: 29865075. KQ4E1b, KQ5E1b
- 94. Choe, JY, Han, JW, et al. A new scoring method of the mini-mental status examination to screen for dementia. Dement Geriatr Cogn Disord. 37(5-6): 347-56. 2014. https://dx.doi.org/10.1159/000357471 KQ2E2d
- 95. Choi, SH, Park, MH. Three screening methods for cognitive dysfunction using the Mini-Mental State Examination and Korean Dementia Screening Questionnaire. Geriatr Gerontol Int. 16(2): 252-8. 2016. PMID: 25655174. https://dx.doi.org/10.1111/ggi.12464 KQ2E2d
- Chopard, G, Puyraveau, M, et al. Spectrum Effect and Spectrum Bias in the Screening Test Performance for Amnestic Mild Cognitive Impairment: What are the Clinical Implications?. J Alzheimers Dis. 48(2): 385-93. 2015. PMID: 26402002.

https://dx.doi.org/10.3233/JAD-150195 **KQ2E3c**

- 97. Christie J. Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) for the Early Diagnosis of Dementia Across a Variety of Healthcare Settings. Issues in Mental Health Nursing. 2018;39(5):445-6. PMID: 29775136.
 KQ2E2a
- Clare, L, Linden, DE, et al. Goal-oriented cognitive rehabilitation for people with early-stage Alzheimer disease: a singleblind randomized controlled trial of clinical efficacy. Am J Geriatr Psychiatry. 18(10): 928-939. 2010. PMID: 20808145. KQ4E6c, KQ5E6c
- Clarfield, AM, Dwolatzky, T. Exercise in Alzheimer disease: comment on "Effects of the Finnish Alzheimer disease exercise trial (FINALEX): a randomized controlled trial". JAMA Intern Med. 173(10): 901-2. 2013. PMID: 23588877. https://dx.doi.org/10.1001/jamainternmed. 2013.1215 KQ4E5, KQ5E5
- Clarke, R, Harrison, G, et al. Effect of vitamins and aspirin on markers of platelet activation, oxidative stress and homocysteine in people at high risk of dementia. J Intern Med. 254(1): 67-75. 2003. PMID: 12823643. KQ4E2b, KQ5E2b
- 101. Clarnette, R, O'Caoimh, R, et al. Comparison of the Quick Mild Cognitive Impairment (Qmci) screen to the Montreal Cognitive Assessment (MoCA) in an Australian geriatrics clinic. Int J Geriatr Psychiatry. 32(6): 643-649. 2017. PMID: 27427212. https://dx.doi.org/10.1002/gps.4505
 KQ2E2d
- 102. Coelho, FG, Andrade, LP, et al. Multimodal exercise intervention improves frontal cognitive functions and gait in Alzheimer's disease: a controlled trial. Geriatr Gerontol Int. 13(1): 198-203. 2013. PMID: 22686565. https://dx.doi.org/10.1111/j.1447-0594.2012.00887.x KQ4E3a, KQ5E3a
- 103. Collaborative Group AD, Bentham, P, Gray, et al. Aspirin in Alzheimer's disease (AD2000): a randomised open-label trial. Lancet Neurol. 7(1): 41-9. 2008. PMID: 18068522. https://dx.doi.org/10.1016/S1474-

4422(07)70293-4 **KQ4E2a, KQ5E2a**

- 104. Coley N, Raman R, Donohue MC, et al. Defining the Optimal Target Population for Trials of Polyunsaturated Fatty Acid Supplementation Using the Erythrocyte Omega-3 Index: A Step Towards Personalized Prevention of Cognitive Decline? Journal of Nutrition, Health & Aging. 2018;22(8):982-98. PMID: 30272103. KQ4E1b, KQ5E1b
- 105. Connon, P, Larner, AJ. Six-item Cognitive Impairment Test (6CIT): diagnostic test accuracy study in primary care referrals. Int J Geriatr Psychiatry. 32(5): 583-584. 2017. PMID: 28379632. https://dx.doi.org/10.1002/gps.4692 KQ2E3c
- 106. Cooper, C, Barber, J, et al. Effectiveness of START psychological intervention in reducing abuse by dementia family carers: randomized controlled trial. Int Psychogeriatr. 28(6): 881-7. 2016. PMID: 26652193.

https://dx.doi.org/10.1017/S10416102150 02033 **KQ4E5, KQ5E5**

107. Cornelis, E, Gorus, E, et al. Early diagnosis of mild cognitive impairment and mild dementia through basic and instrumental activities of daily living: Development of a new evaluation tool. PLoS Medicine / Public Library of Science. 14(3): e1002250. 2017. PMID: 28291801.

https://dx.doi.org/10.1371/journal.pmed.1 002250 **KQ2E2d**

- 108. Cothran, FA, Paun, O, et al. Comparing the Effect of a Moderate Physical Activity Intervention on the Mental Health Outcomes of African American and Caucasian Dementia Family Caregivers: A Secondary Data Analysis. Issues Ment Health Nurs. 1-9. 2017. PMID: 28956706. https://dx.doi.org/10.1080/01612840.2017 .1364807 KQ4E2b, KQ5E2b
- Cotroneo, AM, Castagna, A, et al. Effectiveness and safety of citicoline in mild vascular cognitive impairment: the IDEALE study. Clin Interv Aging. 8(): 131-7. 2013. PMID: 23403474. https://dx.doi.org/10.2147/CIA.S38420 KQ4E7c, KQ5E7c
- 110. Courtney, C, Farrell, D, et al. Long-term donepezil treatment in 565 patients with Alzheimer's disease (AD2000): randomised double-blind trial. Lancet. 363(9427): 2105-2115. 2004. PMID: 15220031. **KQ4E2a, KQ5E2a**

- 111. Creavin, S, Fish, M, et al. Clinical history for diagnosis of dementia in men: Caerphilly Prospective Study. Br J Gen Pract. 65(637): e489-99. 2015. PMID: 26212844. https://dx.doi.org/10.3399/bjgp15X686053
 KQ2E1
- 112. Cuc, AV, Locke, DE, et al. A pilot randomized trial of two cognitive rehabilitation interventions for mild cognitive impairment: caregiver outcomes. Int J Geriatr Psychiatry. 2017. PMID: 28233343. https://dx.doi.org/10.1002/gps.4689 KQ4E7c, KQ5E7c
- 113. Cummings, JL, Farlow, MR, et al. Rivastigmine transdermal patch skin tolerability: results of a 1-year clinical trial in patients with mild-to-moderate Alzheimer's disease. Clin Drug Invest. 30(1): 41-49. 2010. PMID: 19995097. KQ4E2f, KQ5E2f
- 114. Curiel, RE, Crocco, E, et al. A Brief Computerized Paired Associate Test for the Detection of Mild Cognitive Impairment in Community-Dwelling Older Adults. J Alzheimers Dis. 54(2): 793-9.
 2016. PMID: 27567839. https://dx.doi.org/10.3233/JAD-160370 KQ2E3c
- 115. Custodio, N, Lira, D, et al. The Memory Alteration Test Discriminates between Cognitively Healthy Status, Mild Cognitive Impairment and Alzheimer's Disease. Dement Geriatr Cogn Dis Extra. 4(2): 314-21. 2014. PMID: 25298775. https://dx.doi.org/10.1159/000365280 KQ2E2d
- 116. Danthiir V, Hosking DE, Nettelbeck T, et al. An 18-mo randomized, double-blind, placebo-controlled trial of DHA-rich fish oil to prevent age-related cognitive decline in cognitively normal older adults. American Journal of Clinical Nutrition. 2018;107(5):754-62. PMID: 29722833. KQ4E1b, KQ5E1b
- 117. Da Re, F, Rucci, F, et al. Retrospective study on agitation provoked by memantine in dementia. Journal of Neuropsychiatry & Clinical Neurosciences. 27(1): e10-3. 2015. PMID: 25254933. https://dx.doi.org/10.1176/appi.neuropsyc h.13100226 KQ4E2e, KQ5E2e
- 118. Damirchi, A, Hosseini, F, et al. Mental Training Enhances Cognitive Function

and BDNF More Than Either Physical or Combined Training in Elderly Women With MCI: A Small-Scale Study. Am J Alzheimers Dis Other Demen. 1533317517727068. 2017. PMID: 28946752. https://dx.doi.org/10.1177/153331751772

7068 KQ4E3a, KQ5E3a

- 119. Davis, JC, Bryan, S, et al. An economic evaluation of resistance training and aerobic training versus balance and toning exercises in older adults with mild cognitive impairment. PLoS ONE [Electronic Resource]. 8(5): e63031. 2013. PMID: 23690976. https://dx.doi.org/10.1371/journal.pone.00 63031 KQ4E5, KQ5E5
- 120. de Andrade, LP, Gobbi, LT, et al. Benefits of multimodal exercise intervention for postural control and frontal cognitive functions in individuals with Alzheimer's disease: a controlled trial. J Am Geriatr Soc. 61(11): 1919-26. 2013. PMID: 24219193. https://dx.doi.org/10.1111/jgs.12531

KQ4E3a, KQ5E3a

121. de Gobbi Porto, FH, Spindola, L, et al. A score based on screening tests to differentiate mild cognitive impairment from subjective memory complaints. Neurol Int. 5(3): e16. 2013. PMID: 24147213. https://dx.doi.org/10.4081/ni.2013.e16

https://dx.doi.org/10.4081/ni.2013.6 KQ2E4e

- 122. De la Torre, GG, Suarez-Llorens, A, et al. Norms and reliability for the Spanish version of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) Form A. Journal of Clinical & Experimental Neuropsychology: Official Journal of the International Neuropsychological Society. 36(10): 1023-30. 2014. PMID: 25363544. https://dx.doi.org/10.1080/13803395.2014 .965664 KQ2E2d
- 123. de Oliveira AM, Radanovic M, Homem de Mello PC, et al. An intervention to reduce neuropsychiatric symptoms and caregiver burden in dementia: Preliminary results from a randomized trial of the tailored activity program-outpatient version. Int J Geriatr Psychiatry. 2018. PMID: 30035341. **KQ4E3a**, **KQ5E3a**
- 124. De Vriendt, P, Mets, T, et al. Discriminative power of the advanced activities of daily living (a-ADL) tool in the

diagnosis of mild cognitive impairment in an older population. Int Psychogeriatr. 27(9): 1419-27. 2015. PMID: 25901578. https://dx.doi.org/10.1017/S10416102150 00563 **KQ2E2d**

- 125. DeGregory, Cristy. The effects of multiple gratitude interventions among informal caregivers of persons with dementia and Alzheimer's disease. 148 p. 2014. KQ4E2c, KQ5E2c
- 126. Del Brutto, OH, Wright, C. Animal naming in the Spanish version of the Montreal Cognitive Assessment in rural Latin American communities: a cautionary note. Geriatr Gerontol Int. 15(1): 126-7. 2015. PMID: 25583395. https://dx.doi.org/10.1111/ggi.12223 KQ2E1
- 127. Delgado, C, Munoz-Neira, C, et al. Comparison of the Psychometric Properties of the "Word" and "Picture" Versions of the Free and Cued Selective Reminding Test in a Spanish-Speaking Cohort of Patients with Mild Alzheimer's Disease and Cognitively Healthy Controls. Archives of Clinical Neuropsychology. 31(2): 165-75. 2016. PMID: 26758367. https://dx.doi.org/10.1093/arclin/acv107 KQ2E2d
- 128. Dimitriou TD, Verykouki E, Papatriantafyllou J, et al. Nonpharmacological interventions for agitation/aggressive behaviour in patients with dementia: a randomized controlled crossover trial. Functional Neurology. 2018;33(3):143-7. PMID: 30457967. KQ4E2c, KQ5E2c
- 129. DiZazzo-Miller R, Winston K, Winkler SL, et al. Family Caregiver Training Program (FCTP): A randomized controlled trial. Am J Occup Ther. 2017;71(5):1-10. PMID: 28809654. **KQ4E5, KQ5E5**
- Dong, Y, Pang, WS, et al. The informant AD8 is superior to participant AD8 in detecting cognitive impairment in a memory clinic setting. J Alzheimers Dis. 35(1): 159-68. 2013. PMID: 23380993. https://dx.doi.org/10.3233/JAD-122026 KQ2E2d
- Doody, RS, Ferris, S, et al. Safety and tolerability of donepezil in mild cognitive impairment: open-label extension study. Am J Alzheimers Dis Other Demen. 25(2): 155-159. 2010. PMID: 19949165. KQ4E2f, KQ5E2f

- 132. dos Santos Moraes, W, Poyares, DR, et al. The effect of donepezil on sleep and REM sleep EEG in patients with Alzheimer disease: a double-blind placebo-controlled study. Sleep. 29(2): 199-205. 2006. PMID: 16494088. KQ4E3a, KQ5E3a
- Doyon Dolinar, RM, Pleta, BA, et al. MoCA cutoff score in relation to the functional assessment of seniors living in a rural Canadian community. Canadian Journal of Rural Medicine. 21(4): 101-6. 2016. PMID: 27627210. KQ2E7b
- 134. D'Souza, MF, Davagnino, J, et al. Preliminary Data from the Caring for Older Adults and Caregivers at Home (COACH) Program: A Care Coordination Program for Home-Based Dementia Care and Caregiver Support in a Veterans Affairs Medical Center. J Am Geriatr Soc. 63(6): 1203-8. 2015. PMID: 26032224. https://dx.doi.org/10.1111/jgs.13448
 KQ4E2a, KQ5E2a
- Dunn, NR, Pearce, GL, et al. Adverse effects associated with the use of donepezil in general practice in England. J Psychopharmacol. 14(4): 406-408.
 2000. PMID: 11198060. KQ5E2f
- 136. Eichler, T, Thyrian, JR, et al. Patient Variables Associated with the Assignment of a Formal Dementia Diagnosis to Positively Screened Primary Care Patients. Curr Alzheimer Res. 2017. PMID: 28891445. https://dx.doi.org/10.2174/156720501466 6170908095707 KQ1E2a, KQ3E2a
- 137. Eichler, T, Thyrian, JR, et al. Rates of formal diagnosis of dementia in primary care: The effect of screening. Alzheimer's & Dementia : Diagnosis, Assessment & Disease Monitoring. 1(1): 87-93. 2015.
 PMID: 27239495.
 https://dx.doi.org/10.1016/j.dadm.2014.11
 .007 KQ1E2a, KQ3E2a
- 138. Eichler, T, Thyrian, JR, et al. Subjective memory impairment: No suitable criteria for case-finding of dementia in primary care. Alzheimer's & Dementia : Diagnosis, Assessment & Disease Monitoring. 1(2): 179-86. 2015. PMID: 27239503. https://dx.doi.org/10.1016/j.dadm.2015.02 .004 KQ2E7b
- 139. Eichler, T, Thyrian, JR, et al. The benefits of implementing a computerized intervention-management-system (IMS) on delivering integrated dementia care in

the primary care setting. Int Psychogeriatr. 26(8): 1377-85. 2014. PMID: 24811145. https://dx.doi.org/10.1017/S10416102140 00830 **KQ4E5, KQ5E5**

- 140. Eleni P, Fotini K, Christina A, et al. Use it more and keep it alive: a Longitudinal Randomized Controlled Trial in people with Mild Cognitive Impairment. Hellenic J Nucl Med. 2017;20:218-32. **KQ4E7c**, **KQ5E7c**
- 141. Emsaki G, NeshatDoost HT, Tavakoli M, et al. Memory specificity training can improve working and prospective memory in amnestic mild cognitive impairment. Dementia & neuropsychologia. 2017;11(3):255-61. PMID: 29213522. KQ4E3a, KQ5E3a
- 142. Eriksdotter, M, Vedin, I, et al. Plasma Fatty Acid Profiles in Relation to Cognition and Gender in Alzheimer's Disease Patients During Oral Omega-3 Fatty Acid Supplementation: The OmegAD Study. J Alzheimers Dis. 48(3): 805-12. 2015. PMID: 26402079. https://dx.doi.org/10.3233/JAD-150102 KQ4E5, KQ5E5
- 143. Evans S, Evans S, Brooker D, et al. The impact of the implementation of the Dutch combined Meeting Centres Support Programme for family caregivers of people with dementia in Italy, Poland and UK. Aging Ment Health. 2018:1-11. PMID: 30520312. KQ4E2a, KQ5E2a
- 144. Eyre, HA, Siddarth, P, et al. A randomized controlled trial of Kundalini yoga in mild cognitive impairment. Int Psychogeriatr. 29(4): 557-567. 2017. PMID: 28088925. https://dx.doi.org/10.1017/S10416102160 02155 KQ4E2b, KQ5E2b
- 145. Eyre, HarrisA, Acevedo, Bianca, et al. Changes in neural connectivity and memory following a yoga intervention for older adults: A pilot study. J Alzheimers Dis. 52(2): 673-684. 2016. https://dx.doi.org/10.3233/JAD-150653 KQ4E2b, KQ5E2b
- 146. Farlow, MR, Alva, G, et al. A 25-week, open-label trial investigating rivastigmine transdermal patches with concomitant memantine in mild-to-moderate Alzheimer's disease: a post hoc analysis. Curr Med Res Opin. 26(2): 263-9. 2010. PMID: 19929593.

https://dx.doi.org/10.1185/030079909034 34914 **KQ4E7c**, **KQ5E7c**

- 147. Farran CJ, Paun O, Cothran F, et al. Impact of an Individualized Physical Activity Intervention on Improving Mental Health Outcomes in Family Caregivers of Persons with Dementia: A Randomized Controlled Trial. AIMS med. 2016;3(1):15-31. PMID: 29147683. **KQ4E2b**, **KQ5E2b**
- 148. Feng, H, Li, G, et al. Training Rehabilitation as an Effective Treatment for Patients with Vascular Cognitive Impairment with No Dementia. Rehabilitation Nursing Journal. 27(): 27. 2016. PMID: 27118716. https://dx.doi.org/10.1002/rnj.271 KQ4E3a, KQ5E3a
- 149. Ferreira, L, Tanaka, K, et al. Respiratory training as strategy to prevent cognitive decline in aging: a randomized controlled trial. Clin Interv Aging. 10(): 593-603. 2015. PMID: 25848235. https://dx.doi.org/10.2147/CIA.S79560 KQ4E1b, KQ5E1b
- 150. Ferris, S, Cummings, J, et al. Effects of donepezil 23 mg on Severe Impairment Battery domains in patients with moderate to severe Alzheimer's disease: Evaluating the impact of baseline severity. Alzheimers Res Ther. 5(1). 2013. https://dx.doi.org/10.1186/alzrt166 KQ4E2b, KQ5E2b
- 151. Fis, T, Thyrian, JR, et al. Medication management for people with dementia in primary care: description of implementation in the DelpHi study. BMC Geriatr. 13(): 121. 2013. PMID: 24225205. https://dx.doi.org/10.1186/1471-2318-13-121 KQ4E5, KQ5E5
- 152. Fish, M, Bayer, AJ, et al. Prevalence and pattern of cognitive impairment in a community cohort of men in South Wales: methodology and findings from the Caerphilly Prospective Study. Neuroepidemiology. 30(1): 25-33. 2008. PMID: 18259098. https://dx.doi.org/10.1159/000115439 KQ4E8, KQ5E8
- 153. Forette, F, Anand, R, et al. A phase II study in patients with Alzheimer's disease to assess the preliminary efficacy and maximum tolerated dose of rivastigmine (Exelon). Eur J Neurol. 6(4): 423-9. 1999. PMID: 10362894. **KQ4E7c**, **KQ5E7c**
- 154. Forstl, H, Stamouli, SS, et al. Memantine in everyday clinical practice: a comparison of studies in Germany and

Greece. Dement Geriatr Cogn Disord. 32(4): 267-272. 2011. PMID: 22237255. **KQ5E2f**

- 155. Fosbol, EL, Peterson, ED, et al. Comparative Cardiovascular Safety of Dementia Medications: A Cross-National Study. J Am Geriatr Soc. 2012. PMID: 23176182. KQ5E2f
- 156. Freitas, S, Prieto, G, et al. Psychometric properties of the Montreal Cognitive Assessment (MoCA): an analysis using the Rasch model. Clinical Neuropsychologist. 28(1): 65-83. 2014. PMID: 24404822. https://dx.doi.org/10.1080/13854046.2013 .870231 KQ2E1
- 157. Froelich, L, Andreasen, N, et al. Longterm treatment of patients with Alzheimer's disease in primary and secondary care: results from an international survey. Curr Med Res Opin. 25(12): 3059-3068. 2009. PMID: 19852697. KQ5E2f
- 158. Fung AW, Lam LCW. Validation of a computerized Hong Kong vigilance and memory test (HK-VMT) to detect early cognitive impairment in healthy older adults. Aging Ment Health. 2018:1-7. PMID: 30270640. **KQ2E2d**
- 159. Gaitan, A, Garolera, M, et al. Efficacy of an adjunctive computer-based cognitive training program in amnestic mild cognitive impairment and Alzheimer's disease: a single-blind, randomized clinical trial. Int J Geriatr Psychiatry. 28(1): 91-9. 2013. PMID: 22473855. https://dx.doi.org/10.1002/gps.3794 KQ4E2b, KQ5E2b
- 160. Galetta, KM, Chapman, KR, et al. Screening Utility of the King-Devick Test in Mild Cognitive Impairment and Alzheimer Disease Dementia. Alzheimer Dis Assoc Disord. 31(2): 152-158. 2017. PMID: 27299935. https://dx.doi.org/10.1097/WAD.00000000 00000157 KQ2E2d
- 161. Gallagher-Thompson, D, Tzuang, M, et al. Effectiveness of a fotonovela for reducing depression and stress in Latino dementia family caregivers. Alzheimer Dis Assoc Disord. 29(2): 146-53. 2015. PMID: 25590939. https://dx.doi.org/10.1097/WAD.00000000 00000077 KQ4E7c, KQ5E7c
- 162. Galvin, JE. IMPROVING THE CLINICAL DETECTION OF LEWY BODY

DEMENTIA WITH THE LEWY BODY COMPOSITE RISK SCORE. Alzheimers Dement (Amst). 1(3): 316-324. 2015. PMID: 26405688. https://dx.doi.org/10.1016/j.dadm.2015.05

- .004 **KQ2E3c** 163. Garcia-Alberca, Jm. Cognitive-behavioral treatment for depressed patients with Alzheimer's disease. An open trial. Arch Gerontol Geriatr. 71(): 1-8. 2017. https://dx.doi.org/10.1016/j.archger.2017. 02.008 **KQ4E2a**, **KQ5E2a**
- 164. Garcia-Campuzano, Mari Tere, Virues-Ortega, Javier, et al. Effect of cognitive training targeting associative memory in the elderly: A small randomized trial and a longitudinal evaluation. J Am Geriatr Soc. 61(12): 2252-2254. 2013. https://dx.doi.org/10.1111/jgs.12574 KQ4E1b, KQ5E1b
- 165. Gareri, P, Castagna, A, et al. The Citicholinage Study: citicoline Plus Cholinesterase Inhibitors in Aged Patients Affected with Alzheimer's Disease Study. J Alzheimers Dis. 56(2): 557-565. 2017. https://dx.doi.org/10.3233/JAD-160808 KQ4E2a, KQ5E2a
- 166. Gaugler, JE, Reese, M, et al. A Pilot Evaluation of Psychosocial Support for Family Caregivers of Relatives with Dementia in Long-Term Care: The Residential Care Transition Module. Res Gerontol Nurs. 8(4): 161-72. 2015. PMID: 25751083.

https://dx.doi.org/10.3928/19404921-20150304-01 **KQ4E3b, KQ5E3b**

- 167. Gaugler, JE, Roth, DL, et al. Can counseling and support reduce burden and depressive symptoms in caregivers of people with Alzheimer's disease during the transition to institutionalization? Results from the New York University caregiver intervention study. J Am Geriatr Soc. 56(3): 421-428. 2008. PMID: 18179495. KQ4E8, KQ5E8
- 168. Gauthier, S, Robillard, A, et al. Real-life effectiveness and tolerability of the rivastigmine transdermal patch in patients with mild-to-moderate Alzheimer's disease: the EMBRACE study. Curr Med Res Opin. 29(8): 989-1000. 2013. PMID: 23647369. https://dx.doi.org/10.1185/03007995.2013

https://dx.doi.org/10.1185/03007995.2013 .802230 **KQ4E2a, KQ5E2a**

169. Georgakis, MK, Papadopoulos, FC, et al. Validation of TICS for detection of

dementia and mild cognitive impairment among individuals characterized by low levels of education or illiteracy: a population-based study in rural Greece. Clin Neuropsychol. 1-11. 2017. PMID: 28569607. https://dx.doi.org/10.1080/13854046.2017

.1334827 **KQ2E7c**

- 170. Gerdner, LA, Buckwalter, KC, et al. Impact of a psychoeducational intervention on caregiver response to behavioral problems. Nurs Res. 51(6): 363-374. 2002. https://dx.doi.org/12464756 **KQ4E7c**, **KQ5E7c**
- 171. Gildengers, ArielG, Butters, MerylA, et al. Design and implementation of an intervention development study: Retaining Cognition while Avoiding Late-Life Depression (ReCALL). The American Journal of Geriatric Psychiatry. 24(6): 444-454. 2016. https://dx.doi.org/10.1016/j.jagp.2015.10.0 10 KQ4E5, KQ5E5
- 172. Giovagnoli, A, Manfredi, V, et al. Cognitive training in Alzheimer's disease: A controlled randomized study. Neurological Sciences. 38(8): 1485-1493. 2017. https://dx.doi.org/10.1007/s10072-017-3003-9 KQ4E2b, KQ5E2b
- 173. Giuli, C, Papa, R, et al. The Effects of Cognitive Training for Elderly: Results from My Mind Project. Rejuvenation Res. 19(6): 485-494. 2016. PMID: 26952713. https://dx.doi.org/10.1089/rej.2015.1791
 KQ4E2c, KQ5E2c
- 174. Goldstein, FC, Ashley, AV, et al. Validity of the montreal cognitive assessment as a screen for mild cognitive impairment and dementia in African Americans. J Geriatr Psychiatry Neurol. 27(3): 199-203. 2014.
 PMID: 24614202. https://dx.doi.org/10.1177/089198871452 4630 KQ2E3c
- 175. Gonyea, JG, Lopez, LM, et al. The Effectiveness of a Culturally Sensitive Cognitive Behavioral Group Intervention for Latino Alzheimer's Caregivers. Gerontologist. 56(2): 292-302. 2016.
 PMID: 24855313. https://dx.doi.org/10.1093/geront/gnu045
 KQ4E2b, KQ5E2b
- 176. Gonzalez, Ew, Polansky, M, et al. Enhancing resourcefulness to improve outcomes in family caregivers and persons with Alzheimer's disease: A pilot

randomized trial. Int J Alzheimers Dis. 2014.

https://dx.doi.org/10.1155/2014/323478 **KQ4E7c, KQ5E7c**

- 177. Gonzalez-Palau, F, Franco, M, et al. Clinical utility of the hopkins Verbal Test-Revised for detecting Alzheimer's disease and mild cognitive impairment in Spanish population. Archives of Clinical Neuropsychology. 28(3): 245-53. 2013. PMID: 23384601. https://dx.doi.org/10.1093/arclin/act004 KQ2E3c
- 178. Gonzalez-Palau, Fatima, Franco, Manuel, et al. The effects of a computer-based cognitive and physical training program in a healthy and mildly cognitive impaired aging sample. Aging Ment Health. 18(7): 838-846. 2014. https://dx.doi.org/10.1080/13607863.2014

.899972 **KQ4E2a, KQ5E2a**

- 179. Gooding, AL, Choi, J, et al. Comparing three methods of computerised cognitive training for older adults with subclinical cognitive decline. Neuropsychol Rehabil. 26(5-6): 810-21. 2016. PMID: 26674122. https://dx.doi.org/10.1080/09602011.2015 .1118389 KQ4E2b, KQ5E2b
- 180. Goudsmit M, van Campen J, Schilt T, et al. One Size Does Not Fit All: Comparative Diagnostic Accuracy of the Rowland Universal Dementia Assessment Scale and the Mini Mental State Examination in a Memory Clinic Population with Very Low Education. Dement Geriatr Cogn Dis Extra. 2018;8(2):290-305. PMID: 30323830. KQ2E4e
- 181. Grober, E, Ehrlich, AR, et al. Screening older Latinos for dementia in the primary care setting. Journal of the International Neuropsychological Society. 20(8): 848-55. 2014. PMID: 25120108. https://dx.doi.org/10.1017/S13556177140 00708 KQ2E8
- 182. Grober, E, Hall, C, et al. Free and cued selective reminding distinguishes Alzheimer's disease from vascular dementia. J Am Geriatr Soc. 56(5): 944-6. 2008. PMID: 18454754. https://dx.doi.org/10.1111/j.1532-5415.2008.01652.x KQ2E8
- 183. Grober, E, Hall, C, et al. Neuropsychological strategies for detecting early dementia. J Int

Neuropsychol Soc. 14(1): 130-142. 2008. PMID: 18078539. **KQ2E7c**

- 184. Grober, E, Mowrey, WB, et al. Two-stage screening for early dementia in primary care. Journal of Clinical & Experimental Neuropsychology: Official Journal of the International Neuropsychological Society. 38(9): 1038-49. 2016. PMID: 27270103. https://dx.doi.org/10.1080/13803395.2016 .1187117 KQ2E7c
- 185. Grober, E, Ocepek-Welikson, K, et al. The Free and Cued Selective Reminding Test: Evidence of Psychometric Adequacy. Psychol Sci Q. 51(): 266-282. 2009. PMID: None. KQ2E8
- 186. Grober, E, Sanders, AE, et al. Free and cued selective reminding identifies very mild dementia in primary care. Alzheimer Dis Assoc Disord. 24(3): 284-290. 2010. https://dx.doi.org/20683186 **KQ2E8**
- 187. Grober, E, Wakefield, D, et al. Identifying memory impairment and early dementia in primary care. Alzheimer's & Dementia : Diagnosis, Assessment & Disease Monitoring. 6(): 188-195. 2017. PMID: 28289701. https://dx.doi.org/10.1016/j.dadm.2017.01 .006 KQ2E7c
- 188. Grober, E. Screening for early dementia. Geriatr Aging. 11(7): 405-409. 2008. PMID: None. **KQ2E2a**
- 189. Gross, AL, Jones, RN, et al. Calibration and validation of an innovative approach for estimating general cognitive performance. Neuroepidemiology. 42(3): 144-53. 2014. PMID: 24481241. https://dx.doi.org/10.1159/000357647 KQ2E6a
- 190. Grossberg, G, Sadowsky, C, et al. Safety and tolerability of the rivastigmine patch: results of a 28-week open-label extension. Alzheimer Dis Assoc Disord. 23(2): 158-164. 2009. PMID: 19484917. KQ4E2f, KQ5E2f
- 191. Grossberg, GT, Manes, F, et al. The safety, tolerability, and efficacy of oncedaily memantine (28 mg): a multinational, randomized, double-blind, placebocontrolled trial in patients with moderateto-severe Alzheimer's disease taking cholinesterase inhibitors. CNS Drugs. 27(6): 469-78. 2013. PMID: 23733403. https://dx.doi.org/10.1007/s40263-013-0077-7 KQ4E4c, KQ5E4c
- 192. Habiger, Tf, Flo, E, et al. The Interactive Relationship between Pain, Psychosis,

and Agitation in People with Dementia: results from a Cluster-Randomised Clinical Trial. Behav Neurol. 2016. 2016. https://dx.doi.org/10.1155/2016/7036415 KQ4E6b, KQ5E6b

- 193. Hager, K, Baseman, As, et al. Effect of concomitant use of memantine on mortality and efficacy outcomes of galantamine-treated patients with Alzheimer's disease: post-hoc analysis of a randomized placebo-controlled study. Alzheimers Res Ther. 8(1): 1-10. 2016. https://dx.doi.org/10.1186/s13195-016-0214-x KQ4E2a, KQ5E2a
- 194. Hagovska, M, Dzvonik, O, et al. Comparison of Two Cognitive Training Programs With Effects on Functional Activities and Quality of Life. Res Gerontol Nurs. 10(4): 172-180. 2017. https://dx.doi.org/10.3928/19404921-20170524-01 KQ4E2b, KQ5E2b
- 195. Hagovska, M, Olekszyova, Z. Relationships between balance control and cognitive functions, gait speed, and activities of daily living. Z Gerontol Geriatr. 49(5): 379-85. 2016. PMID: 26458911. https://dx.doi.org/10.1007/c00291.015

https://dx.doi.org/10.1007/s00391-015-0955-3 **KQ4E2b, KQ5E2b**

- 196. Hagovska, M, Takac, P, et al. Effect of a combining cognitive and balanced training on the cognitive, postural and functional status of seniors with a mild cognitive deficit in a randomized, controlled trial. European journal of physical & rehabilitation medicine. 52(1): 101-9. 2016. PMID: 26325026. KQ4E2c, KQ5E2c
- 197. Hagovska, Magdalena, Nagyova, Iveta. The transfer of skills from cognitive and physical training to activities of daily living: A randomised controlled study. Eur J Ageing. 14(2): 133-142. 2017. https://dx.doi.org/10.1007/s10433-016-0395-y KQ4E2b, KQ5E2b
- 198. Hajjar, I, Hart, M, et al. Effect of antihypertensive therapy on cognitive function in early executive cognitive impairment: a double-blind randomized clinical trial. Arch Intern Med. 172(5): 442-4. 2012. PMID: 22412114. https://dx.doi.org/10.1001/archinternmed. 2011.1391 KQ4E2b, KQ5E2b
- 199. Hamrick, I, Hafiz, R, et al. Use of days of the week in a modified mini-mental state exam (M-MMSE) for detecting geriatric

cognitive impairment. Journal of the American Board of Family Medicine: JABFM. 26(4): 429-35. 2013. PMID: 23833158.

https://dx.doi.org/10.3122/jabfm.2013.04. 120300 **KQ2E7b**

200. Han, HR, Park, SY, et al. Feasibility and validity of dementia assessment by trained community health workers based on Clinical Dementia Rating. J Am Geriatr Soc. 61(7): 1141-5. 2013. PMID: 23730928. https://dx.doi.org/10.1111/jgs.12309

KQ2E1 201. Han, JW, Lee, H, et al. Multimodal

- Cognitive Enhancement Therapy for Patients with Mild Cognitive Impairment and Mild Dementia: A Multi- Center, Randomized, Controlled, Double-Blind, Crossover Trial. J Alzheimers Dis. 55(2): 787-796. 2017. PMID: 27802233. https://dx.doi.org/10.3233/JAD-160619 KQ4E2c, KQ5E2c
- 202. Han JW, Son KL, Byun HJ, et al. Efficacy of the Ubiquitous Spaced Retrieval-based Memory Advancement and Rehabilitation Training (USMART) program among patients with mild cognitive impairment: a randomized controlled crossover trial. Alzheimers Res Ther. 2017;9(1):39. PMID: 28587629. **KQ4E2c, KQ5E2c**
- 203. Hanson, Lc, Zimmerman, S, et al. Effect of the Goals of Care Intervention for Advanced Dementia: a Randomized Clinical Trial. JAMA Intern Med. 177(1): 24-31. 2017. PMID: Pubmed 27893884. https://dx.doi.org/10.1001/jamainternmed. 2016.7031 KQ4E3b, KQ5E3b
- 204. Harris, JonathanB, Johnson, C. The impact of physical versus social activity on the physical and cognitive functioning of seniors with dementia. Act Adapt Aging. 41(2): 161-174. 2017. https://dx.doi.org/10.1080/01924788.2017 .1306383 **KQ4E3b**, **KQ5E3b**
- 205. Hattink, B, Meiland, F, et al. Web-Based STAR E-Learning Course Increases Empathy and Understanding in Dementia Caregivers: Results from a Randomized Controlled Trial in the Netherlands and the United Kingdom. J Med Internet Res. 17(10): e241. 2015. PMID: 26519106. https://dx.doi.org/10.2196/jmir.4025 KQ4E1, KQ5E1
- 206. Hebert, R, Leclerc, G, et al. Efficacy of a support group programme for care-givers

of demented patients in the community: a randomized controlled trial. Arch Gerontol Geriatr. 18(1): 1-14. 1994. PMID: 15374309. **KQ4E7c, KQ5E7c**

207. Helmes, E. Cognitive screening of older adults: the utility of pentagon drawing. Int Psychogeriatr. 25(3): 413-9. 2013. PMID: 23194975. https://dx.doi.org/10.1017/S10416102120

01998 **KQ2E1**

208. Hessler, J, Bronner, M, et al. Suitability of the 6CIT as a screening test for dementia in primary care patients. Aging Ment Health. 18(4): 515-20. 2014. PMID: 24256425. https://dx.doi.org/10.1080/13607863.2013

nttps://dx.doi.org/10.1080/13607863.2013 .856864 **KQ2E7b**

- 209. Heymann P, Gienger R, Hett A, et al. Early detection of Alzheimer's disease based on the patient's creative drawing process: First results with a novel neuropsychological testing method. Journal of Alzheimer's Disease. 2018;63(2):675-87. PMID: 29689720. KQ2E2d
- 210. Hilsabeck, RC, Holdnack, JA, et al. The Brief Cognitive Status Examination (BCSE): Comparing Diagnostic Utility and Equating Scores to the Mini-Mental State Examination (MMSE). Archives of Clinical Neuropsychology. 30(5): 458-67. 2015. PMID: 26085478. https://dx.doi.org/10.1093/arclin/acv037

KQ2E4e

- 211. Hinchliffe, AC, Hyman, IL, et al. Behavioural complications of dementia-Can they be treated?. Int J Geriatr Psychiatry. 10(10): 839-847. 1995. PMID: None. **KQ4E6c, KQ5E6c**
- 212. Hsu, CL, Best, JR, et al. Aerobic exercise promotes executive functions and impacts functional neural activity among older adults with vascular cognitive impairment. Br J Sports Med. 2017. PMID: 28432077. https://dx.doi.org/10.1136/bjsports-2016-096846 KQ4E5, KQ5E5
- 213. Huang, HL, Shyu, YI, et al. A pilot study on a home-based caregiver training program for improving caregiver selfefficacy and decreasing the behavioral problems of elders with dementia in Taiwan. Int J Geriatr Psychiatry. 18(4): 337-345. 2003. PMID: 12673611. KQ4E5, KQ5E5
- 214. Hwang, Ty, Ahn, Is, et al. Efficacy of galantamine on cognition in mild-to-

moderate Alzheimer's dementia after failure to respond to Donepezil. Psychiatry Investig. 13(3): 341-8. 2016. https://dx.doi.org/10.4306/pi.2016.13.3.34 1 **KQ4E2a, KQ5E2a**

- 215. Ilhan Algin, D, Dagli Atalay, S, et al. Memantine improves semantic memory in patients with amnestic mild cognitive impairment: A single-photon emission computed tomography study. J Int Med Res. 300060517715166. 2017. PMID: 28661262. https://dx.doi.org/10.1177/030006051771
- 5166 **KQ4E3a, KQ5E3a** 216. Iwamoto, T, Hanyu, H, et al. Newly developed comprehensive geriatric assessment initiative "Dr. SUPERMAN" as a convenient screening test. Geriatr Gerontol Int. 13(3): 811-2. 2013. PMID: 23819635. https://dx.doi.org/10.1111/ggi.12038 **KQ2E5**
- 217. Jahn, DanielleR, Dressel, JeffreyA, et al. An item response theory analysis of the Executive Interview and development of the EXIT8: A Project FRONTIER Study. J Clin Exp Neuropsychol. 37(3): 229-242. 2015.

https://dx.doi.org/10.1080/13803395.2014 .1002757 KQ2E4a

- 218. Jedrziewski MK, Meekins D, Gorka SA, et al. Feasibility of a Randomized Controlled Trial to Test the Impact of African Dance on Cognitive Function and Risk of Dementia: the REACT! Study. Journal of Mental Health & Clinical Psychology. 2018;2(1):12-3. PMID: 30320308. KQ4E2a, KQ5E2a
- 219. Jelcic, N, Agostini, M, et al. Feasibility and efficacy of cognitive telerehabilitation in early Alzheimer's disease: a pilot study. Clin Interv Aging. 9(): 1605-11. 2014. PMID: 25284993. https://dx.doi.org/10.2147/CIA.S68145 KQ4E7c, KQ5E7c
- 220. Jhoo, JH, Chi, YK, et al. A normative study of the disability assessment for dementia in community-dwelling elderly koreans. Psychiatry Investig. 11(4): 446-53. 2014. PMID: 25395976. https://dx.doi.org/10.4306/pi.2014.11.4.44 6 **KQ2E6a**
- 221. Jia, Jianping, Wei, Cuibai, et al. Efficacy and safety of donepezil in Chinese patients with severe Alzheimer's disease: A randomized controlled trial. J

Alzheimers Dis. 56(4): 1495-1504. 2017. https://dx.doi.org/10.3233/JAD-161117 **KQ4E3a, KQ5E3a**

- 222. Jiang, B, Ding, C, et al. Intervention effect of folic acid and vitamin B12 on vascular cognitive impairment complicated with hyperhomocysteinemia. Journal of Medical Biochemistry. 33(2): 169-74. 2014. https://dx.doi.org/10.2478/jomb-2015-0055 KQ4E3a, KQ5E3a
- 223. Johansson, MM, Kvitting, AS, et al. Clinical utility of cognistat in multiprofessional team evaluations of patients with cognitive impairment in Swedish primary care. International Journal of Family Medicine Print. 2014(): 649253. 2014. PMID: 24778877. https://dx.doi.org/10.1155/2014/649253 KQ2E2d
- 224. Jorgensen K, Johannsen P, Vogel A. A Danish adaptation of the Boston Naming Test: Preliminary norms for older adults and validity in mild Alzheimer's disease. The Clinical Neuropsychologist. 2017;31(Suppl 1):72-87. PMID: 28854839. **KQ2E2d**
- 225. Jorgensen, K, Kristensen, MK, et al. The six-item Clock Drawing Test - reliability and validity in mild Alzheimer's disease. Aging Neuropsychology & Cognition. 22(3): 301-11. 2015. PMID: 24974730. https://dx.doi.org/10.1080/13825585.2014 .932325 **KQ2E3c**
- 226. Jouk, A, Tuokko, H. A reduced scoring system for the Clock Drawing Test using a population-based sample. Int Psychogeriatr. 24(11): 1738-48. 2012. PMID: 22651993. https://dx.doi.org/10.1017/S10416102120 00804 **KQ2E2d**
- 227. Juncos-Rabadan, O, Facal, D, et al. Does tip-of-the-tongue for proper names discriminate amnestic mild cognitive impairment?. Int Psychogeriatr. 25(4): 627-34. 2013. PMID: 23253431. https://dx.doi.org/10.1017/S10416102120 02207 KQ2E2d
- 228. Kaiser, AK, Hitzl, W, et al. Three-question dementia screening. Development of the Salzburg Dementia Test Prediction (SDTP). Z Gerontol Geriatr. 47(7): 577-82. 2014. PMID: 24292515. https://dx.doi.org/10.1007/s00391-013-0568-7 KQ2E4e
- 229. Kan CN, Zhang L, Cheng CY, et al. The Informant AD8 Can Discriminate Patients

with Dementia From Healthy Control Participants in an Asian Older Cohort. J Am Med Dir Assoc. 2019. PMID: 30661859. **KQ2E4e**

- 230. Kajiyama, B, Thompson, LW, et al. Exploring the effectiveness of an internetbased program for reducing caregiver distress using the iCare Stress Management e-Training Program. [Erratum appears in Aging Ment Health. 2013;17(5):c1]. Aging Ment Health. 17(5): 544-54. 2013. PMID: 23461355. https://dx.doi.org/10.1080/13607863.2013 .775641 KQ4E7c, KQ5E7c
- 231. Kamkhagi, D, Costa, Aco, et al. Benefits of psychodynamic group therapy on depression, burden and quality of life of family caregivers to Alzheimer's disease patients. Revista de psiquiatria clinica. 42(6): 157-160. 2015. https://dx.doi.org/10.1590/0101-6083000000067 KQ4E3a, KQ5E3a
- 232. Kandiah, N, Zhang, A, et al. Early detection of dementia in multilingual populations: Visual Cognitive Assessment Test (VCAT). J Neurol Neurosurg Psychiatry. 87(2): 156-60. 2016. PMID: 25691617. https://dx.doi.org/10.1136/jnnp-2014-309647 **KQ2E3c**
- 233. Kano, Osamu, Ito, Hirono, et al. Clinically meaningful treatment responses after switching to galantamine and with addition of memantine in patients with Alzheimer's disease receiving donepezil. Neuropsychiatric Disease and Treatment Vol 9 2013, ArtID 259-265. 9. 2013. KQ4E2b, KQ5E2b
- 234. Karaman, Y, Erdogan, F, et al. A 12month study of the efficacy of rivastigmine in patients with advanced moderate Alzheimer's disease. Dement Geriatr Cogn Disord. 19(1): 51-6. 2005. PMID: 15383747. https://dx.doi.org/10.1159/000080972 KQ4E3a, KQ5E3a
- 235. Karantzoulis, S, Novitski, J, et al. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Utility in detection and characterization of mild cognitive impairment due to Alzheimer's disease. Archives of Clinical Neuropsychology. 28(8): 837-44. 2013. PMID: 23867976. https://dx.doi.org/10.1093/arclin/act057 KQ2E2d

- 236. Kato S, Homma A, Sakuma T, et al. Detection of mild Alzheimer's disease and mild cognitive impairment from elderly speech: Binary discrimination using logistic regression. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:5569-72. PMID: 26737554. **KQ2E2d**
- 237. Kaur A, Edland SD, Peavy GM. The MoCA-Memory Index Score: An Efficient Alternative to Paragraph Recall for the Detection of Amnestic Mild Cognitive Impairment. Alzheimer Disease & Associated Disorders. 2018;32(2):120-4. PMID: 29319601. **KQ2E4e**
- 238. Kemp, PM, Holmes, C, et al. A randomised placebo controlled study to assess the effects of cholinergic treatment on muscarinic receptors in Alzheimer's disease. J Neurol Neurosurg Psychiatry. 74(11): 1567-1570. 2003. PMID: 14617718. KQ4E5, KQ5E5
- 239. Kim, Hee-Jin, Yang, YoungSoon, et al. Effectiveness of a community-based multidomain cognitive intervention program in patients with Alzheimer's disease. Geriatr Gerontol Int. 16(2): 191-199. 2016. https://dx.doi.org/10.1111/ggi.12453

KQ4E6b, KQ5E6b

- 240. Kim, JW, Lee, DY, et al. Improvement of dementia screening accuracy of minimental state examination by educationadjustment and supplementation of frontal assessment battery performance. J Korean Med Sci. 28(10): 1522-8. 2013. PMID: 24133360. https://dx.doi.org/10.3346/jkms.2013.28.1 0.1522 KQ2E3c
- 241. Kim, JW, Lee, DY, et al. Improvement of Screening Accuracy of Mini-Mental State Examination for Mild Cognitive Impairment and Non-Alzheimer's Disease Dementia by Supplementation of Verbal Fluency Performance. Psychiatry Investig. 11(1): 44-51. 2014. PMID: 24605123. https://dx.doi.org/10.4306/pi.2014.11.1.44 KQ2E3c
- 242. Kim, M-J, Han, C-W, et al. Physical Exercise with Multicomponent Cognitive Intervention for Older Adults with Alzheimer's Disease: a 6-Month Randomized Controlled Trial. Dement Geriatr Cogn Dis Extra. 6(2): 222-232. 2016. https://dx.doi.org/10.1159/000446508

https://dx.doi.org/10.1159/000446508 KQ4E3b, KQ5E3b

- 243. Kiosses, DN, Ravdin, LD, et al. Problem Adaptation Therapy for Older Adults With Major Depression and Cognitive Impairment: A Randomized Clinical Trial. JAMA Psychiatry. 72(1): 22-30. 2015. PMID: 25372657. KQ4E4b, KQ5E4b
- 244. Koekkoek, PS, Rutten, GE, et al. The "Test Your Memory" test performs better than the MMSE in a population without known cognitive dysfunction. J Neurol Sci. 328(1-2): 92-7. 2013. PMID: 23531478. https://dx.doi.org/10.1016/j.jns.2013.02.02 8 KQ2E5
- 245. Kohanpour, M-A, Peeri, M, et al. The effects of aerobic exercise with lavender essence use on cognitive state and serum brain-derived neurotrophic factor levels in elderly with mild cognitive impairment. Journal of herbmed pharmacology. 6(2): 80-84. 2017. **KQ4E3a**, **KQ5E3a**
- 246. Kohanpour M-A, Peeri M, Azarbayjani M-A. The Effects of Glycyrrhiza glabra L. extract use with aerobic training on inflammatory factors and cognitive state in elderly with mild cognitive impairment. Journal of herbmed pharmacology. 2017;6(4):178-84. **KQ4E3a, KQ5E3a**
- 247. Kohler, L, Meinke-Franze, C, et al. Does an interdisciplinary network improve dementia care? Results from the IDemUck-study. Curr Alzheimer Res. 11(6): 538-48. 2014. PMID: 24938504. KQ4E7c, KQ5E7c
- 248. Koontz, J, Baskys, A. Effects of galantamine on working memory and global functioning in patients with mild cognitive impairment: a double-blind placebo-controlled study. Am J Alzheimers Dis Other Demen. 20(5): 295-302. 2005. PMID: 16273995. **KQ4E7c, KQ5E7c**
- 249. Kroger, E, Mouls, M, et al. Adverse Drug Reactions Reported With Cholinesterase Inhibitors: An Analysis of 16 Years of Individual Case Safety Reports From VigiBase. Annals of Pharmacotherapy. 49(11): 1197-206. 2015. PMID: 26324356. https://dx.doi.org/10.1177/106002801560 2274 KQ5E2a
- 250. Kroger, E, Van Marum, R, et al. Treatment with rivastigmine or galantamine and risk of urinary incontinence: results from a Dutch database study. Pharmacoepidemiol Drug Saf. 24(3): 276-85. 2015. PMID:

25652526.

https://dx.doi.org/10.1002/pds.3741 **KQ5E2a**

- 251. Kuo LM, Huang HL, Huang HL, et al. A home-based training program improves Taiwanese family caregivers' quality of life and decreases their risk for depression: a randomized controlled trial. Int J Geriatr Psychiatry. 2013;28(5):504-13. PMID: 22778053. **KQ4E4c**, **KQ5E4c**
- 252. Kuo, LM, Huang, HL, et al. Health-related quality of life and self-efficacy of managing behavior problems for family caregivers of vascular dementia and Alzheimer's disease patients. Dement Geriatr Cogn Disord. 38(5-6): 310-20. 2014. PMID: 25011490. https://dx.doi.org/10.1159/000360414 KQ4E5, KQ5E5
- 253. Kurz, A, Grimmer, T. Efficacy of memantine hydrochloride once-daily in Alzheimer's disease. Expert Opin Pharmacother. 15(13): 1955-60. 2014.
 PMID: 25085661.
 https://dx.doi.org/10.1517/14656566.2014
 .945907 KQ4E5, KQ5E5
- 254. Kuster, OC, Fissler, P, et al. Cognitive change is more positively associated with an active lifestyle than with training interventions in older adults at risk of dementia: a controlled interventional clinical trial. BMC Psychiatry. 16(1): 315. 2016. PMID: 27608620. https://dx.doi.org/10.1186/s12888-016-1018-z KQ4E1b, KQ5E1b
- 255. Kvitting, AS, Wimo, A, et al. A quick test of cognitive speed (AQT): usefulness in dementia evaluations in primary care. Scand J Prim Health Care. 31(1): 13-9.
 2013. PMID: 23293859. https://dx.doi.org/10.3109/02813432.2012 .751699 KQ2E3c
- 256. Kwok, T, Lam, L, et al. Case management to improve quality of life of older people with early dementia and to reduce caregiver burden. Hong Kong Medical Journal. 18 Suppl 6(): 4-6. 2012. PMID: 23249844. **KQ4E7c, KQ5E7c**
- 257. Kwok, TC, Bai, X, et al. Effectiveness of cognitive training in Chinese older people with subjective cognitive complaints: a randomized placebo-controlled trial. Int J Geriatr Psychiatry. 28(2): 208-15. 2013. PMID: 22528470. https://dx.doi.org/10.1002/gps.3812 KQ4E7c, KQ5E7c

- 258. Lacey, L, Bobula, J, et al. Informal Care Time and Cost in a Large Clinical Trial Sample of Patients with Mild to Moderate Alzheimer's Disease: determinants and Level of Change Observed. Neurology and therapy. 6(1): 11-23. 2017. https://dx.doi.org/10.1007/s40120-016-0056-2 KQ4E5, KQ5E5
- 259. Laforce, R, Jr, Sellami, et al. Validation of the Depistage Cognitif de Quebec: A New Cognitive Screening Tool for Atypical Dementias. Arch Clin Neuropsychol. 1-9. 2017. PMID: 28541543. https://dx.doi.org/10.1093/arclin/acx048 KQ2E1
- 260. Lai, EC, Wong, MB, et al. Risk of pneumonia in new users of cholinesterase inhibitors for dementia. J Am Geriatr Soc. 63(5): 869-76. 2015. PMID: 25912671. https://dx.doi.org/10.1111/jgs.13380
 KQ4E2a, KQ5E2a
- 261. Lam, LC, Chan, WM, et al. Effectiveness of Tai Chi in maintenance of cognitive and functional abilities in mild cognitive impairment: a randomised controlled trial. Hong Kong Medical Journal. 20(3 Suppl 3): 20-3. 2014. PMID: 25001031.
 KQ4E7c, KQ5E7c
- 262. LaMantia, MA, Alder, CA, et al. The Aging Brain Care Medical Home: Preliminary Data. J Am Geriatr Soc. 63(6): 1209-13. 2015. PMID: 26096394. https://dx.doi.org/10.1111/jgs.13447 KQ4E2a, KQ5E2a
- 263. Langoni CDS, Resende TL, Barcellos AB, et al. Effect of Exercise on Cognition, Conditioning, Muscle Endurance, and Balance in Older Adults With Mild Cognitive Impairment: A Randomized Controlled Trial. Journal of geriatric physical therapy (2001). 2018. PMID: 29738405. KQ4E3a, KQ5E3a
- 264. Langoni CDS, Resende TL, Barcellos AB, et al. The effect of group exercises on balance, mobility, and depressive symptoms in older adults with mild cognitive impairment: a randomized controlled trial. Clin Rehabil. 2018:269215518815218. PMID: 30514115. KQ4E1, KQ5E1
- 265. Laporte, Uribe F, Graske, J, et al. Regional dementia care networks in Germany: changes in caregiver burden at one-year follow-up and associated factors. Int Psychogeriatr. 1-14. 2017.

https://dx.doi.org/10.1017/S10416102170 00126 **KQ4E2a, KQ5E2a**

- 266. Larner, A. MACE versus MoCA: Equivalence or superiority? Pragmatic diagnostic test accuracy study. Int Psychogeriatr. 29(6): 931-937. 2017. https://dx.doi.org/10.1017/S10416102160 02210 KQ2E3c
- 267. Larner, AJ. Does combining an informant questionnaire with patient performance scales improve diagnostic test accuracy for cognitive impairment?. Int J Geriatr Psychiatry. 32(4): 466-467. 2017. PMID: 28272789. https://dx.doi.org/10.1002/gps.4647 KQ2E3c
- 268. Larner, AJ. Hard-TYM: a pragmatic study. Int J Geriatr Psychiatry. 30(3): 330-1. 2015. PMID: 25631916. https://dx.doi.org/10.1002/gps.4249 KQ2E3c
- 269. Larner, AJ. Implications of changing the Six-item Cognitive Impairment Test cutoff. Int J Geriatr Psychiatry. 30(7): 778-9.
 2015. PMID: 26058457. https://dx.doi.org/10.1002/gps.4303
 KQ2E3c
- 270. Larner, AJ. Mini-Addenbrooke's cognitive examination diagnostic accuracy for dementia: reproducibility study. Int J Geriatr Psychiatry. 30(10): 1103-4. 2015. PMID: 26376107. https://dx.doi.org/10.1002/gps.4334 **KQ2E3c**
- 271. Larner, AJ. Mini-Addenbrooke's Cognitive Examination: a pragmatic diagnostic accuracy study. Int J Geriatr Psychiatry. 30(5): 547-8. 2015. PMID: 25855207. https://dx.doi.org/10.1002/gps.4258 KQ2E3c
- 272. Larner AJ. Mini-Mental State Examination: diagnostic test accuracy study in primary care referrals. Neurodegenerative Disease Management. 2018;8(5):301-5. PMID: 30223710. **KQ2E4e**
- 273. Lavery, LL, Lu, SY, et al. Cognitive assessment of older primary care patients with and without memory complaints. J Gen Intern Med. 22(7): 949-954. 2007. PMID: 17453265.

https://dx.doi.org/17453265 KQ2E7c

274. Lebedeva, E, Gallant, S, et al. Improving the Measurement of Cognitive Ability in Geriatric Patients. Dement Geriatr Cogn Disord. 40(3-4): 148-57. 2015. PMID: 26107499.

https://dx.doi.org/10.1159/000381536 KQ2E5

- 275. Lee TM, Chan FH, Chu LW, et al. Auditory-based cognitive training programme for attention and memory in older people at risk of progressive cognitive decline: a randomised controlled trial. Hong Kong Med. 2017;23 Suppl 2(3):12-5. PMID: 29938664. **KQ4E1b**, **KQ5E1b**
- 276. Lee SJ, Han JH, Hwang JW, et al. Screening for Normal Cognition, Mild Cognitive Impairment, and Dementia with the Korean Dementia Screening Questionnaire. Psychiatry Investigation. 2018;15(4):384-9. PMID: 29475235. KQ2E2d
- 277. Lee, GY, Yip, CC, et al. Evaluation of a computer-assisted errorless learning-based memory training program for patients with early Alzheimer's disease in Hong Kong: a pilot study. Clin Interv Aging. 8(): 623-33. 2013. PMID: 23766638. https://dx.doi.org/10.2147/CIA.S45726
 KQ4E7c, KQ5E7c
- 278. Lee, LK, Shahar, S, et al. Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): a 12-month randomised, double-blind, placebocontrolled trial. Psychopharmacology (Berl). 225(3): 605-12. 2013. PMID: 22932777. https://dx.doi.org/10.1007/s00213-012-

2848-0 **KQ4E3a, KQ5E3a** 279. Lees, R, Selvarajah, J, et al. Test accuracy of cognitive screening tests for diagnosis of dementia and multidomain cognitive impairment in stroke. Stroke. 45(10): 3008-18. 2014. PMID: 25190446. https://dx.doi.org/10.1161/STROKEAHA.1 14.005842 **KQ2E2a**

- 280. Lemke NC, Werner C, Wiloth S, et al. Transferability and Sustainability of Motor-Cognitive Dual-Task Training in Patients with Dementia: A Randomized Controlled Trial. Gerontology. 2019;65(1):68-83. PMID: 30041173. KQ4E3b, KQ5E3b
- 281. Li, F, Harmer, P, et al. Tai Ji Quan and global cognitive function in older adults with cognitive impairment: a pilot study. Arch Gerontol Geriatr. 58(3): 434-9. 2014. PMID: 24398166.

https://dx.doi.org/10.1016/j.archger.2013. 12.003 **KQ4E2a, KQ5E2a**

- 282. Li, M, Ng, TP, et al. Brief informant screening test for mild cognitive impairment and early Alzheimer's disease. Dement Geriatr Cogn Disord.
 21(5-6): 392-402. 2006. PMID: 16645272. https://dx.doi.org/16645272 KQ2E3c
- 283. Li, R, Cooper, C, et al. Coping strategies as mediators of the effect of the START (strategies for RelaTives) intervention on psychological morbidity for family carers of people with dementia in a randomised controlled trial. J Affect Disord. 168(): 298-305. 2014. PMID: 25083601. https://dx.doi.org/10.1016/j.jad.2014.07.00 8 KQ4E5, KQ5E5
- 284. Li, T, Yao, Y, et al. Cognitive training can reduce the rate of cognitive aging: a neuroimaging cohort study. BMC Geriatr. 16(): 12. 2016. PMID: 26762334. https://dx.doi.org/10.1186/s12877-016-0194-5 KQ4E3a, KQ5E3a
- 285. Li, X, Jia, S, et al. The Gesture Imitation in Alzheimer's Disease Dementia and Amnestic Mild Cognitive Impairment. J Alzheimers Dis. 53(4): 1577-84. 2016. PMID: 27540963. https://dx.doi.org/10.3233/JAD-160218 KQ2E3a
- 286. Lin, HC, Yang, YP, et al. Distinctive effects between cognitive stimulation and reminiscence therapy on cognitive function and quality of life for different types of behavioural problems in dementia. Scand J Caring Sci. 2017. PMID: 28881430. https://dx.doi.org/10.1111/scs.12484 KQ4E7c, KQ5E7c
- 287. Liu, Xy, Li, L, et al. Cognitive training in older adults with mild cognitive impairment. Biomed Environ Sci. 29(5): 356-364. 2016. **KQ4E3a, KQ5E3a**
- 288. Locke, DE, Greenaway, MC, et al. A patient-centered analysis of enrollment and retention in a randomized behavioral trial of two cognitive rehabilitation interventions for Mild Cognitive Impairment. J Prev Alzheimers Dis. 1(3): 143-150. 2014. PMID: 27398353. https://dx.doi.org/10.14283/jpad.2014.27 KQ4E8, KQ5E8
- 289. Logsdon, RebeccaG, Pike, KennethC, et al. Memory care and wellness services: Efficacy of specialized dementia care in adult day services. Gerontologist. 56(2):

318-325. 2016.

https://dx.doi.org/10.1093/geront/gnu012 KQ4E7c, KQ5E7c

- 290. Lok, N, Bademli, K. Pilot testing of the "First You Should Get Stronger" program among caregivers of older adults with dementia. Arch Gerontol Geriatr. 68(): 84-89. 2017. PMID: 27689315. https://dx.doi.org/10.1016/j.archger.2016. 09.006 **KQ4E2c**, **KQ5E2c**
- 291. Lord, K, Livingston, G, et al. A feasibility randomised controlled trial of the DECIDE intervention: dementia carers making informed decisions. BJPsych Open. 3(1): 12-14. 2017. PMID: 28243460. https://dx.doi.org/10.1192/bjpo.bp.116.00 3509 KQ4E2c, KQ5E2c
- 292. Lorig, Kate, Thompson-Gallagher, Dolores, et al. Building better caregivers: A pilot online support workshop for family caregivers of cognitively impaired adults. J Appl Gerontol. 31(3): 423-437. 2012. https://dx.doi.org/10.1177/073346481038 9806 KQ4E2a, KQ5E2a
- 293. Losada, A, Marquez-Gonzalez, M, et al. Cognitive-behavioral therapy (CBT) versus acceptance and commitment therapy (ACT) for dementia family caregivers with significant depressive symptoms: Results of a randomized clinical trial. J Consult Clin Psychol. 83(4): 760-72. 2015. PMID: 26075381. https://dx.doi.org/10.1037/ccp0000028 KQ4E7c, KQ5E7c
- 294. Low, LF, Harrison, F, et al. Can mild cognitive impairment be accurately diagnosed in english speakers from linguistic minorities? Results from the Sydney Memory and Ageing study. American Journal of Geriatric Psychiatry. 20(10): 866-77. 2012. PMID: 22261551. https://dx.doi.org/10.1097/JGP.0b013e31 823e31e2 **KQ2E1**
- 295. Lowery, D, Cerga-Pashoja, A, et al. The effect of exercise on behavioural and psychological symptoms of dementia: the EVIDEM-E randomised controlled clinical trial. Int J Geriatr Psychiatry. 29(8): 819-27. 2014. PMID: 24338799. https://dx.doi.org/10.1002/gps.4062 KQ4E6c, KQ5E6c
- 296. Lu, J, Sun, M, et al. Effects of momentumbased dumbbell training on cognitive function in older adults with mild cognitive impairment: a pilot randomized controlled trial. Clin Interv Aging. 11(): 9-16. 2016.

PMID: 26766905.

https://dx.doi.org/10.2147/CIA.S96042 KQ4E3a, KQ5E3a

- 297. Lykens, K, Moayad, N, et al. Impact of a community based implementation of REACH II program for caregivers of Alzheimer's patients. PLoS ONE [Electronic Resource]. 9(2): e89290. 2014. PMID: 24586664. https://dx.doi.org/10.1371/journal.pone.00 89290 KQ4E2a, KQ5E2a
- 298. Ma F, Li Q, Zhou X, et al. Effects of folic acid supplementation on cognitive function and Abeta-related biomarkers in mild cognitive impairment: a randomized controlled trial. Eur J Nutr. 2017. PMID: 29255930. **KQ4E3a**, **KQ5E3a**
- 299. MacDougall, ElizabethE, Mansbach, WilliamE, et al. The Brief Cognitive Assessment Tool (BCAT): Crossvalidation in a community dwelling older adult sample. Int Psychogeriatr. 27(2): 243-250. 2015. https://dx.doi.org/10.1017/S10416102140 01458 KQ2E7b
- 300. MacNeil Vroomen, J, Bosmans, JE, et al. Community-dwelling patients with dementia and their informal caregivers with and without case management: 2year outcomes of a pragmatic trial. J Am Med Dir Assoc. 16(9): 800.e1-8. 2015. PMID: 26170035. https://dx.doi.org/10.1016/j.jamda.2015.06

.011 **KQ4E2a**

- 301. MacNeil Vroomen, J, Van Mierlo, LD, et al. Comparing Dutch case management care models for people with dementia and their caregivers: The design of the COMPAS study. BMC Health Serv Res. 12(): 132. 2012. PMID: 22640695. https://dx.doi.org/10.1186/1472-6963-12-132 KQ4E8, KQ5E8
- 302. Mahoney, DF, Tarlow, BJ, et al. Effects of an automated telephone support system on caregiver burden and anxiety: findings from the REACH for TLC intervention study. Gerontologist. 43(4): 556-567. 2003. PMID: 12937334. KQ4E4c, KQ5E4c
- 303. Maillet, D, Matharan, F, et al. TNI-93: A New Memory Test for Dementia Detection in Illiterate and Low-Educated Patients. Arch Clin Neuropsychol. 2016. PMID: 27590305. https://dx.doi.org/10.1093/arclin/acw065 KQ2E7c

- 304. Maki, Y, Yamaguchi, T, et al. Symptoms of Early Dementia-11 Questionnaire (SED-11Q): A Brief Informant-Operated Screening for Dementia. Dement Geriatr Cogn Dis Extra. 3(1): 131-42. 2013. PMID: 23687508. https://dx.doi.org/10.1159/000350460 KQ2E2d
- 305. Makizako, H, Doi, T, et al. Does a multicomponent exercise program improve dual-task performance in amnestic mild cognitive impairment? A randomized controlled trial. Aging-Clinical & Experimental Research. 24(6): 640-6. 2012. PMID: 23211228. https://dx.doi.org/10.3275/8760 KQ4E5, KQ5E5
- 306. Mansbach, We, Mace, Ra, et al. The efficacy of a computer-assisted cognitive rehabilitation program for patients with mild cognitive deficits: a pilot study. Exp Aging Res. 43(1): 94-104. 2017. PMID: Pubmed 28067610. https://dx.doi.org/10.1080/0361073X.2017 .1258256 **KQ4E2c. KQ5E2c**
- 307. Marcone, S, Gagnon, JF, et al. Clinical Utility of the Envelope Task in Mild Cognitive Impairment and Dementia. Can J Neurol Sci. 44(1): 9-16. 2017. PMID: 27665668. https://dx.doi.org/10.1017/cjn.2016.298

KQ2E2d 308. Martinelli JE, Cecato JF, Martinelli MO, et al. Performance of the Pentagon Drawing test for the screening of older adults with Alzheimer's dementia. Dementia & neuropsychologia. 2018;12(1):54-60.

- PMID: 29682234. KQ2E3a
 309. Matias-Guiu, JA, Fernandez de Bobadilla, R, et al. Validation of the Spanish version of Addenbrooke's Cognitive Examination III for diagnosing dementia. Neurologia. 30(9): 545-51. 2015. PMID: 25002342. https://dx.doi.org/10.1016/j.nrl.2014.05.00 4 KQ2E6a
- 310. Matias-Guiu, JA, Fernandez-Bobadilla, R. Validation of the Spanish-language version of Mini-Addenbrooke's Cognitive Examination as a dementia screening tool. Neurologia. 31(9): 646-648. 2016. PMID: 25529174. https://dx.doi.org/10.1016/j.nrl.2014.10.00 5 KQ2E3c
- 311. Matsuzono, K, Sato, K, et al. Clinical benefits of rivastigmine in the real world dementia clinics of the Okayama

Rivastigmine Study (ORS). J Alzheimers Dis. 48(3): 757-763. 2015. https://dx.doi.org/10.3233/JAD-150518 **KQ4E2a, KQ5E2a**

- 312. McCulloch, K, Collins, RL, et al. Validation and diagnostic utility of the dementia rating scale in a mixed dementia population. Alzheimer Dis Assoc Disord. 28(2): 168-74. 2014. PMID: 24231456. https://dx.doi.org/10.1097/WAD.00000000 00000014 KQ2E3c
- 313. McCulloch, Katie. Validation and diagnostic utility of the Mini-Mental State Examination and Montreal Cognitive Assessment in screening for dementia within a mixed clinical sample. Dissertation Abstracts International: Section B: The Sciences and Engineering. 76(4-B(E)): No Pagination Specified. 2015. KQ2E3c
- 314. McCurry, SusanM, Logsdon, RebeccaG, et al. Adopting evidence-based caregiver training programs in the real world: Outcomes and lessons learned from the STAR-C Oregon Translation Study. J Appl Gerontol. 36(5): 519-536. 2017. https://dx.doi.org/10.1177/073346481558 1483 KQ4E2a, KQ5E2a
- 315. McDougall GJ, McDonough IM, LaRocca M. Memory training for adults with probable mild cognitive impairment: a pilot study. Aging Ment Health. 2018:1-9. PMID: 30303394. **KQ4E7c, KQ5E7c**
- 316. Meichsner F, Theurer C, Wilz G. Acceptance and treatment effects of an internet-delivered cognitive-behavioral intervention for family caregivers of people with dementia: A randomizedcontrolled trial. Journal of clinical psychology. 2018. PMID: 30597537. KQ4E4c, KQ5E4c
- 317. Michalec, J, Bezdicek, O, et al. Standardization of the Czech version of the Tower of London test - Administration, scoring, validity. Ceska a Slovenska Neurologie a Neurochirurgie. 77(5): 596-601. 2014. https://dx.doi.org/10.14735/amcsnn20145 96 KQ2E4b
- 318. Michalowsky, Bernhard, Eichler, Tilly, et al. Healthcare resource utilization and cost in dementia: Are there differences between patients screened positive for dementia with and those without a formal diagnosis of dementia in primary care in Germany?. Int Psychogeriatr. 28(3): 359-

369. 2016.

https://dx.doi.org/10.1017/S10416102150 01453 **KQ1E1**

- 319. Mioshi, E, McKinnon, C, et al. Improving burden and coping skills in frontotemporal dementia caregivers: a pilot study.
 Alzheimer Dis Assoc Disord. 27(1): 84-6.
 2013. PMID: 22354158.
 https://dx.doi.org/10.1097/WAD.0b013e31
 824a7f5b KQ4E2a, KQ5E2a
- 320. Miranda DDC, Brucki SMD, Yassuda MS. The Mini-Addenbrooke's Cognitive Examination (M-ACE) as a brief cognitive screening instrument in Mild Cognitive Impairment and mild Alzheimer's disease. Dementia & neuropsychologia. 2018;12(4):368-73. PMID: 30546846. KQ2E3a
- 321. Mittelman, MS, Brodaty, H, et al. A threecountry randomized controlled trial of a psychosocial intervention for caregivers combined with pharmacological treatment for patients with Alzheimer disease: effects on caregiver depression. Am J Geriatr Psychiatry. 16(11): 893-904. 2008. PMID: 18978250. **KQ4E7c, KQ5E7c**
- 322. Molinuevo, JI, Frolich, L, et al. Responder analysis of a randomized comparison of the 13.3 mg/24 h and 9.5 mg/24 h rivastigmine patch. Alzheimers Res Ther. 7(1). 2015. https://dx.doi.org/10.1186/s13195-014-
- 0088-8 **KQ4E2b**, **KQ5E2b** 323. Montero-Odasso M, Speechley M, Chertkow H, et al. Donepezil for gait and falls in mild cognitive impairment: a randomized controlled trial. Eur J Neurol. 2018. PMID: 30565793. **KQ4E1, KQ5E1**
- 324. Moore, RC, Chattillion, EA, et al. A randomized clinical trial of Behavioral Activation (BA) therapy for improving psychological and physical health in dementia caregivers: results of the Pleasant Events Program (PEP). Behav Res Ther. 51(10): 623-32. 2013. PMID: 23916631. https://dx.doi.org/10.1016/j.brat.2013.07.0 05 KQ4E2b
- 325. Moreno-Martinez, FJ, Ruiz, M, et al. Why Almost Always Animals? Ranking Fluency Tasks for the Detection of Dementia Based on Receiver Operating Characteristic (ROC) and Quality ROC Analyses. Dement Geriatr Cogn Disord. 43(1-2): 59-70. 2017. PMID: 28013307.

https://dx.doi.org/10.1159/000454916 KQ2E2d

- 326. Mori, E, Ikeda, M, et al. Effects of Donepezil on Extrapyramidal Symptoms in Patients with Dementia with Lewy Bodies: A Secondary Pooled Analysis of Two Randomized-Controlled and Two Open-Label Long-Term Extension Studies. Dement Geriatr Cogn Disord. 40(3-4): 186-98. 2015. PMID: 26226884. https://dx.doi.org/10.1159/000433524
 KQ5E2a
- 327. Moriyama, Y, Yoshino, A, et al. The Japanese version of the Rapid Dementia Screening Test is effective compared to the clock-drawing test for detecting patients with mild Alzheimer's disease. Psychogeriatrics:The Official Journal of the Japanese Psychogeriatric Society. 16(4): 233-9. 2016. PMID: 26211455. https://dx.doi.org/10.1111/psyg.12144 KQ2E2d
- 328. Mormont, E, Jamart, J, et al. Symptoms of depression and anxiety after the disclosure of the diagnosis of Alzheimer disease. J Geriatr Psychiatry Neurol. 27(4): 231-6. 2014. PMID: 24759087. https://dx.doi.org/10.1177/089198871453 2021 KQ3E2a
- 329. Moro, V, Condoleo, MT, et al. Cognitive stimulation in a-MCI: an experimental study. Am J Alzheimers Dis Other Demen. 27(2): 121-30. 2012. PMID: 22495340. https://dx.doi.org/10.1177/153331751244 1386 KQ4E2a. KQ5E2a
- 330. Moro, V, Condoleo, Mt, et al. Cognitive stimulation of executive functions in mild cognitive impairment: Specific efficacy and impact in memory. Am J Alzheimers Dis Other Demen. 30(2): 153-64. 2015. https://dx.doi.org/10.1177/153331751453 9542 KQ4E2a, KQ5E2a
- 331. Morris, RG, Woods, RT, et al. The use of a coping strategy focused support group for carers of dementia sufferers. Couns Psychol Q. 5(4): 337-348. 1992. https://dx.doi.org/None **KQ4E7c, KQ5E7c**
- 332. Mukadam N, Cooper C, Livingston G. The EAST-Dem study: a pilot cluster randomized controlled trial. International psychogeriatrics. 2018;30(5):769-73. PMID: 29108532. KQ4E5, KQ5E5
- 333. Myhre, J, Bjornstad, JT, et al. The coping experiences of spouses of persons with dementia. J Clin Nurs. 2017. PMID:

28833748.

https://dx.doi.org/10.1111/jocn.14047 **KQ4E2a, KQ5E2a**

- 334. Nagamatsu, LindsayS, Handy, ToddC, et al. Resistance training promotes cognitive and functional brain plasticity in seniors with probable mild cognitive impairment. Arch Intern Med. 172(8): 666-668. 2012. PMID: 22529236. KQ4E1b, KQ5E1b
- 335. Nagamatsu, LS, Chan, A, et al. Physical activity improves verbal and spatial memory in older adults with probable mild cognitive impairment: a 6-month randomized controlled trial. J Aging Res. 2013(): 861893. 2013. PMID: 23509628. https://dx.doi.org/10.1155/2013/861893 KQ4E1b, KQ5E1b
- 336. Naismith SL, Pye J, Terpening Z, et al. "Sleep Well, Think Well" Group Program for Mild Cognitive Impairment: A Randomized Controlled Pilot Study. Behavioral sleep medicine. 2018:1-12. PMID: 30247939. KQ4E1, KQ5E1
- 337. Nakamae, T, Yotsumoto, K, et al. Effects of productive activities with reminiscence in occupational therapy for people with dementia: A pilot randomized controlled study. Hong Kong Journal of Occupational Therapy. 24(1): 13-9. 2014. https://dx.doi.org/10.1016/j.hkjot.2014.01. 003 KQ4E6b, KQ5E6b
- 338. Nakamura, Y, Kitamura, S, et al. Efficacy and safety of memantine in patients with moderate-to-severe Alzheimer's disease: results of a pooled analysis of two randomized, double-blind, placebocontrolled trials in Japan. Expert Opin Pharmacother. 15(7): 913-25. 2014.
 PMID: 24673497.
 https://dx.doi.org/10.1517/14656566.2014
 .902446 KQ4E4c, KQ5E4c
- 339. Nakamura, Y, Strohmaier, C, et al. A 24-Week, Randomized, Controlled Study to Evaluate the Tolerability, Safety and Efficacy of 2 Different Titration Schemes of the Rivastigmine Patch in Japanese Patients with Mild to Moderate Alzheimer's Disease. Dement Geriatr Cogn Dis Extra. 5(3): 361-374. 2015. https://dx.doi.org/10.1159/000439269 KQ4E2b, KQ5E2b
- 340. Nakanishi, M, Endo, K, et al. Psychosocial behaviour management programme for home-dwelling people with dementia: A cluster-randomized controlled trial. Int J Geriatr Psychiatry.

2017. PMID: 28857263. https://dx.doi.org/10.1002/gps.4784 **KQ4E4d, KQ5E4d**

- 341. Ng, A, Chew, I, et al. Effectiveness of Montreal Cognitive Assessment for the diagnosis of mild cognitive impairment and mild Alzheimer's disease in Singapore. Singapore Med J. 54(11): 616-9. 2013. PMID: 24276096. KQ2E2d
- 342. Ng, TP, Feng, L, et al. Montreal Cognitive Assessment for screening mild cognitive impairment: variations in test performance and scores by education in Singapore. Dement Geriatr Cogn Disord. 39(3-4): 176-85. 2015. https://dx.doi.org/10.1159/000368827

https://dx.doi.org/10.1159/000368827 KQ2E2d

343. Ngandu, T, Lehtisalo, J, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 385(9984): 2255-63. 2015. PMID: 25771249. https://dx.doi.org/10.1016/S0140-

6736(15)60461-5 **KQ4E1b**, **KQ5E1b** Ni I Shi I et al Screening mild

- 344. Ni, J, Shi, J, et al. Screening mild cognitive impairment by delayed story recall and instrumental activities of daily living. Int J Geriatr Psychiatry. 30(8): 888-90. 2015. PMID: 26172064. https://dx.doi.org/10.1002/gps.4317 KQ2E3c
- 345. Nielsen, TR, Phung, TK, et al. Combining the Rowland Universal Dementia Assessment Scale and the Informant Questionnaire on Cognitive Decline in the Elderly to Improve Detection of Dementia in an Arabic-Speaking Population. Dement Geriatr Cogn Disord. 41(1-2): 46-54. 2016. PMID: 26613533. https://dx.doi.org/10.1159/000441649 KQ2E3a
- 346. Nielsen, TR, Vogel, A, et al. Cognitive testing in non-demented Turkish immigrants--comparison of the RUDAS and the MMSE. Scand J Psychol. 53(6): 455-60. 2012. PMID: 23170863. https://dx.doi.org/10.1111/sjop.12018 KQ2E1
- 347. O'Caoimh, R, Gao, Y, et al. Comparing Approaches to Optimize Cut-off Scores for Short Cognitive Screening Instruments in Mild Cognitive Impairment and Dementia. J Alzheimers Dis. 57(1): 123-

133. 2017. PMID: 28222528.

https://dx.doi.org/10.3233/JAD-161204 **KQ2E3c**

- 348. O'Caoimh, R, Gao, Y, et al. Which part of the Quick mild cognitive impairment screen (Qmci) discriminates between normal cognition, mild cognitive impairment and dementia?. Age Ageing. 42(3): 324-30. 2013. PMID: 23612864. https://dx.doi.org/10.1093/ageing/aft044 KQ2E3c
- 349. O'Caoimh, Ronan, Gao, Yang, et al. Comparing approaches to optimize cut-off scores for short cognitive screening instruments in mild cognitive impairment and dementia. J Alzheimers Dis. 57(1): 123-133. 2017. https://dx.doi.org/10.3233/JAD-161204 KQ2E3c
- 350. Ohnishi, T, Sakiyama, Y, et al. The prediction of response to galantamine treatment in patients with mild to moderate Alzheimer's disease. Curr Alzheimer Res. 11(2): 110-8. 2014. PMID: 24156269. **KQ4E5, KQ5E5**
- 351. Okamura H, Otani M, Shimoyama N, et al. Combined Exercise and Cognitive Training System for Dementia Patients: A Randomized Controlled Trial. Dement Geriatr Cogn Disord. 2018;45(5-6):318-25. PMID: 30036871. KQ4E2b, KQ5E2b
- 352. Okereke, OI, Pantoja-Galicia, N, et al. The SIST-M: predictive validity of a brief structured clinical dementia rating interview. Alzheimer Dis Assoc Disord. 26(3): 225-31. 2012. PMID: 21986342. https://dx.doi.org/10.1097/WAD.0b013e31 8231cd30 KQ2E1
- 353. Okuizumi K, Kamata T, Matsui D, et al. Memantine in Japanese patients with moderate to severe Alzheimer's disease: meta-analysis of multiple-index responder analyses. Expert Opinion on Pharmacotherapy. 2018;19(5):425-30. PMID: 29448852. **KQ4E2a, KQ5E2a**
- 354. Olchik, MR, Farina, J, et al. Memory training (MT) in mild cognitive impairment (MCI) generates change in cognitive performance. Arch Gerontol Geriatr. 56(3): 442-7. 2013. PMID: 23260332. https://dx.doi.org/10.1016/j.archger.2012. 11.007 KQ4E1b, KQ5E1b
- 355. Onoda, K, Hamano, T, et al. Validation of a new mass screening tool for cognitive impairment: Cognitive Assessment for Dementia, iPad version. Clin Interv Aging.

8(): 353-60. 2013. PMID: 23569368. https://dx.doi.org/10.2147/CIA.S42342 **KQ2E2a**

356. Onoda, K, Yamaguchi, S. Revision of the Cognitive Assessment for Dementia, iPad version (CADi2). PLoS ONE [Electronic Resource]. 9(10): e109931. 2014. PMID: 25310860. https://dx.doi.org/10.1371/journal.pone.01

09931 KQ2E2d

- 357. Otero, P, Smit, F, et al. Differential response to depression prevention among a sample of informal caregivers: Moderator analysis of longer-term followup trial data. Psychiatry Res. 230(2): 271-8. 2015. PMID: 26456895. https://dx.doi.org/10.1016/j.psychres.2015 .09.005 KQ4E8, KQ5E8
- 358. Otero, P, Smit, F, et al. Long-term efficacy of indicated prevention of depression in non-professional caregivers: randomized controlled trial. Psychol Med. 45(7): 1401-12. 2015. PMID: 25331992. https://dx.doi.org/10.1017/S00332917140 02505 KQ4E1
- 359. Ott, BR, Blake, LM, et al. Open label, multicenter, 28-week extension study of the safety and tolerability of memantine in patients with mild to moderate Alzheimer's disease. J Neurol. 254(3): 351-358. 2007. PMID: 17345042. **KQ4E2f, KQ5E2f**
- 360. Oulhaj, A, Jerneren, F, et al. Omega-3 Fatty Acid Status Enhances the Prevention of Cognitive Decline by B Vitamins in Mild Cognitive Impairment. J Alzheimers Dis. 50(2): 547-57. 2016. PMID: 26757190. https://dx.doi.org/10.3233/JAD-150777 KQ4E5
- 361. Pa, J, Berry, AS, et al. Cholinergic enhancement of functional networks in older adults with mild cognitive impairment. Ann Neurol. 73(6): 762-73. 2013. PMID: 23447373. https://dx.doi.org/10.1002/ana.23874 KQ4E5, KQ5E5
- 362. Pa, J, Goodson, W, et al. Effect of exercise and cognitive activity on selfreported sleep quality in communitydwelling older adults with cognitive complaints: a randomized controlled trial. J Am Geriatr Soc. 62(12): 2319-26. 2014. PMID: 25516028. https://dx.doi.org/10.1111/jgs.13158
 KQ4E1b, KQ5E1b

- 363. Paajanen, T, Hanninen, T, et al. CERAD neuropsychological compound scores are accurate in detecting prodromal alzheimer's disease: a prospective AddNeuroMed study. J Alzheimers Dis. 39(3): 679-90. 2014. PMID: 24246420. https://dx.doi.org/10.3233/JAD-122110 KQ2E2d
- 364. Padala, KalpanaP, Padala, PrasadR, et al. Home-based exercise program improves balance and fear of falling in community-dwelling older adults with mild Alzheimer's disease: A pilot study. J Alzheimers Dis. 59(2): 565-574. 2017. https://dx.doi.org/10.3233/JAD-170120 KQ4E6c, KQ5E6c
- 365. Pariente, A, Sanctussy, DJ, et al. Factors associated with serious adverse reactions to cholinesterase inhibitors: a study of spontaneous reporting. CNS Drugs. 24(1): 55-63. 2010. PMID: 20030419.
 KQ5E2f
- 366. Park JH, Jung M, Kim J, et al. Validity of a novel computerized screening test system for mild cognitive impairment. International Psychogeriatrics. 2018;30(10):1455-63. PMID: 29923471.
 KQ2E2d
- 367. Park, KW, Kim, EJ, et al. Efficacy and tolerability of rivastigmine patch therapy in patients with mild-to-moderate Alzheimer's dementia associated with minimal and moderate ischemic white matter hyperintensities: A multicenter prospective open-label clinical trial. PLoS ONE [Electronic Resource]. 12(8): e0182123. 2017. PMID: 28786987. https://dx.doi.org/10.1371/journal.pone.01 82123 KQ4E2a, KQ5E2a
- 368. Park, MH. Informant questionnaire on cognitive decline in the elderly (IQCODE) for classifying cognitive dysfunction as cognitively normal, mild cognitive impairment, and dementia. Int Psychogeriatr. 29(9): 1461-1467. 2017. PMID: 28560943. https://dx.doi.org/10.1017/S10416102170 00965 KQ2E3c
- 369. Park-Wyllie, LY, Mamdani, MM, et al. Cholinesterase inhibitors and hospitalization for bradycardia: a population-based study. PLoS Medicine / Public Library of Science. 6(9): e1000157. 2009. PMID: 19787032. KQ5E2e
- 370. Passoni, S, Moroni, L, et al. Cognitive behavioral group intervention for

Alzheimer caregivers. Alzheimer Dis Assoc Disord. 28(3): 275-82. 2014. PMID: 24614271.

https://dx.doi.org/10.1097/WAD.00000000 00000033 **KQ4E2a, KQ5E2a**

- 371. Patocskai, AT, Pakaski, M, et al. Is there any difference between the findings of Clock Drawing Tests if the clocks show different times?. J Alzheimers Dis. 39(4): 749-57. 2014. PMID: 24270210. https://dx.doi.org/10.3233/JAD-131313
 KQ2E3b
- 372. Pedraza, O, Clark, JH, et al. Diagnostic validity of age and education corrections for the Mini-Mental State Examination in older African Americans. J Am Geriatr Soc. 60(2): 328-31. 2012. PMID: 22150301. https://dx.doi.org/10.1111/j.1532-

5415.2011.03766.x **KQ2E4e**

373. Pelton, GH, Soleimani, L, et al. Olfactory Deficits Predict Cognitive Improvement on Donepezil in Patients With Depression and Cognitive Impairment: A Randomized Controlled Pilot Study. Alzheimer Dis Assoc Disord. 30(1): 67-9. 2016. PMID: 26398910.

https://dx.doi.org/10.1097/WAD.0000000 00000107 **KQ4E4b, KQ5E4b**

- 374. Peters, O, Lorenz, D, et al. A combination of galantamine and memantine modifies cognitive function in subjects with amnestic MCI. Journal of Nutrition, Health & Aging. 16(6): 544-8. 2012. PMID: 22659994. KQ4E7c, KQ5E7c
- 375. Perttila NM, Ohman H, Strandberg TE, et al. Effect of Exercise on Drug-Related Falls Among Persons with Alzheimer's Disease: A Secondary Analysis of the FINALEX Study. Drugs & Aging.
 2018;35(11):1017-23. PMID: 30315403.
 KQ4E5, KQ5E5
- 376. Phua AKS, Hiu SKW, Goh WK, et al. Low Accuracy of Brief Cognitive Tests in Tracking Longitudinal Cognitive Decline in an Asian Elderly Cohort. Journal of Alzheimer's Disease. 2018;62(1):409-16. PMID: 29439344. **KQ2E2d**
- 377. Phung, TK, Chaaya, M, et al. Performance of the 16-Item Informant Questionnaire on Cognitive Decline for the Elderly (IQCODE) in an Arabic-Speaking Older Population. Dement Geriatr Cogn Disord. 40(5-6): 276-89. 2015. PMID: 26338716.

https://dx.doi.org/10.1159/000437092 KQ2E2d

- 378. Pirrotta, Fabio, Timpano, Francesca, et al. Italian validation of Montreal Cognitive Assessment. European Journal of Psychological Assessment. 31(2): 131-137. 2015. https://dx.doi.org/10.1027/1015-5759/a000217 KQ2E7b
- 379. Poptsi E, Lazarou I, Markou N, et al. A Comparative Single-Blind Randomized Controlled Trial With Language Training in People With Mild Cognitive Impairment. American Journal of Alzheimer's Disease & Other Dementias.
 2018:1533317518813554. PMID: 30518237. KQ4E7c, KQ5E7c
- 380. Possin KL, Moskowitz T, Erlhoff SJ, et al. The Brain Health Assessment for detecting and diagnosing neurocognitive disorders. J Am Geriatr Soc. 2018;66(1):150-6. KQ2E2d
- 381. Potkin, SG, Anand, R, et al. Brain metabolic and clinical effects of rivastigmine in Alzheimer's disease. Int J Neuropsychopharmacol. 4(3): 223-30.
 2001. PMID: 11602028. https://dx.doi.org/doi:10.1017/S14611457 01002528 KQ4E1, KQ5E1
- 382. Prieto, G, Contador, I, et al. The Mini-Mental-37 test for dementia screening in the Spanish population: an analysis using the Rasch Model. Clinical Neuropsychologist. 26(6): 1003-18. 2012. PMID: 22809084. https://dx.doi.org/10.1080/13854046.2012 .704945 KQ2E1
- 383. Puterman E, Weiss J, Lin J, et al. Aerobic exercise lengthens telomeres and reduces stress in family caregivers: a randomized controlled trial Curt Richter Award Paper 2018.
 Psychoneuroendocrinology. 2018;(no pagination). KQ4E1, KQ5E1
- 384. Qi M, Zhu Y, Zhang L, et al. The effect of aerobic dance intervention on brain spontaneous activity in older adults with mild cognitive impairment: A resting-state functional MRI study. Experimental Ther. 2019;17(1):715-22. PMID: 30651855.
 KQ4E3a, KQ5E3a
- 385. Quintana-Hernandez, DJ, Miro-Barrachina, MT, et al. Mindfulness in the Maintenance of Cognitive Capacities in Alzheimer's Disease: A Randomized Clinical Trial. J Alzheimers Dis. 50(1):

217-32. 2016. PMID: 26639952. https://dx.doi.org/10.3233/JAD-143009 **KQ4E7c, KQ5E7c**

- 386. Radford, K, Mack, HA, et al. Comparison of Three Cognitive Screening Tools in Older Urban and Regional Aboriginal Australians. Dement Geriatr Cogn Disord. 40(1-2): 22-32. 2015. PMID: 25896073. https://dx.doi.org/10.1159/000377673
 KQ2E7c
- 387. Radford, K, Mack, HA, et al. Prevalence of dementia in urban and regional Aboriginal Australians. Alzheimers Dement. 11(3): 271-9. 2015. PMID: 24985534. https://dx.doi.org/10.1016/j.jalz.2014.03.0 07 KQ2E8
- 388. Rami, L, Mollica, MA, et al. The Subjective Cognitive Decline Questionnaire (SCD-Q): a validation study. J Alzheimers Dis. 41(2): 453-66.
 2014. PMID: 24625794. https://dx.doi.org/10.3233/JAD-132027
 KQ2E2d
- 389. Ramlall, S, Chipps, J, et al. The sensitivity and specificity of subjective memory complaints and the subjective memory rating scale, deterioration cognitive observee, mini-mental state examination, six-item screener and clock drawing test in dementia screening. Dement Geriatr Cogn Disord. 36(1-2): 119-35. 2013. PMID: 23860433. https://dx.doi.org/10.1159/000350768 KQ2E3a
- 390. Raschetti, R, Maggini, M, et al. A cohort study of effectiveness of acetylcholinesterase inhibitors in Alzheimer's disease. Eur J Clin Pharmacol. 61(5-6): 361-368. 2005. PMID: 15912389. KQ5E2f
- 391. Reckess, GZ, Brandt, J, et al. Screening by telephone in the Alzheimer's disease anti-inflammatory prevention trial. J Alzheimers Dis. 36(3): 433-43. 2013.
 PMID: 23645097. https://dx.doi.org/10.3233/JAD-130113
 KQ2E7c
- 392. Regan, B, Wells, Y, et al. MAXCOG-Maximizing Cognition: A Randomized Controlled Trial of the Efficacy of Goal-Oriented Cognitive Rehabilitation for People with Mild Cognitive Impairment and Early Alzheimer Disease. American Journal of Geriatric Psychiatry. 16(): 16. 2016. PMID: 28034509.

https://dx.doi.org/10.1016/j.jagp.2016.11.0 08 **KQ4E7c**, **KQ5E7c**

- 393. Reiner, K, Eichler, T, et al. The Clock Drawing Test: A Reasonable Instrument to Assess Probable Dementia in Primary Care?. Curr Alzheimer Res. 2017. PMID: 28891446. https://dx.doi.org/10.2174/156720501466 6170908101822 KQ2E2d
- 394. Reisberg, B, Doody, R, et al. Memantine in moderate-to-severe Alzheimer's disease. N Engl J Med. 348(14): 1333-41.
 2003. PMID: 12672860. https://dx.doi.org/10.1056/NEJMoa01312 8 KQ4E4c, KQ5E4c
- 395. Reisberg, Barry, Shao, Yongzhao, et al. Comprehensive, individualized, personcentered management of communityresiding persons with moderate-to-severe Alzheimer disease: A randomized controlled trial. Dement Geriatr Cogn Disord. 43(1-2): 100-117. 2017. https://dx.doi.org/10.1159/000455397 KQ4E4c, KQ5E4c
- 396. Relkin, NR, Reichman, WE, et al. A large, community-based, open-label trial of donepezil in the treatment of Alzheimer's disease. Dement Geriatr Cogn Disord. 16(1): 15-24. 2003. PMID: 12714795. KQ5E2f
- 397. Remington, R, Bechtel, C, et al. A Phase II Randomized Clinical Trial of a Nutritional Formulation for Cognition and Mood in Alzheimer's Disease. J Alzheimers Dis. 45(2): 395-405. 2015. PMID: 25589719. https://dx.doi.org/10.3233/JAD-142499 KQ4E7c, KQ5E7c
- 398. Requena, C, Lopez Ibor, MI, et al. Effects of cholinergic drugs and cognitive training on dementia. Dement Geriatr Cogn Disord. 18(1): 50-54. 2004. PMID: 15084794. KQ4E7c, KQ5E7c
- 399. Requena, C, Maestu, F, et al. Effects of cholinergic drugs and cognitive training on dementia: 2-year follow-up. Dement Geriatr Cogn Disord. 22(4): 339-345.
 2006. PMID: 16954689. KQ4E8, KQ5E8
- 400. Richarz, U, Gaudig, M, et al. Galantamine treatment in outpatients with mild Alzheimer's disease. Acta Neurol Scand. 129(6): 382-92. 2014. PMID: 24461047. https://dx.doi.org/10.1111/ane.12195 KQ5E2f
- 401. Riepe, MW. High-dose cholinergic therapy with rivastigmine patch does not

prolong QTc time in patients with Alzheimer's disease. J Clin Psychiatry. 75(3): 288. 2014. PMID: 24717382. https://dx.doi.org/10.4088/JCP.13I08730 KQ4E2b, KQ5E2b

- 402. Roalf, DR, Moberg, PJ, et al. Comparative accuracies of two common screening instruments for classification of Alzheimer's disease, mild cognitive impairment, and healthy aging. Alzheimer's & Dementia. 9(5): 529-37. 2013. PMID: 23260866. https://dx.doi.org/10.1016/j.jalz.2012.10.0 01 **KQ2E3c**
- 403. Roalf DR, Moore TM, Mechanic-Hamilton D, et al. Bridging cognitive screening tests in neurologic disorders: A crosswalk between the short Montreal Cognitive Assessment and Mini-Mental State Examination. Alzheimers Dement. 2017;13(8):947-52. PMID: 28238740. KQ2E3c
- 404. Roalf, DR, Moore, TM, et al. Defining and validating a short form Montreal Cognitive Assessment (s-MoCA) for use in neurodegenerative disease. J Neurol Neurosurg Psychiatry. 87(12): 1303-1310.
 2016. PMID: 27071646. https://dx.doi.org/10.1136/jnnp-2015-312723 KQ2E3c
- 405. Rockwood, K, Dai, D, et al. Patterns of decline and evidence of subgroups in patients with Alzheimer's disease taking galantamine for up to 48 months. Int J Geriatr Psychiatry. 23(2): 207-214. 2008. PMID: 17621382. **KQ4E2f**, **KQ5E2f**
- 406. Rockwood, K, Fay, S, et al. The ADAScog and clinically meaningful change in the VISTA clinical trial of galantamine for Alzheimer's disease. Int J Geriatr Psychiatry. 25(2): 191-201. 2010. PMID: 19548273. **KQ4E2f**, **KQ5E2f**
- 407. Rodriguez-Sanchez, E, Patino-Alonso, MC, et al. Effects of a psychological intervention in a primary health care center for caregivers of dependent relatives: a randomized trial. Gerontologist. 53(3): 397-406. 2013. PMID: 22899425. https://dx.doi.org/10.1093/geront/gns086 KQ4E2c, KQ5E2c
- 408. Rogers, SL, Doody, RS, et al. Long-term efficacy and safety of donepezil in the treatment of Alzheimer's disease: final analysis of a US multicentre open-label study. Eur Neuropsychopharmacol. 10(3):

195-203. 2000. PMID: 10793322. **KQ4E2f, KQ5E2f**

- 409. Rogers, SL, Farlow, MR, et al. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer's disease. Donepezil Study Group. Neurology. 50(1): 136-145. 1998. PMID: 9443470. KQ4E7c, KQ5E7c
- 410. Rojas, GJ, Villar, V, et al. Efficacy of a cognitive intervention program in patients with mild cognitive impairment. Int Psychogeriatr. 25(5): 825-31. 2013. PMID: 23414646. https://dx.doi.org/10.1017/S10416102130 00045 KQ4E7c, KQ5E7c
- 411. Rokstad AMM, Engedal K, Kirkevold O, et al. The impact of attending day care designed for home-dwelling people with dementia on nursing home admission: a 24-month controlled study. BMC Health Services Research. 2018;18(1):864. PMID: 30445937. KQ4E6b, KQ5E6b
- 412. Rondanelli, M, Opizzi, A, et al. Effects of a diet integration with an oily emulsion of DHA-phospholipids containing melatonin and tryptophan in elderly patients suffering from mild cognitive impairment. Nutr Neurosci. 15(2): 46-54. 2012. PMID: 22334085. https://dx.doi.org/10.1179/1476830511Y.0
- 00000032 **KQ4E3b**, **KQ5E3b** 413. Rosa IM, Henriques AG, Wiltfang J, et al. Putative Dementia Cases Fluctuate as a Function of Mini-Mental State Examination Cut-Off Points. Journal of Alzheimer's Disease. 2018;61(1):157-67.
- PMID: 29125486. KQ2E7c
 414. Rosa IM, Henriques AG, Carvalho L, et al. Screening Younger Individuals in a Primary Care Setting Flags Putative Dementia Cases and Correlates Gastrointestinal Diseases with Poor Cognitive Performance. Dement Geriatr Cogn Disord. 2017;43(1-2):15-28. PMID: 27907913. KQ2E8
- 415. Rosell-Clari, V, Gonzalez, BV. Theory of Mind (ToM) and language: stimulating metalinguistic skills in people with dementia. Codas. 0(): 0. 2016. PMID: 27356191. https://dx.doi.org/10.1590/2317-1782/20162015295 KQ4E5, KQ5E5
- 416. Roth, DL, Mittelman, MS, et al. Changes in social support as mediators of the impact of a psychosocial intervention for spouse caregivers of persons with

Alzheimer's disease. Psychol Aging. 20(4): 634-644. 2005. https://dx.doi.org/16420138 **KQ4E2b**, **KQ5E2b**

417. Russo, G, Russo, MJ, et al. Utility of the Spanish version of the FTLD-modified CDR in the diagnosis and staging in frontotemporal lobar degeneration. J Neurol Sci. 344(1-2): 63-8. 2014. PMID: 25015844. https://dx.doi.org/10.1016/j.jns.2014.06.02

https://dx.doi.org/10.1016/j.jns.2014.06.02 4 **KQ2E4e**

- 418. Sacco, G, Caillaud, C, et al. Exercise Plus Cognitive Performance over and above Exercise Alone in Subjects with Mild Cognitive Impairment. J Alzheimers Dis. 50(1): 19-25. 2015. https://dx.doi.org/10.3233/JAD-150194 KQ4E2b, KQ5E2b
- 419. Salva, A. Health and nutritional promotion program for patients with dementia (Nutrialz Study): design and baseline data. J Nutr Health Aging. 14(1): 78. 2010. **KQ4E5**, **KQ5E5**
- 420. Sanchez, MA, Lourenco, RA. Screening for dementia: Brazilian version of the Informant Questionnaire on Cognitive Decline on the Elderly and its psychometric properties. Geriatr Gerontol Int. 13(3): 687-93. 2013. PMID: 23186020. https://dx.doi.org/10.1111/j.1447-
- 0594.2012.00966.x **KQ2E3a** 421. Santos, Gd, Nunes, Pv, et al. Multidisciplinary rehabilitation program:
- effects of a multimodal intervention for patients with Alzheimer's disease and cognitive impairment without dementia. Revista de psiquiatria clinica. 42(6): 153-156. 2015. https://dx.doi.org/10.1590/0101-

6083000000066 **KQ4E3a, KQ5E3a**

422. Satoh, S, Kajiwara, M, et al. Rivastigmine patch and massage for Alzheimer's disease patients. Geriatr Gerontol Int. 13(2): 515-6. 2013. PMID: 23551354. https://dx.doi.org/10.1111/ggi.12010 KQ4E2b, KQ5E2b

423. Savulich, G, Piercy, T, et al. Cognitive Training Using a Novel Memory Game on an iPad in Patients with Amnestic Mild Cognitive Impairment (aMCI). International Journal of Neuropsychopharmacology. 20(8): 624-633. 2017. PMID: 28898959. https://dx.doi.org/10.1093/ijnp/pyx040 KQ4E2c, KQ5E2c

- 424. Scharre DW, Chang SI, Nagaraja HN, et al. Digitally translated Self-Administered Gerocognitive Examination (eSAGE): relationship with its validated paper version, neuropsychological evaluations, and clinical assessments. Alzheimers Res Ther. 2017;9(1):44. PMID: 28655351. KQ2E2d
- 425. Scharre, DW, Chang, SI, et al. Selfadministered Gerocognitive Examination (SAGE): a brief cognitive assessment Instrument for mild cognitive impairment (MCI) and early dementia. Alzheimer Dis Assoc Disord. 24(1): 64-71. 2010. PMID: 20220323. https://dx.doi.org/20220323 KQ2E3c
- 426. Schinka, JA, Robinson, DC, et al. Cognitive change checklist: psychometric characteristics in community-dwelling older adults. American Journal of Geriatric Psychiatry. 20(12): 1070-4. 2012. PMID: 23032479. https://dx.doi.org/10.1097/JGP.0b013e31 82702c31 **KQ2E3c**
- 427. Schmid, AA, Spangler-Morris, C, et al. The Home-Based Occupational Therapy Intervention in the Alzheimer's Disease Multiple Intervention Trial (ADMIT). Occup Ther Ment Health. 31(1): 19-34. 2015. PMID: 26997685. https://dx.doi.org/10.1080/0164212X.2014 .1002963 **KQ4E8, KQ5E8**
- 428. Schmitter-Edgecombe, M, Dyck, DG. Cognitive rehabilitation multi-family group intervention for individuals with mild cognitive impairment and their carepartners. Journal of the International Neuropsychological Society. 20(9): 897-908. 2014. PMID: 25222630. https://dx.doi.org/10.1017/S13556177140 00782 KQ4E7c, KQ5E7c
- 429. Schneider, LS, Olin, JT, et al. Validity and reliability of the Alzheimer's Disease Cooperative Study-Clinical Global Impression of Change. The Alzheimer's Disease Cooperative Study. Alzheimer Dis Assoc Disord. 11 Suppl 2(): S22-32. 1997. PMID: 9236949. **KQ2E1**
- 430. Schwenk, M, Sabbagh, M, et al. Sensorbased balance training with motion feedback in people with mild cognitive impairment. J Rehabil Res Dev. 53(6): 945-958. 2016.

https://dx.doi.org/10.1682/JRRD.2015.05. 0089 **KQ4E2c, KQ5E2c**

- 431. Seibert, Johannes, Tracik, Ferenc, et al. Effectiveness and tolerability of transdermal rivastigmine in the treatment of Alzheimer's disease in daily practice. Neuropsychiatric Disease and Treatment Vol 8 2012, ArtID 141-147. 8. 2012. KQ4E2a, KQ5E2a
- 432. Sellami L, Meilleur-Durand S, Chouinard AM, et al. The Depistage Cognitif de Quebec: A New Clinician's Tool for Early Recognition of Atypical Dementia. Dement Geriatr Cogn Disord. 2018;46(5-6):310-21. PMID: 30481754. **KQ2E2d**
- 433. Sepe-Monti, Micaela, Vanacore, Nicola, et al. The Savvy Caregiver Program: A probe multicenter randomized controlled pilot trial in caregivers of patients affected by Alzheimer's disease. J Alzheimers Dis. 54(3): 1235-1246. 2016. https://dx.doi.org/10.3233/JAD-160235 KQ4E7c, KQ5E7c
- 434. Servello A, Ettorre E, Cacciafesta M. Improvement in behavioral and psychological symptoms of dementia by rivastigmine patch in a group of Italian elderly patients with Alzheimer's disease. Panminerva medica. 2017;59(3):275-7. PMID: 28665099. **KQ4E2c, KQ5E2c**
- 435. Shaaban, Juwita, Aziz, Aniza Abdul, et al. Validation of the Malay version of Rowland Universal Dementia Assessment Scale (M_RUDAS) among elderly attending primary care clinic. International Medical Journal. 20(5): 555-558. 2013. KQ2E3a
- 436. Shaik, MA, Xu, X, et al. The reliability and validity of the informant AD8 by comparison with a series of cognitive assessment tools in primary healthcare. Int Psychogeriatr. 28(3): 443-52. 2016. PMID: 26489991. https://dx.doi.org/10.1017/S10416102150 01702 KQ2E5
- 437. Sheffrin, M, Miao, Y, et al. Weight Loss Associated with Cholinesterase Inhibitors in Individuals with Dementia in a National Healthcare System. J Am Geriatr Soc. 63(8): 1512-8. 2015. PMID: 26234945. https://dx.doi.org/10.1111/jgs.13511 KQ5E7c
- 438. Shelton, Jt, Lee, Jh, et al. Improving Prospective Memory in Healthy Older Adults and Individuals with Very Mild Alzheimer's Disease. J Am Geriatr Soc.

64(6): 1307-1312. 2016. PMID: Pubmed 27321610.

https://dx.doi.org/10.1111/jgs.14134 KQ4E2b, KQ5E2b

- 439. Shim, Y, Ryu, HJ, et al. Literacy Independent Cognitive Assessment: Assessing Mild Cognitive Impairment in Older Adults with Low Literacy Skills. Psychiatry Investig. 12(3): 341-8. 2015. PMID: 26207127. https://dx.doi.org/10.4306/pi.2015.12.3.34 1 KQ2E6a
- 440. Silva, Ana Rita, Pinho, Maria Salome, et al. It is not only memory: Effects of sensecam on improving well-being in patients with mild Alzheimer disease. Int Psychogeriatr. 29(5): 741-754. 2017. https://dx.doi.org/10.1017/S10416102160 0243X **KQ4E7c, KQ5E7c**
- 441. Silva, AR, Pinho, MS, et al. The Cognitive Effects of Wearable Cameras in Mild Alzheimer Disease - An Experimental Study. Curr Alzheimer Res. 14(12): 1270-1282. 2017. PMID: 28558637. https://dx.doi.org/10.2174/156720501466 6170531083015 **KQ4E8**, **KQ5E8**
- 442. Simon S, Hampstead B, Nucci M, et al. Cognitive and Brain Activity Changes After Mnemonic Strategy Training in Amnestic Mild Cognitive Impairment: evidence From a Randomized Controlled Tria. Frontiers in aging neuroscience. 2018;10. PMID: 30483113. **KQ4E3a**, **KQ5E3a**
- 443. Sink, KM, Espeland, MA, et al. The LIFE Cognition Study: design and baseline characteristics. Clin Interv Aging. 9(): 1425-36. 2014. PMID: 25210447. https://dx.doi.org/10.2147/CIA.S65381 KQ4E1b, KQ5E1b
- 444. Skorga, P, Young, CF. Mini-Mental State Examination for the Detection of Alzheimer Disease and Other Dementias in People With Mild Cognitive Impairment. Clinical Nurse Specialist. 29(5): 265-7. 2015. PMID: 26258833. https://dx.doi.org/10.1097/NUR.0000000 00000150 **KQ2E1**
- 445. Smith, K, Flicker, L, et al. The KICA Carer: informant information to enhance the Kimberley Indigenous Cognitive Assessment. Int Psychogeriatr. 28(1): 101-7. 2016. PMID: 26272042. https://dx.doi.org/10.1017/S10416102150 01283 **KQ2E4a**

- 446. Smith, KE. Assessment and prevalence of dementia in Indigenous Australians. School of Primary, Aboriginal and Rural Health Care. Doctor of Philosophy in Medicine. 2008. PMID: None. **KQ2E4a**
- 447. Sobol, Na, Hoffmann, K, et al. Effect of aerobic exercise on physical performance in patients with Alzheimer's disease. Alzheimer's & dementia. 2016. https://dx.doi.org/10.1016/j.jalz.2016.05.0 04 KQ4E5, KQ5E5
- 448. Sogaard, R, Sorensen, J, et al. Early psychosocial intervention in Alzheimer's disease: cost utility evaluation alongside the Danish Alzheimer's Intervention Study (DAISY). BMJ Open. 4(1): e004105. 2014. PMID: 24435893. https://dx.doi.org/10.1136/bmjopen-2013-004105 KQ4E5, KQ5E5
- 449. Sonali, N, Tripathi, M, et al. Clinical effectiveness of rivastigmine monotherapy and combination therapy in Alzheimer's patients. CNS Neurosci Ther. 19(2): 91-7. 2013. PMID: Pubmed 23206182. https://dx.doi.org/10.1111/cns.12036 KQ4E3a, KQ5E3a
- 450. Sopina E, Sorensen J, Beyer N, et al. Cost-effectiveness of a randomised trial of physical activity in Alzheimer's disease: a secondary analysis exploring patient and proxy-reported health-related quality of life measures in Denmark. BMJ Open. 2017;7(6):e015217. PMID: 28615271. KQ4E5, KQ5E5
- 451. Soysal, P, Usarel, C, et al. Attended With and Head-Turning Sign can be clinical markers of cognitive impairment in older adults. Int Psychogeriatr. 29(11): 1763-1769. 2017. PMID: 28660847. https://dx.doi.org/10.1017/S10416102170 01181 **KQ2E3a**
- 452. Steinberg, M, Leoutsakos, JM, et al. Evaluation of a home-based exercise program in the treatment of Alzheimer's disease: the Maximizing Independence in Dementia (MIND) study. Int J Geriatr Psychiatry. 24(7): 680-685. 2009. PMID: 19089875. **KQ4E6c, KQ5E6c**
- 453. Stephenson, A, Seitz, DP, et al. Cholinesterase inhibitors and adverse pulmonary events in older people with chronic obstructive pulmonary disease and concomitant dementia: a populationbased, cohort study. Drugs Aging. 29(3): 213-223. 2012. PMID: 22332932. KQ5E4b

- 454. Stolley, JM, Reed, D, et al. Caregiving appraisal and interventions based on the progressively lowered stress threshold model. Am J Alzheimers Dis Other Demen. 17(2): 110-120. 2002. https://dx.doi.org/11954669 KQ4E8, KQ5E8
- 455. Strandberg, Te, Kivipelto, M, et al. Healthrelated quality of life in a multidomain intervention trial to prevent cognitive decline (FINGER). Eur Geriatr Med. 8(2): 164-167. 2017. https://dx.doi.org/10.1016/j.eurger.2016.1 2.005 KQ4E1b, KQ5E1b
- 456. Streater, A, Spector, A, et al. Maintenance Cognitive Stimulation Therapy (CST) in practice: study protocol for a randomized controlled trial. Trials [Electronic Resource]. 13(): 91. 2012. PMID: 22735077. https://dx.doi.org/10.1186/1745-6215-13-91 KQ4E5, KQ5E5
- 457. Stubendorff, K, Larsson, V, et al. Treatment effect of memantine on survival in dementia with Lewy bodies and Parkinson's disease with dementia: a prospective study. BMJ Open. 4(7): e005158. 2014. PMID: 24993765. https://dx.doi.org/10.1136/bmjopen-2014-005158 **KQ4E4b**, **KQ5E4b**
- 458. Sukontapol C, Kemsen S, Chansirikarn S, et al. The effectiveness of a cognitive training program in people with mild cognitive impairment: A study in urban community. Asian journal of psychiatry. 2018;35:61-6. PMID: 29787954. **KQ4E3a**, **KQ5E3a**
- 459. Sumiyoshi T, Toyomaki A, Kawano N, et al. Reliability and validity of the California Verbal Learning Test-II Japanese version. Psychiatry Clin Neurosci. 2017;71(6):417-8. PMID: 28317219.
 KQ2E3b
- 460. Sungkarat S, Boripuntakul S, Kumfu S, et al. Tai Chi Improves Cognition and Plasma BDNF in Older Adults With Mild Cognitive Impairment: A Randomized Controlled Trial. Neurorehabil Neural Repair. 2018;32(2):142-9. PMID: 29353543. **KQ4E3a, KQ5E3a**
- 461. Suominen, MH, Puranen, TM, et al. Nutritional Guidance Improves Nutrient Intake and Quality of Life, and May Prevent Falls in Aged Persons with Alzheimer Disease Living with a Spouse (NuAD Trial). Journal of Nutrition, Health

& Aging. 19(9): 901-7. 2015. PMID: 26482691.

https://dx.doi.org/10.1007/s12603-015-0558-0 **KQ4E6b**, **KQ5E6b**

- 462. Suttanon, P, Hill, KD, et al. Feasibility, safety and preliminary evidence of the effectiveness of a home-based exercise programme for older people with Alzheimer's disease: a pilot randomized controlled trial. Clin Rehabil. 27(5): 427-38. 2013. PMID: 23117349. https://dx.doi.org/10.1177/026921551246 0877 KQ4E6c, KQ5E6c
- 463. Szczesniak, D, Wojtynska, R, et al. Test Your Memory (TYM) as a screening instrument in clinical practice - the Polish validation study. Aging Ment Health. 17(7): 863-8. 2013. PMID: 23557247. https://dx.doi.org/10.1080/13607863.2013 .784957 **KQ2E2d**
- 464. Tanaka, S, Honda, S, et al. Comparison between group and personal rehabilitation for dementia in a geriatric health service facility: single-blinded randomized controlled study. Psychogeriatrics:The Official Journal of the Japanese Psychogeriatric Society. 17(3): 177-185. 2017. PMID: 27612310. https://dx.doi.org/10.1111/psyg.12212 KQ4E3b, KQ5E3b
- 465. Tariot, P, Salloway, S, et al. Long-term safety and tolerability of donepezil 23 mg in patients with moderate to severe Alzheimer's disease. BMC Res Notes. 5(): 283. 2012. PMID: 22681723. https://dx.doi.org/10.1186/1756-0500-5-283 KQ4E4c, KQ5E4c
- 466. Tariot, PN, Cummings, JL, et al. A randomized, double-blind, placebocontrolled study of the efficacy and safety of donepezil in patients with Alzheimer's disease in the nursing home setting. J Am Geriatr Soc. 49(12): 1590-9. 2001. PMID: 11843990. KQ4E3b, KQ5E3b
- 467. Tariot, PN, Farlow, MR, et al. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA. 291(3): 317-24. 2004. PMID: 14734594. https://dx.doi.org/10.1001/jama.291.3.317 KQ4E4c, KQ5E4c
- 468. Tariot, Pn. Cessation of donepezil is associated with clinical decline in patients with moderate-to-severe Alzheimer's disease compared to continuation of

donepezil or addition or substitution of memantine. Evid Based Med. 18(2): 62-3. 2013. https://dx.doi.org/10.1136/eb-2012-100722 **KQ4E5, KQ5E5**

- 469. Tarraga, L, Boada, M, et al. A randomised pilot study to assess the efficacy of an interactive, multimedia tool of cognitive stimulation in Alzheimer's disease. J Neurol Neurosurg Psychiatry. 77(10): 1116-21. 2006. PMID: 16820420. https://dx.doi.org/10.1136/jnnp.2005.0860 74 KQ4E2a, KQ5E2a
- 470. Teipel, SJ, Cavedo, E, et al. Predictors of cognitive decline and treatment response in a clinical trial on suspected prodromal Alzheimer's disease. Neuropharmacology. 108(): 128-35. 2016. PMID: 26876309. https://dx.doi.org/10.1016/j.neuropharm.2 016.02.005 KQ4E2a, KQ5E2a
- 471. ten Brinke, LF, Bolandzadeh, N, et al. Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6-month randomised controlled trial. Br J Sports Med. 49(4): 248-54. 2015. PMID: 24711660. https://dx.doi.org/10.1136/bjsports-2013-093184 **KQ4E8, KQ5E8**
- 472. Thavorn K, Gomes T, Camacho X, et al. Upper gastrointestinal bleeding in elderly adults with dementia receiving cholinesterase inhibitors: a populationbased cohort study. J Am Geriatr Soc. 2014;62(2):382-4. PMID: 24521369. http://dx.doi.org/10.1111/jgs.12670 KQ2E8
- 473. Thivierge, S, Jean, L, et al. A randomized cross-over controlled study on cognitive rehabilitation of instrumental activities of daily living in Alzheimer disease.
 American Journal of Geriatric Psychiatry. 22(11): 1188-99. 2014. PMID: 23871120. https://dx.doi.org/10.1016/j.jagp.2013.03.0 08 KQ4E7c, KQ5E7c
- 474. Thomas, A, Iacono, D, et al. Donepezil, rivastigmine, and vitamin E in Alzheimer disease: a combined P300 event-related potentials/neuropsychologic evaluation over 6 months. Clin Neuropharmacol. 24(1): 31-42. 2001. PMID: 11290880. KQ4E2a, KQ5E2a
- 475. Thyrian, JR, Eichler, T, et al. Systematic, early identification of dementia and dementia care management are highly appreciated by general physicians in primary care - results within a cluster-

randomized-controlled trial (DelpHi). J Multidiscip Healthc. 9(): 183-90. 2016. PMID: 27143912. https://dx.doi.org/10.2147/JMDH.S96055

https://dx.doi.org/10.2147/JMDH.S96055 KQ4E5, KQ5E5

- 476. Tian, J, Shi, J, et al. Efficacy and Safety of an Herbal Therapy in Patients with Amnestic Mild Cognitive Impairment: A 24-Week Randomized Phase III Trial. Evidence-Based Complementary & Alternative Medicine: eCAM. 2017(): 4251747. 2017. PMID: 28596794. https://dx.doi.org/10.1155/2017/4251747 KQ4E3a, KQ5E3a
- 477. Tomata, Y, Sugiyama, K, et al. Predictive ability of a simple subjective memory complaints scale for incident dementia: Evaluation of Japan's national checklist, the "Kihon Checklist". Geriatr Gerontol Int. 17(9): 1300-1305. 2017. PMID: 27506749. https://dx.doi.org/10.1111/ggi.12864
 - KQ2E1
- 478. Torkamani, M, McDonald, L, et al. A randomized controlled pilot study to evaluate a technology platform for the assisted living of people with dementia and their carers. J Alzheimers Dis. 41(2): 515-23. 2014. PMID: 24643137. https://dx.doi.org/10.3233/JAD-132156 KQ4E7c, KQ5E7c
- 479. Tsai, PF, Chang, JY, et al. A Pilot Cluster-Randomized Trial of a 20-Week Tai Chi Program in Elders With Cognitive Impairment and Osteoarthritic Knee: Effects on Pain and Other Health Outcomes. J Pain Symptom Manage. 2012. PMID: 23017610. **KQ4E6c**, **KQ5E6c**
- 480. Tsutsumimoto, K, Doi, T, et al. Effects of group exercise programmes on quality of life in older adults with mild cognitive impairment: preliminary results from a randomized controlled trial. Psychogeriatrics:The Official Journal of the Japanese Psychogeriatric Society. 16(5): 327-8. 2016. PMID: 26757136. https://dx.doi.org/10.1111/psyg.12165
 KQ4E5, KQ5E5
- 481. Ukawa, S, Yuasa, M, et al. Randomised controlled pilot study in Japan comparing a home visit program using a Functioning Improvement Tool with a home visit with conversation alone. Australas J Ageing. 31(3): 187-9. 2012. PMID: Pubmed 22950591.

https://dx.doi.org/10.1111/j.1741-6612.2012.00589.x **KQ4E2b, KQ5E2b**

- 482. Usarel C, Dokuzlar O, Aydin AE, et al. The AD8 (Dementia Screening Interview) is a valid and reliable screening scale not only for dementia but also for mild cognitive impairment in the Turkish geriatric outpatients. Int Psychogeriatr. 2018:1-7. PMID: 29923472. **KQ2E3a**
- 483. Valencia N, Lehrner J. Screening for dementia with the Vienna Visuo-Constructional Test 3.0 screening (VVT 3.0 screening). Neuropsychiatr. 2018. PMID: 29987508. KQ2E2d
- 484. van den Dungen, P, Moll van Charante, EP, et al. Case Finding of Mild Cognitive Impairment and Dementia and Subsequent Care; Results of a Cluster RCT in Primary Care. PLoS One. 11(6): e0156958. 2016. PMID: 27310616. https://dx.doi.org/10.1371/journal.pone.01 56958 KQ1E1, KQ3E1
- 485. van Der Putt, R, Dineen, C, et al. Effectiveness of acetylcholinesterase inhibitors: diagnosis and severity as predictors of response in routine practice. Int J Geriatr Psychiatry. 21(8): 755-760. 2006. PMID: 16906631. **KQ5E2f**
- 486. Van Mierlo, LD, Meiland, FJ, et al. Evaluation of DEM-DISC, customized eadvice on health and social support services for informal carers and case managers of people with dementia; a cluster randomized trial. Int Psychogeriatr. 27(8): 1365-78. 2015. PMID: 25872457. https://dx.doi.org/10.1017/S10416102150 00423 KQ4E2b
- 487. Van Mierlo, LD, Wouters, H, et al. Screening for Mild Cognitive Impairment and Dementia with Automated, Anonymous Online and Telephone Cognitive Self-Tests. J Alzheimers Dis. 56(1): 249-259. 2017. PMID: 27911296. https://dx.doi.org/10.3233/JAD-160566 KQ2E3c
- 488. Van Mierlo, LisaD, Meiland, FrankaJ, et al. Personalised caregiver support: Effectiveness of psychosocial interventions in subgroups of caregivers of people with dementia. Int J Geriatr Psychiatry. 27(1): 1-14. 2012. https://dx.doi.org/10.1002/gps.2694 KQ4E2a, KQ5E2a
- 489. van Uffelen, JG, Chin, Paw MJ A, et al. The effect of walking and vitamin B supplementation on quality of life in

community-dwelling adults with mild cognitive impairment: a randomized, controlled trial. Qual Life Res. 16(7): 1137-1146. 2007. PMID: 17616840. KQ4E8, KQ5E8

- 490. van Uffelen, JG, Chinapaw, MJ, et al. Walking or vitamin B for cognition in older adults with mild cognitive impairment? A randomised controlled trial. Br J Sports Med. 42(5): 344-351. 2008. PMID: 18308888. **KQ4E2b, KQ5E2b**
- 491. van Uffelen, JG, Hopman-Rock, M, et al. Protocol for Project FACT: a randomised controlled trial on the effect of a walking program and vitamin B supplementation on the rate of cognitive decline and psychosocial wellbeing in older adults with mild cognitive impairment [ISRCTN19227688]. BMC Geriatr. 5(): 18. 2005. PMID: 16375760. **KQ4E8, KQ5E8**
- 492. Vazquez Gonzalez, FL, Otero Otero, P, et al. A brief problem-solving indicatedprevention intervention for prevention of depression in nonprofessional caregivers. Psicothema. 25(1): 87-92. 2013. PMID: 23336549.

https://dx.doi.org/10.7334/psicothema201 2.89 **KQ4E8, KQ5E8**

- 493. Ventura, T, De-la-Camara, C, et al. Usefulness of 2 questions about age and year of birth in the case-finding of dementia. J Am Med Dir Assoc. 14(8): 627.e7-12. 2013. PMID: 23773305. https://dx.doi.org/10.1016/j.jamda.2013.05 .006 **KQ2E1**
- 494. Vicente de Sousa O, Soares Guerra R, Sousa AS, et al. Impact of Nutritional Supplementation and a Psychomotor Program on Patients With Alzheimer's Disease. American Journal of Alzheimer's Disease & Other Dementias. 2017;32(6):329-41. PMID: 28446028. KQ4E6b, KQ5E6b
- 495. Vidal, JS, Lacombe, JM, et al. Memantine therapy for Alzheimer disease in realworld practice: an observational study in a large representative sample of French patients. Alzheimer Dis Assoc Disord. 22(2): 125-130. 2008. PMID: 18525283. KQ5E1
- 496. Vidoni, EricD, Watts, AmberS, et al. Feasibility of a memory clinic-based physical activity prescription program. J Alzheimers Dis. 53(1): 161-170. 2016. https://dx.doi.org/10.3233/JAD-160158 KQ4E2c, KQ5E2c

- 497. Waelde, LC, Meyer, H, et al. Randomized Controlled Trial of Inner Resources Meditation for Family Dementia Caregivers. J Clin Psychol. 2017. PMID: 28263398. https://dx.doi.org/10.1002/jclp.22470 KQ4E2b, KQ5E2b
- 498. Waldron-Perrine, B, Axelrod, BN. Determining an appropriate cutting score for indication of impairment on the Montreal Cognitive Assessment. Int J Geriatr Psychiatry. 27(11): 1189-94. 2012. PMID: 22228412. https://dx.doi.org/10.1002/gps.3768
 KQ2E3c
- 499. Wang, CS, Pai, MC, et al. Montreal Cognitive Assessment and Mini-Mental State Examination performance in patients with mild-to-moderate dementia with Lewy bodies, Alzheimer's disease, and normal participants in Taiwan. Int Psychogeriatr. 25(11): 1839-48. 2013. PMID: 23919950. https://dx.doi.org/10.1017/S10416102130 01245 KQ2E2d
- 500. Wang, LQ, Chien, WT, et al. An experimental study on the effectiveness of a mutual support group for family caregivers of a relative with dementia in mainland China. Contemp Nurse. 40(2): 210-24. 2012. PMID: 22554214. https://dx.doi.org/10.5172/conu.2012.40.2 .210 KQ4E3a, KQ5E3a
- 501. Wang, T, Huang, Q, et al. Effects of memantine on clinical ratings, fluorodeoxyglucose positron emission tomography measurements, and cerebrospinal fluid assays in patients with moderate to severe Alzheimer dementia: a 24-week, randomized, clinical trial. J Clin Psychopharmacol. 33(5): 636-42. 2013. PMID: 23948786. https://dx.doi.org/10.1097/JCP.0b013e31 829a876a KQ4E3a
- 502. Wawrziczny E, Larochette C, Papo D, et al. A Customized Intervention for Dementia Caregivers: A Quasi-Experimental Design. J Aging Health. 2018:898264318770056. PMID: 29665714. **KQ4E2c**, **KQ5E2c**
- 503. Wei, XH, Ji, LL. Effect of handball training on cognitive ability in elderly with mild cognitive impairment. Neurosci Lett. 566(): 98-101. 2014. PMID: 24582900. https://dx.doi.org/10.1016/j.neulet.2014.02 .035 KQ4E3a, KQ5E3a

- 504. Wei M, Shi J, Li T, et al. Diagnostic Accuracy of the Chinese Version of the Trail-Making Test for Screening Cognitive Impairment. J Am Geriatr Soc. 2018;66(1):92-9. PMID: 29135021. KQ2E3a
- 505. Wesson, Jacqueline, Clemson, Lindy, et al. Measurement of functional cognition and complex everyday activities in older adults with mild cognitive impairment and mild dementia: Validity of the Large Allen's Cognitive Level Screen. The American Journal of Geriatric Psychiatry. 25(5): 471-482. 2017. https://dx.doi.org/10.1016/j.jagp.2016.11.0 21 KQ2E3c
- 506. Whitebird, RR, Kreitzer, M, et al. Mindfulness-based stress reduction for family caregivers: a randomized controlled trial. Gerontologist. 53(4): 676-86. 2013. PMID: 23070934. https://dx.doi.org/10.1093/geront/gns126 KQ4E2b
- 507. Whitlatch CJ, Heid AR, Femia EE, et al. The Support, Health, Activities, Resources, and Education program for early stage dementia: Results from a randomized controlled trial. Dementia (London, England). 2017:1471301217743033. PMID: 29171296. **KQ4E2c**, **KQ5E2c**
- 508. Whitney, KA, Mossbarger, B, et al. Is the montreal cognitive assessment superior to the mini-mental state examination in detecting subtle cognitive impairment among middle-aged outpatient U.S. Military veterans?. Archives of Clinical Neuropsychology. 27(7): 742-8. 2012. PMID: 22763350. https://dx.doi.org/10.1093/arclin/acs060 KQ2E3c
- 509. Wilcock, J, Iliffe, S, et al. Tailored educational intervention for primary care to improve the management of dementia: the EVIDEM-ED cluster randomized controlled trial. Trials. 14(): 397. 2013.
 PMID: Pubmed 24257429. https://dx.doi.org/10.1186/1745-6215-14-397 KQ4E6b, KQ5E6b
- 510. Williamson JC, Larner AJ. MACE for the Diagnosis of Dementia and MCI: 3-Year Pragmatic Diagnostic Test Accuracy Study. Dement Geriatr Cogn Disord. 2018;45(5-6):300-7. PMID: 29996145. KQ2E4e

- 511. Wilkinson, D, Roman, G, et al. The longterm efficacy and tolerability of donepezil in patients with vascular dementia. Int J Geriatr Psychiatry. 25(3): 305-313. 2010. PMID: 19623601. **KQ5E2f**
- 512. Wilkinson, DG, Howe, I. Switching from donepezil to galantamine: a double-blind study of two wash-out periods. Int J Geriatr Psychiatry. 20(5): 489-91. 2005. PMID: 15852437. https://dx.doi.org/10.1002/gps.1301 KQ4E2c
- 513. Williams, K, Herman, R, et al. Reasoning Exercises in Assisted Living: a cluster randomized trial to improve reasoning and everyday problem solving. Clin Interv Aging. 9(): 981-96. 2014. PMID: 25028542. https://dx.doi.org/10.2147/CIA.S62095 KQ4E6b
- 514. Wiloth, S, Werner, C, et al. Motorcognitive effects of a computerized gamebased training method in people with dementia: a randomized controlled trial. Aging Ment Health. 1-12. 2017. PMID: 28682124. https://dx.doi.org/10.1080/13607863.2017 .1348472 **KQ4E5**, **KQ5E5**
- 515. Wimo, A, Gaudig, M, et al. The economic impact of galantamine vs placebo: an analysis based on functional capacity in a Swedish cohort study. J Med Econ. 15(5): 1019-24. 2012. PMID: 22519806. https://dx.doi.org/10.3111/13696998.2012 .680554 **KQ4E5**, **KQ5E5**
- 516. Wimo, A, Winblad, B, et al. Impact of donepezil treatment for Alzheimer's disease on caregiver time. Curr Med Res Opin. 20(8): 1221-1225. 2004. PMID: 15324524. **KQ4E5, KQ5E5**
- 517. Wojtynska, R, Szczesniak, D. DemTect-effective to asses MCI and dementia-validation study of the Polish language version. Aging Ment Health. 20(5): 510-6. 2016. PMID: 25811731. https://dx.doi.org/10.1080/13607863.2015 .1023763 **KQ2E2d**
- 518. Wolfsgruber, S, Jessen, F, et al. The CERAD neuropsychological assessment battery total score detects and predicts Alzheimer disease dementia with high diagnostic accuracy. American Journal of Geriatric Psychiatry. 22(10): 1017-28. 2014. PMID: 23759289. https://dx.doi.org/10.1016/j.jagp.2012.08.0 21 KQ2E6a

- 519. Wong, A, Fong, CH, et al. Computerized Cognitive Screen (CoCoSc): A Self-Administered Computerized Test for Screening for Cognitive Impairment in Community Social Centers. J Alzheimers Dis. 59(4): 1299-1306. 2017. PMID: 28731437. https://dx.doi.org/10.3233/JAD-170196
 - KQ2E7b
- 520. Wong A, Yiu S, Nasreddine Z, et al. Validity and reliability of two alternate versions of the Montreal Cognitive Assessment (Hong Kong version) for screening of Mild Neurocognitive Disorder. PLoS ONE [Electronic Resource]. 2018;13(5):e0196344. PMID: 29791452. **KQ2E2d**
- 521. Wray, Lo, Wade, M, et al. A program to improve detection of undiagnosed dementia in primary care and its association with healthcare utilization. American journal of geriatric psychiatry. 22(11): 1282-91. 2014. https://dx.doi.org/10.1016/j.jagp.2013.04.0 18 KQ1E2a, KQ3E2a
- 522. Yang, SY, Shan, CL, et al. The Effects of Aerobic Exercise on Cognitive Function of Alzheimer's Disease Patients. CNS Neurol Disord Drug Targets. 14(10): 1292-7. 2015. PMID: 26556080. **KQ4E3a**, **KQ5E3a**
- 523. Yatabe, Yusuke, Hashimoto, Mamoru, et al. Efficacy of increasing donepezil in mild to moderate Alzheimer's disease patients who show a diminished response to 5 mg donepezil: A preliminary study. Psychogeriatrics. 13(2): 88-93. 2013. https://dx.doi.org/10.1111/psyg.12004 KQ4E2a, KQ5E2a
- 524. Yeo S, Lee T, Sng W, et al. Effectiveness of a Personalized Brain-Computer Interface System for Cognitive Training in Healthy Elderly: a Randomized Controlled Trial. Journal of alzheimer's disease. 2018;66(1):127-38. PMID: 30248056. KQ4E2c, KQ5E2c
- 525. Yoon BK, Chin J, Kim JW, et al. Menopausal hormone therapy and mild cognitive impairment: a randomized, placebo-controlled trial. Menopause. 2018;25(8):870-6. PMID: 29846283. KQ4E7c, KQ5E7c
- 526. Yoon, DH, Kang, D, et al. Effect of elastic band-based high-speed power training on cognitive function, physical performance and muscle strength in older women with

mild cognitive impairment. Geriatr Gerontol Int. 17(5): 765-772. 2017. PMID: 27396580. https://dx.doi.org/10.1111/ggi.12784

KQ4E7c, KQ5E7c

- 527. Young, DK, Kwok, TC, et al. A single blind randomized control trial on support groups for Chinese persons with mild dementia. Clin Interv Aging. 9(): 2105-12. 2014. PMID: 25587218. https://dx.doi.org/10.2147/CIA.S68687 KQ4E2c, KQ5E2c
- 528. Young DK. Multicomponent intervention combining a cognitive stimulation group and tai chi to reduce cognitive decline among community-dwelling older adults with probable dementia: A multi-center, randomized controlled trial. Dementia (London, England). 2018:1471301218814637. PMID: 30486656. KQ4E2c, KQ5E2c
- 529. Young DK, Ng PY, Kwok T, et al. The effects of an expanded cognitive stimulation therapy model on the improvement of cognitive ability of elderly with mild stage Dementia living in a community - a randomized waitlist controlled trial. Aging Ment Health. 2018:1-8. PMID: 29781725. KQ4E2c, KQ5E2c
- 530. Young KW. A Randomized Control Study on Psycho-Education Group on Improving Health-Related Quality of Life of Chinese Persons with Major Neurocognitive Disorder. Clinical Gerontologist. 2016;39(5):449-67. PMID: 29471772. KQ4E2c, KQ5E2c
- 531. Young KW, Ng P, Kwok T, et al. The effects of holistic health group interventions on improving the cognitive ability of persons with mild cognitive impairment: a randomized controlled trial. Clinical Interventions In Aging. 2017;12:1543-52. PMID: 29026292. KQ4E2c, KQ5E2c
- 532. Zainal, NH, Silva, E, et al. Psychometric Properties of Alzheimer's Disease Assessment Scale-Cognitive Subscale for Mild Cognitive Impairment and Mild Alzheimer's Disease Patients in an Asian Context. Ann Acad Med Singapore. 45(7): 273-83. 2016. PMID: 27523508. KQ2E2d
- 533. Zauszniewski, JA, Lekhak, N, et al. Preliminary Evidence for Effectiveness of Resourcefulness Training in Women Dementia Caregivers. J Fam Med. 3(5).

2016. PMID: 27500286. **KQ4E2c, KQ5E2c**

- 534. Zhang, J, Wang, Z, et al. The effects of CCRC on cognition and brain activity in aMCI patients: a pilot placebo controlled BOLD fMRI study. Curr Alzheimer Res. 11(5): 484-93. 2014. PMID: Pubmed 24801219. KQ4E6b, KQ5E6b
- 535. Zhang, N, Wei, C, et al. The Effect of Memantine on Cognitive Function and Behavioral and Psychological Symptoms in Mild-to-Moderate Alzheimer's Disease Patients. Dement Geriatr Cogn Disord. 40(1-2): 85-93. 2015. PMID: 26066622. https://dx.doi.org/10.1159/000430808
 KQ4E3a, KQ5E3a
- 536. Zhang, Y-P, Miao, R, et al. Effects of DHA Supplementation on Hippocampal Volume and Cognitive Function in Older Adults with Mild Cognitive Impairment: a 12-Month Randomized, Double-Blind, Placebo-Controlled Trial. J Alzheimers Dis. 55(2): 497-507. 2017. https://dx.doi.org/10.3233/JAD-160439 KQ4E3a, KQ5E3a
- 537. Zhao, Q, Guo, Q, et al. The Shape Trail Test: application of a new variant of the Trail making test. PLoS ONE [Electronic Resource]. 8(2): e57333. 2013. PMID: 23437370.

https://dx.doi.org/10.1371/journal.pone.00 57333 **KQ2E3a**

- 538. Zhao, Q, Lv, Y, et al. Short-term delayed recall of auditory verbal learning test is equivalent to long-term delayed recall for identifying amnestic mild cognitive impairment. PLoS ONE [Electronic Resource]. 7(12): e51157. 2012. PMID: 23236445. https://dx.doi.org/10.1371/journal.pone.00 51157 KQ2E3a
- 539. Zieschang, T, Schwenk, M, et al. Falls and Physical Activity in Persons With Mild to Moderate Dementia Participating in an Intensive Motor Training: Randomized Controlled Trial. Alzheimer Dis Assoc Disord. 2017. PMID: 28628488. https://dx.doi.org/10.1097/wad.00000000 0000201 KQ4E6c, KQ5E6c
- 540. Zhu Y, Wu H, Qi M, et al. Effects of a specially designed aerobic dance routine on mild cognitive impairment. Clinical Interventions In Aging. 2018;13:1691-700. PMID: 30237705. **KQ4E3a, KQ5E3a**
- 541. Zwingmann I, Michalowsky B, Esser A, et al. Identifying Unmet Needs of Family

Dementia Caregivers: Results of the Baseline Assessment of a Cluster-Randomized Controlled Intervention Trial. Journal of Alzheimer's Disease. 2018;19:19. PMID: 30584136. **KQ4E2a**, **KQ5E2a**

						IG BL			IG mean				CG mean	
	Author, year	Рор	Instrument		Time.	IG BL mean	IG n at	IG FU mean	change (SD)	CG BL mean	CG n	CG FU mean	change (SD) from	Between group
Medication	Quality	cat	(range) [†]	Int arm	- ,	(SD)	FU	(SD)	from BL	(SD)	at FU	(SD)	BL	difference, p-value
Donepezil	Black, 2003 ¹⁸⁶	Dem	ADAS-Cog 11	IG1	6	20.9 [‡]	186	NR		20.1‡	188	NR	0.72 [∎]	NR, <0.001
	Fair-Good		(0-70)			(0.7)§				(0.7) [§]			(0.40) [§]	
Donepezil		Dem	ADAS-Cog 11	IG2	6	21.2 [‡]	185	NR		20.1‡	188	NR	0.72	NR, <0.01
	_	_	(0-70)		-	(0.8)§				(0.7)§			(0.40) [§]	
Donepezil		Dem	MMSE (0-30)	IG1	6	21.8 [‡] (0.3) [§]	195	NR		21.7 [‡] (0.3)§	194	NR	0.39 [∥] (0.23)§	NR, <0.001
Donepezil	_	Dem	MMSE (0-30)	IG2	6	(0.3) ³ 21.9 [‡]	196	NR		(0.3) ³ 21.7 [‡]	194	NR	(0.23) ³ 0.39 ¹	NR, <0.05
Donepezii		Dem		162	0	(0.3) [§]	190			(0.3) [§]	194		0.39 (0.23)§	NR, <0.05
Donepezil	Burns, 1999 ¹⁸⁷	Dem	ADAS-Cog 11	IG1	3	(0.0) NR	202	NR	-1.90 ^{II}	NR	219	NR	(0.23) 0.37 [∥]	NR, <0.0001
	Fair-Good		(0-70)		Č				(0.31)§				(0.30) [§]	,
Donepezil		Dem	ADAS-Cog 11	IG1	4	NR	202	NR		NR	219	NR	1.31 ^ľ	NR, <0.0001
			(0-70)						(0.37)§				(0.38) [§]	
Donepezil		Dem	ADAS-Cog 11	IG1	6	NR	273	NR		NR	274	NR	1.66	LSM Change=-2.9,
			(0-70)						(0.35) [§]				(0.36)§	< 0.0001
Donepezil		Dem	ADAS-Cog 11	IG2	3	NR	211	NR		NR	219	NR	0.37 ¹	NR, <0.0001
Deneneril		Dama	(0-70) ADAS-Cog 11	IG2	4	NR	211	NR	(0.29) [§] -0.58 [∥]	NR	219	NR	(0.30) [§] 1.31 [∥]	NR, 0.0002
Donepezil		Dem	ADAS-Cog 11 (0-70)	IG2	4	INR	211	INK	-0.58" (0.35) [§]	INR	219	INK	(0.38) [§]	NR, 0.0002
Donepezil	_	Dem	ADAS-Cog 11	IG2	6	NR	271	NR		NR	274	NR	(0.00)± 1.66 [∥]	LSM Change=-1.5,
			(0-70)		Ũ				(0.35) [§]				(0.36) [§]	0.0021
Donepezil	Doody, 2009 ¹⁸⁸	MCI	ADAŚ-Cog 13	IG1	11	18.3	379	NR	-1.0 (0.4)§	18.2	378	NR		MDC (SE)=-0.9
	Fair		(0-89)			(6.6)				(7.0)				(0.37), 0.01
Donepezil		MCI	MMSE (0-30)	IG1	11	27.5	379	NR	0.1 (0.1) [§]		378	NR	0.0 (0.2)§	NS
		_				(1.9)				(1.9)				
Donepezil		Dem	MMSE (0-30)	IG1	3	11.72	127	NR		11.97	132	NR	0.23 ^{II}	NR, 0.0004
Deneneril	Fair-Good	Dama	MMSE (0-30)	IG1	6	(0.35)§	131	NR		(0.34) [§] 11.97	139	NR	(0.34) [§] -0.42 [∥]	
Donepezil		Dem	WINSE (0-30)	IGI	0	11.72 (0.35)§	131	INR		(0.34) [§]	139	INK	-0.42" (0.34) [§]	MDC=1.79, <0.0001
Donepezil	Holmes, 2004 ¹⁹⁰	Dem	MMSE (0-30)	IG1	6	(0.33)* 21.1	41	NR	(0.34)° -0.1 (0.6)§		55	NR	(0.34) ³ 1.8 (0.5) [§]	NR, 0.02
Donopozii	Fair-Good	Dom			Ŭ	(0.9)§				(0.6) [§]	00		1.0 (0.0)	1111, 0.02
Donepezil	Ikeda, 2015* ¹⁹¹	Dem	MMSE (0-30)	IG1	3	20.3	49	NR	2.2 (0.4)§		44	NR	0.6 (0.5) [§]	MDC (95% CI)=1.6
•	Fair		~ /			(4.8)			· · · ·	(4.2)			× ,	(0.3, 2.8), 0.016
Donepezil		Dem	MMSE (0-30)	IG2	3	20.6	43	NR	1.4 (0.5)§		44	NR	0.6 (0.5) [§]	MDC (95% CI)=0.8 (-
						(4.1)				(4.2)				0.5, 2.1), 0.232
Donepezil	Krishnan, 2003 ¹⁹²	Dem	ADAS-Cog 11	IG1	3		31	NR		26.44	30	NR	1.22 [∥] (NR)	NR, <0.007
Demonstra	Fair-Good	Davas	(0-70)	104		(12.13)	00			(12.29)	00			
Donepezil	Krishnan, 2003 ¹⁹² Fair-Good	Dem	ADAS-Cog 11	IG1	4		30	NR		26.44	29	NR	1.60 [∥] (NR)	NR, <0.04
Donepezil	raii-Good	Dem	(0-70) ADAS-Cog 11	IG1	6	(12.13) 26.51	34	NR		(12.29) 26.44	32	NR	3.2 [∥] (NR)	NR, <0.04
Donepezii		Dem	(0-70)		0	20.51 (12.13)	54	INIX.		26.44 (12.29)	52	1117	5.2" (INR)	NIN, <0.04
			(0-70)			(12.13)	1		(אוי)	(12.29)	1			

									IG mean				CG mean	
						IG BL		IG FU	change	CG BL		CG FU		
	Author, year	Рор	Instrument		Time,		IG n at		(SD)	mean	CG n		(SD) from	Between group
Medication	Quality	cat	(range) [†]	Int arm		(SD)	FU	(SD)	from BL	(SD)	at FU	(SD)	BL	difference, p-value
Donepezil		Dem	MMSE (0-30)	IG1	6	18.55	25	NR		18.80	26	NR	-0.25 (-	MDC (95% CI)=1.2 (-
	Fair-Good	_		101	-	(3.47)				(3.63)				1.2, 3.6), 0.06
Donepezil	- / -	Dem	MMSE (0-30)	IG1	3	19.8	36	NR		18.3	31	NR	-0.4 (2.7)	MDC (95% CI)=2.4
	Fair			100	-	(4.4)				(4.7)				(0.9, 3.9), <0.001
Donepezil		Dem	MMSE (0-30)	IG2	3	19.8	32	NR	3.4 (3.2)	18.3	31	NR	-0.4 (2.7)	MDC (95% CI)=3.8
	_	D		100	0	(4.4)	05		4.0.(0.0)	(4.7)	0.4		0.4 (0.7)	(2.3, 5.3), <0.001
Donepezil		Dem	MMSE (0-30)	IG3	3	20.4	35	NR	1.6 (3.8)	18.3	31	NR	-0.4 (2.7)	MDC (95% CI)=2.0
	D / 0005106		15100 11	101	~	(4.1)			0.01	(4.7)				(0.4, 3.7), 0.013
Donepezil	Petersen, 2005 ¹⁹⁶	MCI	ADAS-Cog 11	IG1	6	11.28	NR			11.03	NR	NR	-0.13 (3.34)	NR
	Fair		(0-70)	101	10	(4.5)				(4.2)			0.04 (4.40)	
Donepezil		MCI	ADAS-Cog 11	IG1	12	11.28	NR	NR		11.03	NR	NR	0.61 (4.10)	NR
	_		(0-70)	101	10	(4.5)				(4.2)				
Donepezil		MCI	ADAS-Cog 11	IG1	18	11.28	NR	NR		11.03	NR	NR	1.29 (4.71)	NR
	_		(0-70)	101	0.4	(4.5)				(4.2)			4 40 (5 07)	
Donepezil		MCI	ADAS-Cog 11	IG1	24	11.28	NR	NR		11.03	NR	NR	1.49 (5.07)	NR
	_		(0-70)	101		(4.5)				(4.2)				
Donepezil		MCI	ADAS-Cog 11	IG1	30	11.28	NR	NR		11.03	NR	NR	2.98 (5.62)	NR
	_		(0-70)	101	0.0	(4.5)	4.0.4			(4.2)	100		0.74 (0.07)	
Donepezil		MCI	ADAS-Cog 11	IG1	36	11.28	161	NR		11.03	193	NR	3.74 (6.97)	NR
Deverenti			(0-70)	IG1	0	(4.5)	NR	NR		(4.2)	NR		0.00 (4.00)	
Donepezil		MCI	ADAS-Cog 13	IG1	6	17.72	NR	NR		17.40	NR	NR	-0.09 (4.38)	NR
Deverenti	_		(0-85)	IG1	12	(6.2)	NR	NR		(6.0)	NR	NR	0.00 (4.00)	
Donepezil		MCI	ADAS-Cog 13	IGT	12	17.72	NR	INR		17.40	INR	INR	0.60 (4.96)	NR
Demonstrati	_		(0-85)	104	10	(6.2)	NR			(6.0)			0.00 (0.07)	
Donepezil		MCI	ADAS-Cog 13	IG1	18	17.72	NR	NR		17.40	NR	NR	0.99 (6.07)	NR
	_		(0-85)	101	24	(6.2) 17.72		NR		(6.0) 17.40	NR		4 00 (0 07)	NR
Donepezil		MCI	ADAS-Cog 13	IG1	24		NR	NR			NR	NR	1.02 (6.27)	NR
Deneneril	Petersen, 2005 ¹⁹⁶	MOL	(0-85)	IG1	30	(6.2) 17.72	NR	NR		(6.0) 17.40	NR	NR		
Donepezil	Fair	NCI	ADAS-Cog 13	IG1	30	(6.2)	NR	NR		17.40 (6.0)	NR	NR	2.65 (7.02)	NR
Deneneril		MCI	(0-85)	101	20		161			(6.0) 17.40	193			
Donepezil		NCI	ADAS-Cog 13 (0-85)	IG1	36	17.72 (6.2)	161	NR			193	NR	3.72 (8.54)	NR
Deneneril	_	MCI	(0-85) MMSE (0-30)	IG1	6	(ö. <i>2)</i> 27.25	NR	NR		(6.0) 27.35	NR	NR	0.00 (0.00)	
Donepezil		NCI	WINSE (0-30)	IGT	ю		NR	INR			INR	INR	-0.36 (2.02)	NR
Deneneril	_	MCI		IG1	12	(1.8) 27.25	NR	NR		(1.8) 27.35	NR	NR	0.00 (0.04)	
Donepezil		NCI	MMSE (0-30)	IGT	12		NR	INR			INR	INR	-0.80 (2.34)	NR
Depensati	-	MCI	MMSE (0-30)	IG1	18	(1.8) 27.25	NR	NR		(1.8) 27.35	ND	ND	1 02 (2 64)	ND
Donepezil		MCI	IVIIVISE (U-30)		10		INIK	INIK		27.35 (1.8)	NR	NR	-1.02 (2.61)	
Depenseil	-	MOL		101	24	(1.8)	NR				NR		1 40 (2 00)	ND
Donepezil		MCI	MMSE (0-30)	IG1	24	27.25	NK	NR		27.35	NK	NR	-1.49 (2.90)	INK
						(1.8)			(2.54)	(1.8)				

						IG BL		IG FU	IG mean change	CG BL		CG FU	CG mean change	
	Author, year	Рор	Instrument		Time.		IG n at		(SD)	mean	CG n		(SD) from	Between group
Medication	Quality	cat	(range) [†]	Int arm	- /	(SD)	FU	(SD)	from BL		at FU	(SD)	BL	difference, p-value
Donepezil		MCI	MMSE (0-30)	IG1	30		NR	NR	-1.47	27.35	NR	NR	-1.77 (3.24)	NR
						(1.8)			(3.04)	(1.8)				
Donepezil			MMSE (0-30)	IG1	36	27.25 (1.8)	161	NR	(3.72)	27.35 (1.8)	193		-2.75 (4.04)	
Donepezil	Rogers, 1996 ¹⁹⁸ Fair-Good		ADAS-Cog 11 (0-70)	IG1	3	29.1 (NR)		NR	-2.5 (-8.0, 7.0) [#]	27.2 (NR)	40		0.7 (-7.0, 14.5) [#]	NR, <0.01
Donepezil			ADAS-Cog 11 (0-70)	IG2	3	29.2 (NR)	40	NR	-1.4 (- 12.0, 11.0) [#]	27.2 (NR)	40		0.7 (-7.0, 14.5) [#]	NR, <0.05
Donepezil			ADAS-Cog 11 (0-70)	IG3	3	26.6 (NR)	41	NR	-0.9 (- 11.3, 12.0)#	27.2 (NR)	40		0.7 (-7.0, 14.5) [#]	NS
Donepezil	-	Dem	MMSE (0-30)	IG1	3	18.0 (NR)	38			18.2 (NR)	40	NR	1.2 (-6.0, 8.0) [#]	NS
Donepezil	_	Dem	MMSE (0-30)	IG2	3	18.6 (NR)	40	NR		18.2 (NR)	40	NR	1.2 (-6.0, 8.0) [#]	NS
Donepezil	_	Dem	MMSE (0-30)	IG3	3	19.6 (NR)	41	NR	0.6 (-4.0, 7.0) [#]	18.2 (NR)	40	NR	1.2 (-6.0, 8.0) [#]	NS
Donepezil	Rogers, 1998 ¹⁹⁷ Fair-Good	Dem	ADAS-Cog 11 (0-70)	lG1	3	26.4 (0.89)§	155	NR	-2.7 (0.43) [§]	25.3 (0.87)§	150			MDC (95% CI)=-3.1 (-4.22, -1.92), <0.001
Donepezil		Dem	ADAS-Cog 11 (0-70)	IG2	3	26.4 (0.92)§	156	NR		25.3 (0.87)§	150	NR	0.4 [∥] (0.43)§	MDC (95% CI)=-2.5 (-3.59, -1.29), <0.001
Donepezil	_	Dem	MMSE (0-30)	lG1	3	(0.40) [§]	156	NR	1.3 [∥] (0.24)§	19.80 (0.35) [§]	150	NR	0.04 [∥] (0.25) [§]	MDC (95% CI)=1.3 (0.65, 1.97), <0.001
Donepezil		Dem	MMSE (0-30)	IG2	3	19.39 (0.39)§	156	NR	1.0	19.80 (0.35) [§]	150	NR	0.04∥(0.25)§	MDC (95% CI)=1.0 (0.33, 1.65), <0.004
Donepezil	Salloway, 2004 ¹⁹⁹ Fair-Good	MCI	ADAS-Cog 13 (0-85)	IG1	6	20.0 (6.2)	130	NR	-3.1 (0.5)§	19.5 (6.9)	132	NR	-1.2 (0.5)§	NR, 0.006
Donepezil		MCI	ADAS-Cog 13 (D)	IG1	6	NA	130	105 (80.8)**	NR	NA		86 (65.2)**	NR	NR
Donepezil		MCI	ADAS-Cog 13 (D)	IG1	6	NA	130	65 (50.0) ^{††}	NR	NA	132		NR	NR
Donepezil		MCI	ADAS-Cog 13 (D)	IG1	6	NA	130		NR	NA	132		NR	NR
Donepezil	Seltzer, 2004 ²⁰⁰ Fair-Good	Dem	ADAS-Cog 13 (0-85)	IG1	3	21.0 (7.9)	79	NR		21.3 (6.8)			0.39 (0.68) [§]	NR, 0.03
Donepezil		Dem	ADAŚ-Cog 13 (0-85)	IG1	4	21.0 (7.9)	70	NR		21.3 (6.8)	49	NR	0.29 (0.65) [§]	NR, NR

						IG BL		IG FU	IG mean change	CG BL		CG FU	CG mean change	
	Author, year	Рор	Instrument		Time,	-	IG n at		(SD)	mean	CG n	mean	(SD) from	Between group
Medication	Quality	cat	(range) [†]	Int arm	mo.	(SD)	FU	(SD)	from BL		at FU	(SD)	BL	difference, p-value
Donepezil		Dem	ADAS-Cog 13	IG1	6	21.0	91	NR		21.3	55	NR	0.59 (0.64)§	MDC=-2.3, 0.001
			(0-85)			(7.9)			(0.50) [§]	(6.8)				
Donepezil		Dem	ADAS-Cog 13	IG1	6	NA	67	25	NR	NA	45	7	NR	NR, 0.02
		-	(D)	101	0	04.4	70	(37.3) ^{††}		04.0	F 4	(15.6) ^{††}		
Donepezil		Dem	MMSE (0-30)	IG1	3	24.1 (1.7)	79	NR	1.60 (0.37)§	24.3 (1.3)	51	NR	0.39 (0.38) [§]	NR, 0.04
Donepezil	_	Dem	MMSE (0-30)	IG1	6	(1.7) 24.1	91	NR	(0.37) ³ 1.34	(1.3) 24.3	55	NR	0.00 (0.42)§	MDC=1.8, 0.002
Donepezii		Dem		101	0	(1.7)	51		(0.36) [§]	(1.3)	55		0.09 (0.42)*	1000-1.0, 0.002
Donepezil	Tune, 2003 ²⁰¹	Dem	ADAS-Cog 11	IG1	3	21.86	14	NR		21.81	13	NR	-2 95 (3 40)	MDC (95% CI)=NR,
	Fair-Good		(0-70)		Č	(6.59)			(3.46)	(10.00)			,	(-3.75, 1.69), 0.459
Donepezil	_	Dem	ADAS-Cog 11	IG1	6	21.86	14	NR		21.81	13	NR	-1.56 (2.07)	MDC (95% CI)=NR,
•			(0-70)			(6.59)			(5.03)	(10.00)			,	(-5.18, 1.00), 0.186
Donepezil	Wilkinson,	Dem	ADAS-Cog 11	IG1	3	20.6‡	172	NR	-2.97	18.8‡	167	NR	-0.91	NR, <0.001
	2003 ²⁰²		(0-70)			(0.7) [§]				(0.7)§			(0.38) [§]	
Donepezil	Fair-Good	Dem	ADAS-Cog 11	IG1	4	20.6‡	163	NR	-2.62	18.8 [‡]	160			NR, <0.001
			(0-70)			(0.7) [§]			(0.48) [§]	(0.7)§			(0.44) [§]	
Donepezil		Dem	ADAS-Cog 11	IG1	6	20.6 [‡]	194	NR	-2.19 ^{II}	18.8 [‡]	180	NR	-0.10	NR, <0.001
			(0-70)			(0.7)§			(0.44) [§]	(0.7) [§]			(0.39) [§]	
Donepezil		Dem	ADAS-Cog 11	IG2	3	20.8 [‡]	183	NR	-2.62	18.8 [‡]	167	NR		NR, <0.001
	_	-	(0-70)	100		(0.7)§	170			(0.7)§	100		(0.36) [§]	
Donepezil		Dem	ADAS-Cog 11	IG2	4	20.8 [‡]	173	NR	-2.18	18.8 [‡]	160	NR	-0.16 [∥]	NR, <0.001
Denenazil	_	Dom	(0-70) ADAS-Cog 11	IG2	6	(0.7) [§] 20.8 [‡]	199	NR	(0.35) [§] -1.75 [∥]	(0.7) [§] 18.8 [‡]	180	NR	(0.38)§ -0.10∥	NR, <0.01
Donepezil		Dem	(0-70)	IG2	0	20.8⁺ (0.7)§	199	INK	-1.75⊫ (0.33)§	10.0⁺ (0.7)§	160		-0.10" (0.39) [§]	NR, <0.01
Donepezil	_	Dem	MMSE (0-30)	IG1	3	(0.7)* 21.5 [‡]	179	NR	(0.33) ³ 1.66	(0.7)° 22.2‡	174		(0.39)° 0.29∥	NR, <0.001
Donepezii		Dem		101	5	(0.3) [§]	175		(0.17) [§]	(0.3)§	174		0.29" (0.24) [§]	NIX, <0.001
Donepezil	Wilkinson.	Dem	MMSE (0-30)	IG1	4	(0.0) 21.5 [‡]	169	NR	1.47	(0.0) 22.2 [‡]	166	NR	(0.2 <i>-</i> +) 0.62∥	NR, <0.05
Donopozii	2003 ²⁰²	20111	(0 00)		l.	(0.3)§			(0.23) [§]	(0.3)§			(0.23) [§]	
Donepezil	Fair-Good	Dem	MMSE (0-30)	IG1	6	21.5 [‡]	203	NR	1.38	22.2 [‡]	188	NR	0.23	NR, <0.001
•			, ,			(0.3) [§]			(0.23)§	(0.3) [§]			(0.24) [§]	,
Donepezil		Dem	MMSE (0-30)	IG2	3	21.8 [‡]	185	NR	1.39	22.2 [‡]	174	NR	0.29	NR, <0.001
						(0.3)§			(0.23) [§]	(0.3)§			(0.22) [§]	
Donepezil		Dem	MMSE (0-30)	IG2	4	21.8 [‡]	175	NR	1.57∥	22.2 [‡]	166	NR	0.62 [∥]	NR, <0.01
						(0.3)§			(0.21) [§]	(0.3)§			(0.23) [§]	
Donepezil		Dem	MMSE (0-30)	IG2	6	21.8 [‡]	202	NR	1.38	22.2 [‡]	188	NR		NR, <0.001
						(0.3)§			(0.22) [§]	(0.3)§			(0.24) [§]	
Donepezil	Winblad, 2001 ²⁰³	Dem	MMSE (0-30)	IG1	3	19.37	127	NR	0.69	12.26	128		-0.12	NR, 0.053
	Fair-Good					(4.37)			(0.27)§	(4.54)			(0.29) [§]	

						IG BL		IG FU	IG mean change	CG BL		CG FU	CG mean change	
	Author, year	Рор	Instrument		Time.	-	IG n at		(SD)	mean	CG n	mean	(SD) from	Between group
Medication	Quality	cat		Int arm	- ,	(SD)	FU	(SD)	from BL	(SD)	at FU	(SD)	BL	difference, p-value
Donepezil		Dem	MMSE (0-30)	IG1	6	19.37	121		0.43 [∥]	12.26	120	NR	-1.05 [∥]	NR, <0.001
						(4.37)				(4.54)			(0.30) [§]	
Donepezil		Dem	MMSE (0-30)	IG1	8	19.37	104		0.02	12.26	105		-1.12	NR, 0.019
	_					(4.37)			1 /	(4.54)			(0.39) [§]	
Donepezil		Dem	MMSE (0-30)	IG1	12	19.37	135	NR	-0.49	12.26	137		-2.19	NR, <0.001
Calantamina	Aughus 2007 ²⁰⁴	Dam		IG1	<u> </u>	(4.37) 22.9	388	NR		(4.54)	379		(0.25) [§]	
Galantamine	Auchus, 2007 ²⁰⁴ Fair	Dem	ADAS-Cog 11 (0-70)	IG1	6	22.9 (9.5)	388	INR	-1.7 (6.0)	22.5 (9.5)	379	INR	-0.3 (6.4)	NR, 0.001
Galantamine		Dem		IG1	3	(9.5) 27.3	296	NR	-2.5	(9.5) 26.1	296	NR	0.2 (0.31) [§]	NR
Galamanine	Fair-Good	Dem	(0-70)		S	(0.55)§	200			(0.54)§	200		0.2 (0.01)	
Galantamine		Dem	ADAS-Cog 11	IG1	6	27.3	296	NR		26.1	296	NR	1.2 (0.33) [§]	MDC (95% CI)= NR,
			(0-70)			(0.55) [§]				(0.54) [§]			· · ·	(-3.70, -1.86), <0.01
Galantamine		Dem		IG2	3	26.3	290	NR		26.1	296	NR	0.2 (0.31)§	NR
	_		(0-70)			(0.54)§				(0.54)§				
Galantamine		Dem	ADAS-Cog 11	IG2		26.3	291	NR		26.1	296	NR	1.2 (0.33)§	MDC (95% CI)= NR,
Colontamina	Erkinjuntti,	Dom	(0-70) ADAS-Cog 11	IG1	6	(0.54) [§] 22.3	290	NR	(0.31) [§] -1.7 (0.4) [§]	(0.54) [§]	162	NR	1.0 (0.5) [§]	(-3.34, -1.49), <0.001 MDC=-2.7, <0.0001
Galantamine	Erkinjuntu, 2002 ²⁰⁶	Dem	(0-70)	IGT	0	22.3 (8.8)	290	INK	-1.7 (0.4)3	24.1 (9.9)	162	INK	1.0 (0.5)3	VIDC = -2.7, < 0.0001
Galantamine	Fair-Good	Dem	ADAS-Cog 11	IG1	6	(8.8) NR	152	NR	-1.0	(<u>9.</u> 9) NR	87	NR	1.8 (0.60)§	MDC (95% CI)=-2.7
Calandanino		2011	(0-70)	(AD)	Ŭ		.02		(0.46) [§]		0.			(-4.16, -1.17), 0.0005
Galantamine		Dem	ADAS-Cog 11	IG1	6	NR	121	NR		NR	67	NR	-0.4 (0.78) [§]	MDC (95% CI)=-1.9
			(0-70)	(VaD)					(0.59) [§]				. ,	(-3.88, 0.08), 0.06
Galantamine		Dem	ADAS-Cog 11	IG1	6	NA	290			NA	162		NR	NR, 0.005
	_		(D)					(35.2)††				(22.2) ^{††}		
Galantamine			ADAS-Cog 13 (0-85)	IG1		NR	290	NR	-2.4 (0.4) [§]		162	NR	0.9 (0.6) [§]	MDC=-3.2, <0.0001
Galantamine	Hager, 2014* ²⁰⁸	Dem	MMSE (0-30)	IG1	6	19.0	873	NR	0.15	19.0	888	NR	-0.28 (2.94)	NR, <0.001
	Fair	_				(4.12)			(2.73)	(4.04)				
Galantamine		Dem	MMSE (0-30)	IG1	12	19.0 (4.12)	874		-0.51 (0.11) [§]	19.0 (4.04)	891		-1.09 (0.12) [§]	NR, <0.05
Galantamine		Dem	MMSE (0-30)	IG1	18	19.0	874	NR	-1.07	19.0	891		-1.74	NR, <0.05
			· · · · ·			(4.12)			(0.13) [§]	(4.04)			(0.13) [§]	
Galantamine		Dem	MMSE (0-30)	IG1	24	19.0	874	NR	-1.41	19.0	891		-2.14	NR, <0.001
						(4.12)				(4.04)			(0.13)§	
Galantamine		Dem	0	IG1		24.8	202	NR		25.7	207	NR	2.0 (0.45)§	NR, <0.001
Galantamine	Fair-Good	Dom	(0-70) ADAS-Cog 11	IG2		(0.7) [§] 25.8	197	NR		(0.8) [§] 25.7	207	NR	2.0 (0.45) [§]	NP -0.001
Galantamine			(0-70)	162		∠5.8 (0.8)§	197			25.7 (0.8)§	207	INFX	∠.0 (0.43)³	NR, <0.001
	1		(0-70)			(0.0)			(U.44)°	(0.0)°	1			

									IG mean				CG mean	
	Author, year	Рор	Instrument		Time.	IG BL mean	IG n at	IG FU mean	change (SD)	CG BL mean	CGn	CG FU mean	change (SD) from	Between group
Medication	Quality	cat	(range) [†]	Int arm	-,	(SD)	FU	(SD)	from BL	(SD)	at FU	(SD)	BL	difference, p-value
Galantamine		Dem	ADAS-Cog 11	IG1			239	NR		24.7	120	NR	0.6 (0.45)§	NR, <0.01
	2001 ²¹⁰		(0-70)			(0.65) [§]				(0.85) [§]				
Galantamine	Fair-Good	Dem	ADAS-Cog 11	IG1	3	NA	239	72	NR	NA	120		NR	NS
		0	(0-70)	101		04.0	62	(30.1)	4.04.(07.0	05	(22.5)		
Galantamine	Rockwood, 2006 ²⁰⁹	Dem	ADAS-Cog 11 (0-70)	IG1	4	24.2 (6.4)	62	NR		27.9 (8.4)	65	NR	0.29 (-1.02, 1.65) [¶]	NR, 0.04
	Fair		(0-70)			(0.4)			2.94, - 0.27)¶	(0.4)			1.00)*	
Galantamine		Dem	ADAS-Cog 11	IG1	5	29.0	253	NR		29.4	255	NR	1.7 (0.39)§	NR, <0.001
	Fair-Good	_	(0-70)	-	-	(0.7)§			(0.39) [§]	(0.6) [§]			(/	,
Galantamine	-	Dem	ADAS-Cog 11	IG1	5	NA	211	78	NR	NA	225		NR	NR, <0.001
			(D)					(37.0)††				(19.6)††		
Galantamine		Dem	ADAS-Cog 11	IG1	5	NA	211			NA	225		NR	NR, <0.01
Colontomino	-	Dam	(D) ADAS-Cog 11	IG2	5	29.4	253	(26.5) ^{‡‡} NR		29.4	255	(8.4) ^{‡‡} NR	1 7 (0 20)8	
Galantamine		Dem	ADAS-Cog 11 (0-70)	IG2		29.4 (0.7)§	253			29.4 (0.6)§	255	INR	1.7 (0.39) [§]	NR, <0.001
Galantamine		Dem	ADAS-Cog 11	IG2		(0.7)* NA	253				255	19	NR	NR, <0.01
Galantamine		Dem	(D)	102	S	N/ 1		(15.8) ^{††}		1 17 1	200	(7.4) ^{††}		NIX, <0.01
Galantamine		Dem	ADAS-Cog 11	IG2	5	NA	208			NA	225		NR	NR, <0.001
			(D)					(35.6)‡‡				(19.6) ^{‡‡}		
Galantamine		Dem	ADAS-Cog 11	IG3	5	27.8	126			29.4	255	NR	1.7 (0.39)§	NS
		_	(0-70)		_	(0.9) [§]				(0.6) [§]				
Galantamine	,	Dem	ADAS-Cog 11	IG1	6	25.4	220	NR			215	NR	2.4 (0.41)§	MDC (95% CI)=-2.9
Galantamine	Fair-Good	Dem	(0-70) ADAS-Cog 11	IG1	6	(9.4) NA	220	138		(9.3) NA	215	88	NR	(-4.1, -1.6), <0.001 PD (95% CI)=21.5
Galantamine		Dem	(D)	IGI	0	NA	220	130 (62.7)**	INIK	NA	215	oo (40.9)**	INK	(12.0, 31.0), <0.001
Galantamine		Dem	ADAS-Cog 11	IG1	6	NA	220		NR	NA	215		NR	PD (95% CI)=14.0
			(D)		•			(29.1) ^{††}				(14.9) ^{††}		(6.0, 22.0), <0.001
Galantamine	Wilcock, 2000 ²¹²	Dem	ADAS-Cog 11	IG2	6	26.2	217	NR		24.7	215		2.4 (0.41) [§]	MDC (95% CI)=-3.1
	Fair-Good		(0-70)			(10.4)				(9.3)				(-4.4, -1.9), <0.001
Galantamine		Dem	ADAS-Cog 11	IG2	6	NA	217	130	NR	NA	215	88	NR	PD (95% CI)=19.5
	-	_	(D)		-			(59.9)**				(40.9)**		(10.0, 29.0), <0.001
Galantamine		Dem	ADAS-Cog 11	IG2	6	NA	217			NA	215			PD (95% CI)=17.0
Galantamine	Wilkinson,	Dem	(D) ADAS-Cog 11	IG1	3	26.7	55	(32.2) ^{††} NR	-1.4 (0.9) [§]	26.0	82	(14.9) ^{††} NR	1.6 (0.7) [§]	(9.0, 25.0), <0.001 MDC=NR, <0.01
Galaniamine	2001 ²¹³	Dem	(0-70)	IGI		20.7 (1.1)§	55	INK		20.9 (1.0) [§]	02	INK	1.0 (0.7)	WDC=NR, <0.01
Galantamine		Dem	ADAS-Cog 11	IG2			51	NR	-0.7 (0.7)§		82	NR	1.6 (0.7) [§]	MDC=NR, 0.08
			(0-70)			(1.1) [§]			. ,	(1.0) [§]			. ,	,
Galantamine		Dem	ADAS-Cog 11	IG3	3		81	NR	-0.1 (0.7)§		82	NR	1.6 (0.7)§	MDC=NR, NS
			(0-70)		-	(0.9)§				(1.0) [§]	=			
Rivastigmine		Dem	MMSE (0-30)	IG1	3	NR	103	NR	0.3 (3.1)	NR	117	NR	-0.0 (2.6)	NR

	Author, year	Рор	Instrument		Timo	IG BL	IG n at	IG FU	IG mean change (SD)	CG BL mean	CGn	CG FU mean	CG mean change (SD) from	Between group
Medication	Quality	cat		Int arm		(SD)	FU	(SD)	from BL	(SD)	at FU	(SD)	BL	difference, p-value
Rivastigmine	Agid, 1998 ²¹⁴ Fair-Good	Dem	MMSE (0-30)	IG2	3	NR	111	NR	0.0 (3.3)	NR	117	NR	-0.0 (2.6)	NR
Rivastigmine	Ballard, 2008 ²¹⁵ Fair	Dem	ADAS-Cog 11 (0-70)	_	6	23.0 (9.9)	360		-0.7 (0.38)§	23.7 (9.8)	338		0.4 (0.38) [§]	MDC=-1.0, 0.029
Rivastigmine		Dem	MMSE (0-30)		6	19.2 (4.1)		NR	0.4 (0.38) [§]	19.2 (3.9)	338	NR	-0.2 (0.18)§	MDC=0.6, 0.007
Rivastigmine	Corey-Bloom, 1998 ²¹⁶	Dem	ADAS-Cog 11 (0-70)	IG1	3	22.3 (NR)	169	NR	-1.0 (NR)	21.7 (NR)	216	NR	2.3 (NR)	NR, <0.001
Rivastigmine	Fair-Good	Dem	ADAS-Cog 11 (0-70)	IG1	4	22.3 (NR)	157	NR	-0.6 (NR)	(NR)	201	NR	3.5 (NR)	NR, <0.001
Rivastigmine		Dem	ADAS-Cog 11 (0-70)	IG1	6	22.3 (NR)	231		-0.31 (- 1.08, 0.49) [¶]	21.7 (NR)	234		4.09 (3.32, 4.86) [¶]	MDC=-4.40, <0.001
Rivastigmine		Dem	ADAS-Cog 11 (D)	IG1	6	NA	145	81 (55.9)**	NR	NA		52 (27.1)**	NR	NS
Rivastigmine		Dem	ADAS-Cog 11 (0-70)		3	22.4 (NR)	223	NR	1.4 (NR)	21.7 (NR)	216	NR	2.3 (NR)	NR
Rivastigmine		Dem	ADAS-Cog 11 (0-70)	IG2	4	22.4 (NR)	208	NR	1.8 (NR)	21.7 (NR)	201	NR	3.5 (NR)	NR, <0.05
Rivastigmine		Dem	ADAS-Cog 11 (0-70)	IG2	6	22.4 (NR)	233		2.36 (1.59, 3.13) [¶]	21.7 (NR)	234		4.09 (3.32, 4.86) [¶]	NR
Rivastigmine		Dem	MMSE (0-30)	IG1	6	19.62 (NR)	145	NR	0.30 (NR)	20.00 (NR)	192	NR	-0.79 (NR)	NR, <0.05
Rivastigmine		Dem	MMSE (0-30)	IG2	6	19.5 (NR)	194	NR	-0.34 (NR)	20.0 (NR)	192	NR	-0.79 (NR)	NR
Rivastigmine	Feldman, 2007 ²¹⁷ Fair	Dem	ADAS-Cog 11 (0-70)	IG1	6	28.1 (12.5)	227	NR	-0.2 (7.3)	28.5 (12.3)	220	NR	2.8 (7.2)	MDC=-2.9, <0.001
Rivastigmine		Dem	ADAŚ-Cog 11 (D)	IG1	3	NA	227	68 (30.0) ^{††}	NR	ŇA	220	36 (16.4) ^{††}	NR	NR, ≤0.001
Rivastigmine		Dem	ADAS-Cog 11 (D)	IG1	4	NA	227	75 (33.0) ^{††}	NR	NA	220	28 (12.7) ^{††}	NR	NR, ≤0.001
Rivastigmine			ADAS-Cog 11 (D)	IG1	6	NA		52 (22.9) ^{††}	NR	NA	220	28 (12.7) ^{††}	NR	NR, <0.05
Rivastigmine]	Dem	ADAS-Cog 11 (0-70)		6	27.7 (12.3)	228	NR	1.2 (7.2)	28.5 (12.3)	220	NR	2.8 (7.2)	MDC=-1.6, 0.019
Rivastigmine]	Dem	ÀDAŚ-Cog 11 (D)	IG2	3	NA	228	53 (23.2) ^{††}	NR	ŇA	220	36 (16.4) ^{††}	NR	NR, <0.05
Rivastigmine]	Dem	ADAS-Cog 11 (D)	IG2	4	NA	228	57 (25.0) ^{††}	NR	NA			NR	NR, ≤0.001

						IG BL		IG FU	IG mean change	CG BL		CG FU	CG mean change	
	Author, year	Рор	Instrument		Time,	mean	IG n at	mean	(SD)	mean	CG n	mean	(SD) from	Between group
Medication Rivastigmine	Quality	cat Dem	(range) [†] ADAS-Cog 11	Int arm	mo. 6	(SD) NA	FU 228	(SD) 41	from BL NR	(SD) NA	at FU 220	(SD) 28	BL NR	difference, p-value
Rivastiginine		Dem	(D)	162	0	INA	220	41 (18.0) ^{††}		NA	220	20 (12.7) ^{††}		113
Rivastigmine	-	Dem	MMSE (0-30)	IG1	6	18.1	277			18.6	220	NR	-1.4 (3.6)	NR
g			(****)		-	(4.7)	_			(4.7)				
Rivastigmine		Dem	MMSE (0-30)	IG2	6	18.8 (4.7)	228	NR	-0.6 (3.6)	18.6 (4.7)	220	NR	-1.4 (3.6)	NR
Rivastigmine	McKeith, 2000 ²¹⁸ Fair-Good	Dem	MMSE (0-30)	IG1	5	17.9 (4.7)	41	NR	1.5 (NR)	17.8 (4.4)	51	NR	-0.1 (NR)	NR, 0.072
Rivastigmine	Mok, 2007 ²¹⁹ Fair	Dem	MMSE (0-30)	IG1	6	13.0 (4.2)	20	13.6 (5.8)		13.6 (6.0)	19	13.5 (6.8)	NR	NR, 0.563
Rivastigmine	Rosler, 1999 ²²⁰ Fair-Good	Dem	ADAS-Cog 11 (0-70)	IG1	3	NR	191	NR	-1.85 (NR)	ŇŔ	226	NR	-0.08 (NR)	NR, <0.05
Rivastigmine	-	Dem	ADAS-Cog 11 (0-70)	IG1	4	NR	179	NR	-0.90 (NR)	NR	218	NR	1.21 (NR)	NR, <0.05
Rivastigmine		Dem	ADAŚ-Cog 11 (0-70)	IG1	6	NR	199		-0.83 (- 1.79, 0.19) [¶]	NR	225		1.45 (0.47, 2.33) [¶]	NR, <0.001
Rivastigmine		Dem	ADAS-Cog 11 (D)	IG1	6	NA	199		NR	NA	225	40 (17.8) ^{††}	NR	NR, <0.05
Rivastigmine		Dem	ADAS-Cog 11 (0-70)	IG2	3	NR	226		0.13 (NR)	NR	226	NR	-0.08 (NR)	NS
Rivastigmine	-	Dem	ADAS-Cog 11 (0-70)	IG2	4	NR	219	NR	0.60 (NR)	NR	218	NR	1.21 (NR)	NS
Rivastigmine		Dem	ADAŚ-Cog 11 (0-70)	IG2	6	NR	226	NR	1.24 (0.37, 2.23) [¶]	NR	225		1.45 (0.47, 2.33) [¶]	NS
Rivastigmine	Rosler, 1999 ²²⁰ Fair-Good	Dem	ADAS-Cog 11 (D)	IG2	6	NA	226		NR	NA	225	40 (17.8) ^{††}	NR	NS
Rivastigmine		Dem	MMSE (0-30)	IG1	6	NR	199	NR		NR	225	NR	-0.54 (- 0.99, - 0.01)¶	NR, <0.05
Rivastigmine	-	Dem	MMSE (0-30)	IG2	6	NR	225	NR		NR	223	NR	-0.54 (- 0.99, - 0.01)¶	NR, NR
Rivastigmine	Winblad, 2007 ²²¹ Fair	Dem	ADAS-Cog 11 (0-70)	IG1	6	27.9 (9.4)	253		-0.6 (6.2)	28.6 (9.9)	281		1.0 (6.8)	NR, 0.003
Rivastigmine		Dem	ADAS-Cog 11 (0-70)	IG2	6	27.4 (9.7)	262	NR	-1.6 (6.5)	28.6 (9.9)	281	NR	1.0 (6.8)	NR, <0.001
Rivastigmine	1	Dem	ADAS-Cog 11 (0-70)	IG3	6	27.0 (10.3)	248	NR	-0.6 (6.4)		281	NR	1.0 (6.8)	NR, 0.005

									IG mean				CG mean	
	Author, year	Рор	Instrument		Time,	IG BL mean	IG n at	IG FU	change (SD)	CG BL mean		CG FU mean	change (SD) from	Between group
Medication	Quality	cat	(range) [†]	Int arm		(SD)	FU		from BL	(SD)	at FU		BL	difference, p-value
Rivastigmine		Dem	MMSE (0-30)		6	16.4				16.4			0.0 (3.5)	NR, 0.002
_	_					(3.0)				(3.0)				
Rivastigmine		Dem	MMSE (0-30)	_	6	16.6 (2.9)			~ /	16.4 (3.0)				NR, <0.001
Rivastigmine		Dem	MMSE (0-30)	IG3	6	16.7 (3.0)	250	NR	1.1 (3.3)	16.4 (3.0)	281	NR	0.0 (3.5)	NR, 0.002
Memantine	Bakchine, 2008 ²²²	Dem	ADAS-Cog 11 (0-70)	IG1	3	25.9 (10.4)	268	NR	-2.46 (NR)	24.9 (9.7)	135	NR	-0.70 (NR)	MDC (95% CI)=-1.76 (-2.69, -0.83), 0.000
Memantine	Good	Dem	ADAS-Cog 11 (0-70)	IG1	4	25.9 (10.4)	266	NR		24.9 (9.7)	135	NR	-0.98 (NR)	MDC (95% CI)=-1.29 (-2.33, -0.25), 0.016
Memantine		Dem	ADAS-Cog 11 (0-70)	IG1	6	25.9 (10.4)	268	NR		24.9 (9.7)	135	NR	-1.08 (NR)	MDC (95% CI)=-0.85 (-2.02, 0.32), 0.156
Memantine	Choi, 2011* ²²³ Fair	Dem	ADAS-Cog 11 (0-70)	IG1	4		84	NR	-0.7 (6.6)		74	NR	-0.04 (7.1)	NR, 0.83
Memantine	- ~	Dem	MMSE (0-30)	IG1	4	16.9 (4.3)	84	NR	-0.3 (2.9)		74	NR	0.1 (2.8)	NR, 0.49
Memantine	Dysken, 2014 ^{*224} Good	Dem	ADAS-Cog 11 (0-70)	IG1	6	19.5 (7.9)	131		1.06∥ (- 0.10, 2.32) [¶]	19.1 (8.1)	128		3.04⊫(1.81, 4.28) [¶]	NR
Memantine	-	Dem	ADAS-Cog 11 (0-70)	IG1	12	19.5 (7.9)	116	NR	3.27 ^í	19.1 (8.1)	106		4.24 [∥] (2.81, 5.70) [¶]	NR
Memantine	-	Dem	ADAS-Cog 11 (0-70)	IG1	18	19.5 (7.9)	84	NR	5.63 ^í	19.1 (8.1)	88		6.04 [∥] (4.25, 7.86) [¶]	NR
Memantine	Dysken, 2014 ^{*224} Good	Dem	ADAS-Cog 11 (0-70)	IG1	24	19.5 (7.9)	76	NR	6.69	19.1 (8.1)	69		6.70 [∥] (4.43, 8.97) [¶]	NR
Memantine		Dem	ADAS-Cog 11 (0-70)	IG1	30	19.5 (7.9)	51		7.61 (5.00, 10.28) [¶]	19.1 (8.1)	48		8.91 [∥] (6.20, 11.62) [¶]	NR
Memantine		Dem	ADAS-Cog 11 (0-70)	IG1	36	19.5 (7.9)	36		8.29 (5.20, 11.45) [¶]	19.1 (8.1)	35		10.76⊫ (7.58, 13.96) [¶]	NR
Memantine		Dem	ADAS-Cog 11 (0-70)	IG1	42	19.5 (7.9)	27	NR	8.21 (5.02, 11.46) [¶]	19.1 (8.1)	25	NR	10.60 (7.30, 13.92) [¶]	NR
Memantine	1	Dem	ADAS-Cog 11 (0-70)	IG1	48	19.5 (7.9)	142	NR	6.38 [∥]	19.1 (8.1)	140	NR	7.78⊫ (0.70) [§]	MDC (95% CI)=-1.39 (-2.85, 0.07), 0.25

Medication Memantine Memantine Memantine		Dem	Instrument (range) [†] MMSE (0-30) MMSE (0-30) MMSE (0-30)	Int arm IG1 IG1	Time, mo. 6	mean (SD) 20.8 (3.8) 20.8	IG n at FU 131	(SD) NR	· · ·	20.8	CG n at FU 128	mean (SD) NR		Between group difference, p-value NR
Memantine Memantine		Dem Dem	MMSE (0-30) MMSE (0-30)	IG1	6	20.8 (3.8)		NR	-0.25 [∥] (-	20.8		(SD) NR		
Memantine		Dem	MMSE (0-30)			(3.8)	131				128	NR	-0 33 (-	NR
	-			IG1	12	, , , , , , , , , , , , , , , , , , ,				(20)				[]
	-			IG1	12	20.8			0.79, 0.31) [¶]	(3.8)			0.90, 0.22) [¶]	
Memantine		Dem	MMSE (0-30)				115	NR		20.8	106	NR	-1.39 (-	NR
Memantine	·	Dem	MMSE (0-30)			(3.8)				(3.8)			2.08, -	
Memantine		Dem	MMSE (0-30)						0.42) [¶]				0.69)¶	
				IG1	18		85	NR			88		(NR
						(3.8)			3.50, - 1.73) [¶]	(3.8)			3.09, - 1.31) [¶]	
Memantine	-	Dem	MMSE (0-30)	IG1	24	20.8	75	NR		20.8	70			NR
	·		(0 00)			(3.8)				(3.8)			3.99, -	
						Ì,			2.38) [¶]	. ,			1.80) [¶]	
Memantine	Ī	Dem	MMSE (0-30)	IG1	30		52	NR			47		- (NR
						(3.8)				(3.8)			4.53, -	
	-	D		101	00	00.0	00		2.56) [¶]	00.0	00		2.00) [¶]	
Memantine		Dem	MMSE (0-30)	IG1	36	20.8 (3.8)	36	NR		20.8 (3.8)	36		-3.88∥ (- 5.42, -	NR
						(3.0)			5.79, - 2.72)¶	(3.0)			3.42, - 2.31) [¶]	
Memantine	-	Dem	MMSE (0-30)	IG1	42	20.8	27	NR		20.8	26		/	NR
			. ,			(3.8)				(3.8)			6.29, -	
	-								3.01) [¶]				3.05) [¶]	
Memantine		Dem	MMSE (0-30)	IG1	48	20.8	140	NR		20.8	137			MDC (95% CI)=0.12
		Dam	SIB (0-133)	IG1	0	(3.8) 82.25	159	NR		(3.8) 81.98	165		(0.33) [§] -1.86	(-0.61, 0.84), 0.84 MDC (95% CI)=-0.48
Memantine Hei	rrmann, 13* ²²⁶	Dem	SIB (0-133)	IGT	6	82.25 (1.16)§	159			(1.00) [§]	100		-1.86 (0.75)§	(-2.30, 1.34), 0.60
Fai	-					(1.10)			(0.70)	(1.00)			(0.70)	(2.00, 1.0+), 0.00
Memantine Org		Dem	ADAS-Cog 11	IG1	3	20.6	147	NR		21.5	141	NR	-0.34 (0.30)	NR
200	02 ²²⁷		(0-70)			(9.55)				(8.71)				
Memantine Fai	ir-Good	Dem	ADAS-Cog 11	IG1	6	20.6	147	NR		21.5	141	NR	1.6 (NR)	MDC (95% CI)=-2.0
Mamantina		Dom	(0-70) MMSE (0-30)	IG1	6	(9.55) NR	105	NR		<u>(8.71)</u> NR	108	NR	0.52 (4.07)	(-3.60, -0.49), 0.0016 NR, 0.0121
Memantine		Dem	IVINISE (0-30)	IGT	0		105	INK	(3.38)	INF	100	INK	0.52 (4.07)	NR, 0.0121
Memantine Pes	skind, 2006 ²²⁸	Dem	ADAS-Cog 11	IG1	3	27.2	177	NR	-1.20	27.3	177	NR	-0.10	NR, <0.05
Fai	ir-Good		(0-70)			(11.01)				(9.74)			(0.48) [§]	
Memantine		Dem	ADAS-Cog 11	IG1	4	27.2	163	NR		27.3	172			NR, <0.05
	-		(0-70)	104		(11.01)	100			(9.74)	100		(0.56)§	
Memantine		Dem	ADAS-Cog 11	IG1	6	27.2	196	NR		27.3	198	NR		LSM Change (95%
			(0-70)			(11.01)			(5.46)	(9.74)				CI)=-1.37 (-2.3, - 0.48), 0.003

	Author, year	Рор	Instrument		Time.	IG BL mean	IG n at	IG FU	IG mean change (SD)	CG BL mean	CG n	CG FU mean	CG mean change (SD) from	Between group
Medication	Quality	cat	(range) [†]	Int arm	mo.	(SD)	FU	(SD)	from BL		at FU			difference, p-value
Memantine	Peters, 2015* ²²⁹ Fair	Dem	ADAS-Cog 11 (0-70)	IG1	4	20.2 (7.0)§	91		-1.12 (0.57)	18.9 (6.6) [§]	93	NR	-0.29 (0.57)	NS
Memantine		Dem	ADAS-Cog 11 (0-70)	IG1	6	20.2 (7.0)§	90		-0.29 (0.72)	18.9 (6.6) [§]	85	NR	0.11 (0.71)	NS
Memantine		Dem	ADAS-Cog 11 (0-70)	IG1	12	20.2 (7.0) [§]	94		2.00 (0.86)	18.9 (6.6) [§]	96	NR	1.74 (0.85)	NR, 0.831
Memantine	Porsteinsson, 2008 ²³⁰	Dem	ADAS-Cog 11 (0-70)	IG1	6	27.9 (10.98)		28.5 (12.83)		26.8 (9.88)		28.0 (11.94)		MDC (95% CI)=-0.7 (-1.8, 0.1), 0.184
Memantine	Good	Dem	MMSE (0-30)	IG1	6	16.7 (3.68)	210	16.5 (5.38)		17.0 (3.63)	198	16.4 (5.08)		MDC (95% CI)=0.5 (- 0.1, 1.1), 0.123
Memantine	Wilcock, 2002 ²³² Fair-Good	Dem	ADAS-Cog 11 (0-70)	IG1	6	NR	266		-0.53 (7.02)	NR	261	NR		MDC (95% CI)=-1.75 (-3.023, -0.49), 0.0005
Memantine	Wilkinson, 2012 ²³³ Fair	Dem	MMSE (0-30)	IG1	12	16.7 (2.4)	103		-0.43 (0.49)§	17.1 (2.4)	114		-	MDC (SE) : 0.24 (0.46), NS

* New study

+ Higher scores indicate better outcomes for all instruments except for ADAS-Cog 11 and ADAS-Cog 13 where lower scores indicate better outcomes

‡ Least squares mean

§ Standard error

I Least squares mean change

¶ 95% confidence interval

Range

** N (%) of participants improving by ≥ 0 points

 \dagger N (%) of participants improving by \geq 4 points

 $\ddagger N (\%)$ of participants improving by ≥ 7 points

Abbreviations: AD = Alzheimer's disease; ADAS-Cog 11 = Alzheimer's Disease Assessment Scale-cognitive subscale; 11-item; ADAS-Cog 13 = Alzheimer's Disease Assessment Scale-cognitive subscale; 13-item; Adj MD = adjusted mean difference; BL = baseline; CG = control group; CI = confidence interval; D = results are dichotomized; Dem = dementia; FU = followup; IG = intervention group; Int arm = intervention arm; LSM = least squares mean; MCI = mild cognitive impairment; MDC = mean difference in change; MDRS = Mattis Dementia Rating Scale; MMSE = Mini-Mental State Examination; mo. = months; PD = proportion difference; Pop cat = population category; NR = not reported; NS = Not statistically significant; SD = standard deviation; VaD = vascular dementia

	Author, year	Рор				Time,	IG n at	lG FU n	CG n at	CG FU n	Between group difference, p-
Medication	Quality	cat	Outcome	Instrument*	Int arm	mo.	FU	(%)	FU	(%)	value
Donepezil	Black, 2003 ¹⁸⁶ Fair-Good	Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG1	6	195	140 (71.8)	194	134 (69.1)	NR
Donepezil		Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG2	6	196	152 (77.6)	194	134 (69.1)	NR
Donepezil	Burns, 1999 ¹⁸⁷ Fair-Good	Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG1	6	273	172 (63.0)	274	134 (48.9)	NR
Donepezil		Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG2	6	211	154 (73.0)	274	134 (48.9)	NR
Donepezil	Feldman, 2001 ¹⁸⁹ Fair-Good	Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG1	6	140	88 (62.8)	146	61 (41.8)	NR, <0.0001
Donepezil	Mohs, 2001 ¹⁹⁴ Fair	Dem	Number (%) of participants without clinically evident functional decline (CDR/ADL/IADL)	CDR/ADL/IADL (0-365)	IG1	12	207	123 (59.4)	208	92 (44.2)	NR
Donepezil	Mori, 2012 ¹⁹⁵ Fair	Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG1	3	28	27 (96.4)	30	15 (50.0)	NR
Donepezil		Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG2	3	31	26 (83.9)	30	15 (50.0)	NR
Donepezil		Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG3	3	32	30 (93.8)	30	15 (50.0)	NR
Donepezil	Rogers, 1996 ¹⁹⁸ Fair-Good	Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG1	3		(89.5)		32 (80.0)	
Donepezil		Dem	Number (%) of participants demonstrating no change or	CIBIC+ (1-7)	IG2	3	40	33 (82.5)	40	32 (80.0)	NR

	Author, year	Рор				Time,			CG n at	CG FU n	Between group difference, p-
Medication	Quality	cat	Outcome	Instrument*	Int arm	n mo.	FU	(%)	FU	(%)	value
			marked improvement (CIBIC+ score ≤4)								
Donepezil		Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG3	3	41	34 (82.9)	40	32 (80.0)	NR
Donepezil	Rogers, 1998 ¹⁹⁷ Fair-Good	Dem	Number (%) of participants demonstrating minimal, moderate, or marked improvement (CIBIC+ score ≤3)	CIBIC+ (1-7)	IG1	3	152	58 (38.2)		27 (18.0)	
Donepezil		Dem	Number (%) of participants demonstrating minimal, moderate, or marked improvement (CIBIC+ score ≤3)	CIBIC+ (1-7)	IG2	3		49 (32.0)		27 (18.0)	
Donepezil	Salloway, 2004 ¹⁹⁹ Fair-Good	MCI	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CGIC-MCI (1-7)	IG1	6	89	75 (84.3)	110	93 (84.5)	NS
Donepezil	Wilkinson, 2003 ²⁰² Fair-Good	Dem	Number (%) of participants demonstrating minimal, moderate, or marked improvement (CIBIC+ score ≤3)	CIBIC+ (1-7)	IG1	6	202	65 (32.2)	188	47 (25.0)	NR, 0.047
Donepezil		Dem	Number (%) of participants demonstrating minimal, moderate, or marked improvement (CIBIC+ score ≤3)	CIBIC+ (1-7)	IG2	6	202	79 (39.1)	188	47 (25.0)	NR, 0.004
Donepezil	Winblad, 2001 ²⁰³ Fair-Good	Dem	Number (%) of participants improved from baseline (GBS)	GBS (0-162)	IG1	3	129	52 (40.3)	129	40 (31.0)	NR
Donepezil		Dem	Number (%) of participants improved from baseline (GBS)	GBS (0-162)	IG1	6	122	47 (38.5)	121	39 (32.2)	NR
Donepezil		Dem	Number (%) of participants improved from baseline (GBS)	GBS (0-162)	IG1	12	93	29 (31.2)	97	21 (21.6)	NR
Donepezil		Dem	Number (%) of participants improved from baseline (GDS)	GDS (1-7)	IG1	3	128	13 (10.2)	130	· · /	NR
Donepezil	Winblad, 2001 ²⁰³ Fair-Good	Dem	Number (%) of participants improved from baseline (GDS)	GDS (1-7)	IG1	6	122	14 (11.5)	121	· · /	NR
Donepezil		Dem	Number (%) of participants improved from baseline (GDS)	GDS (1-7)	IG1	8	105	15 (14.3)		()	NR
Donepezil		Dem	Number (%) of participants improved from baseline (GDS)	GDS (1-7)	IG1	12	93	13 (14.0)	98	5 (5.1)	NR, 0.047

Medication	Author, year Quality	Pop cat	Outcome	Instrument*	Int arm		FU	(%)	FU	CG FU n (%)	value
	Auchus, 2007 ²⁰⁴ Fair	Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG1	6	363	274 (75.5)	371	273 (73.6)	NR
Galantamine	Brodaty, 2005 ²⁰⁵ Fair-Good	Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG1	6	240	191 (79.6)	259	173 (66.8)	NR
Galantamine		Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG2	6	246	180 (73.2)	259	173 (66.8)	NR
	Erkinjuntti, 2002 ²⁰⁶ Fair-Good	Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG1	6	288	213 (74.0)	161	95 (59.0)	PD=0.15, 0.001
	Raskind, 2000 ²⁰⁸ Fair-Good	Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG1	6	186	136 (73.1)	196	111 (56.6)	NR
Galantamine		Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG2	6	171	118 (69.0)	196	111 (56.6)	NR
Galantamine	Rockwood, 2001 ²¹⁰ Fair-Good	Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG1	3	240	194 (80.8)	123	77 (62.6)	NR
Galantamine	Tariot, 2000 ²¹¹ Fair-Good	Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG1	5	253	162 (64.0)	261	128 (49.0)	NR, <0.001
Galantamine	Tariot, 2000 ²¹¹ Fair-Good	Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG2	5	256	169 (66.0)	261	128 (49.0)	NR, <0.001
Galantamine		Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG3	5	128	68 (53.1)	261	128 (49.0)	NR

Medication	Author, year Quality	Pop cat	Outcome	Instrument*	Int arm		FU	(%)	FU	CG FU n (%)	value
	Wilcock, 2000 ²¹² Fair-Good	Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG1	6	206	127 (61.7)	203	101 (49.8)	NR, <0.05
Galantamine		Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG2	6	198	130 (65.7)	203	101 (49.8)	NR, <0.001
	Wilkinson, 2001 ²¹³ Fair-Good	Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤3)	CIBIC+ (1-5)	IG1	3	53	44 (83.0)	83	57 (68.7)	NR
Galantamine		Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤3)	CIBIC+ (1-5)	IG2	3	47	41 (87.2)		57 (68.7)	
Galantamine		Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤3)	CIBIC+ (1-5)	IG3	3	79	67 (84.8)	83	57 (68.7)	NR
	Agid, 1998 ²¹⁴ Fair-Good	Dem	Number (%) of participants demonstrating moderate or marked improvement (CIBIC+ score ≤2)	CIBIC+ (1-7)	IG1	3	103	44 (42.7)	117	35 (29.9)	NR, 0.05
Rivastigmine		Dem	Number (%) of participants demonstrating moderate or marked improvement (CIBIC+ score ≤2)	CIBIC+ (1-7)	IG2	3	111	35 (31.5)	117	35 (29.9)	NS
	Corey-Bloom, 1998 ²¹⁶ Fair-Good	Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG1	6	145	35 (24.1)	192	31 (16.1)	NR
Rivastigmine		Dem	demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG2	6	194	49 (25.3)	192	31 (16.1)	NR
Rivastigmine	Feldman, 2007 ²¹⁷ Fair	Dem	Number (%) of participants demonstrating minimal, moderate, or marked improvement (CIBIC+ score ≤3)	CIBIC+ (1-7)	IG1	3	220	66 (30.0)			NR, 0.001
Rivastigmine		Dem	Number (%) of participants demonstrating minimal, moderate,	CIBIC+ (1-7)	IG1	4	220	67 (30.5)	213	40 (18.8)	NR, 0.001

Medication	Author, year Quality	Pop	Outcome	Instrument*	Int arm		IG n at FU	IG FU n (%)	CG n at FU	CG FU n (%)	Between group difference, p- value
Wedication	Quality	cat	or marked improvement (CIBIC+ score ≤3)	Instrument	int arm	mo.	FU	(%)	FU	(%)	value
Rivastigmine		Dem	Number (%) of participants demonstrating minimal, moderate, or marked improvement (CIBIC+ score ≤3)	CIBIC+ (1-7)	IG1	6	220	67 (30.5)	213	40 (18.8)	NR, <0.05
Rivastigmine		Dem	Number (%) of participants demonstrating minimal, moderate, or marked improvement (CIBIC+ score ≤3)	CIBIC+ (1-7)	IG2	3	215	62 (28.8)	213	34 (16.0)	NR, <0.05
Rivastigmine		Dem	Number (%) of participants demonstrating minimal, moderate, or marked improvement (CIBIC+ score ≤3)	CIBIC+ (1-7)	IG2	4	215	47 (21.9)	213	40 (18.8)	NS
Rivastigmine		Dem	Number (%) of participants demonstrating minimal, moderate, or marked improvement (CIBIC+ score ≤3)	CIBIC+ (1-7)	IG2	6	215	49 (22.8)	213	40 (18.8)	NS
	Rosler, 1999 ²²⁰ Fair-Good	Dem	Number (%) of participants demonstrating minimal, moderate, or marked improvement (CIBIC+ score ≤3)	CIBIC+ (1-7)	IG1	6	193	78 (40.4)	220	44 (20.0)	NR, <0.001
Rivastigmine		Dem	Number (%) of participants demonstrating minimal, moderate, or marked improvement (CIBIC+ score ≤3)	CIBIC+ (1-7)	IG2	6	224	71 (31.7)	220	44 (20.0)	NR, <0.01
	Winblad, 2007 ²²¹ Fair	Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG1	6	253	188 (74.3)	278	169 (60.8)	NR
Rivastigmine		Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG2	6	260	179 (68.8)	278	169 (60.8)	NR
	Winblad, 2007 ²²¹ Fair	Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG3	6	248	182 (73.4)	278	169 (60.8)	NR
	Orgogozo, 2002 ²²⁷ Fair-Good	Dem	Number (%) of participants demonstrating no change or	CGIC (1-7)	IG1	6	93	74 (79.6)	94	66 (70.2)	NR, 0.227

Medication	Author, year Quality	Pop cat	Outcome	Instrument*	Int arm		IG n at FU	IG FU n (%)	CG n at FU	CG FU n (%)	Between group difference, p- value
			marked improvement (CIBIC+ score ≤4)								
Memantine		Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG1	6	147	88 (59.9)	141	74 (52.5)	NR
Memantine	Saxton, 2012 ²³¹ Good	Dem	Number (%) of participants demonstrating no change or marked improvement (CIBIC+ score ≤4)	CIBIC+ (1-7)	IG1	3	133	97 (72.9)	124	78 (62.9)	NR

* Lower scores indicate better outcomes for all instruments

Abbreviations: CDR-SB = Clinical Dementia Rating Scale Sum of Boxes; CG = control group; CGI = Clinical Global Impression scale; CIBIC+ = Clinician's Interview-Based Impression of Change with caregiver's input; Dem = dementia; FU = followup; GBS = Gottfries-Brane-Steen scale; GDS = Global Deterioration Scale; IG = intervention group; Int arm = intervention arm; MCI = mild cognitive impairment; mo. = months; PD = proportion difference; Pop cat = population category; n = number of participants analyzed; NR = not reported

Medication	Author, year Quality	Instrument (range)*	Pop cat	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU	CG FU mean (SD)	CG mean change (SD) from BL	Between group difference, p- value
Donepezil	Black, 2003 ¹⁸⁶	CIBIC+ (1-7)	Dem	IG1	6	NA	195	3.9 (NR)	NR	NA	194	4.0 (NR)	NR	NR
Donepezil	Fair-Good	CIBIC+ (1-7)	Dem	IG2	6	NA	196	3.8 (NR)	NR	NA	194	4.0 (NR)	NR	NR
Donepezil		CDR-SB (0-18)	Dem	IG1	6	6.1 [†] (0.2) [‡]	195	NR	-0.25 [§] (0.11) [‡]	6.1 [†] (0.2) [‡]	194	NR	0.11 [§] (0.12)	NR, <0.05
Donepezil		CDR-SB (0-18)	Dem	IG2	6	6.4 [†] (0.2) [‡]	196	NR	-0.01§ (0.12)‡	6.1 [†] (0.2)	194	NR	0.11 [§] (0.12) [‡]	NS
Donepezil	Burns, 1999 ¹⁸⁷ Fair-Good	CIBIC+ (1-7)	Dem	IG1	3	NA	202	3.90 (0.06)‡	NR	NA	219	4.23 (0.06) [‡]	NR	NR, 0.0001
Donepezil		CIBIC+ (1-7)	Dem	IG1	4	NA	202	4.00 (0.07)‡		NA	219	4.45 (0.07) [‡]	NR	NR, <0.0001
Donepezil		CIBIC+ (1-7)	Dem	IG1	6	NA	273	4.12 (0.07)‡			274	4.51 (0.06) [‡]	NR	NR, 0.0002
Donepezil		CIBIC+ (1-7)	Dem	IG2	3	NA	211	4.02 (0.07)‡				4.23 (0.06)‡	NR	NR, 0.0010
Donepezil		CIBIC+ (1-7)	Dem	IG2	4	NA	211	4.08 (0.06)‡		NA	219	4.45 (0.07)‡	NR	NR, 0.0326
Donepezil		CIBIC+ (1-7)	Dem	IG2	6	NA	271	4.22 (0.08) [‡]	NR	NA	274	4.51 (0.06) [‡]	NR	NR, 0.0072
Donepezil		CDR-SB (0-18)	Dem	IG1	3	NR	202	NR	-0.18 [§] (0.08) [‡]		219	NR	0.15 [§] (0.08) [‡]	NR, 0.0014
Donepezil		CDR-SB (0-18)	Dem	IG1	4	NR	202	NR	-0.17 [§] (0.11) [‡]	NR	219	NR	0.33 [§] (0.11) [‡]	NR, 0.0006
Donepezil		CDR-SB (0-18)	Dem	IG1	6	NR	273	NR	-0.06 [§] (0.10) [‡]	NR	274	NR	0.36 [§] (0.10) [‡]	-0.4, 0.0033
Donepezil		CDR-SB (0-18)	Dem	IG2	3	NR	211	NR	-0.17 [§] (0.08) [‡]	NR	219	NR	0.15 [§] (0.08) [‡]	NR, 0.0021
Donepezil		CDR-SB (0-18)	Dem	IG2	4	NR	211	NR	-0.02 [§] (0.10) [‡]	NR	219	NR	0.32 [§] (0.11) [‡]	NR, 0.0154
Donepezil		CDR-SB (0-18)	Dem	IG2	6	NR	271	NR	0.06 [§] (0.10) [‡]	NR	274	NR	0.36 [§] (0.10) [‡]	0.3, 0.0344
Donepezil	Doody, 2009 ¹⁸⁸ Fair	CIBIC+ (1-7)	MCI	IG1	11	NA	379	3.9 (0.1) [‡]	NR	NA	378	3.9 (0.1) [‡]		NS
Donepezil]	CDR-SB (0-18)	MCI		11	1.5 (0.9)	379	NR				NR	0.1 (0.1)	NS
Donepezil	Feldman, 2001 ¹⁸⁹	CIBIC+ (1-7)	Dem	IG1	3	NA		3.58† (0.08)‡		NA		4.06† (0.08)‡	NR	NR, <0.0001
Donepezil	Fair-Good	CIBIC+ (1-7)	Dem	IG1	4	NA	122	3.72 [†] (0.09) [‡]		NA		4.26 [†] (0.10) [‡]	NR	NR, <0.0001
Donepezil		CIBIC+ (1-7)	Dem	IG1	6	NA	140	4.04 [†] (0.09) [‡]	NR	NA	146	4.57 [†] (0.09) [‡]	NR	MD=-0.54, <0.0001

Medication	Author, year Quality	Instrument (range)*	Pop cat	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU		CG mean change (SD) from BL	Between group difference, p- value
Donepezil	Fair-Good	CGI Item 2 (1-7)	Dem	IG1		4.5 (0.76)		NŘ	0.5)"`	5.05 (0.99)	26	NR	0.02, [`] 0.3) [∥]	MDC (95 CI)%=-1.6 (- 2.2, -0.9), <0.001
Donepezil	Mohs, 2001 ¹⁹⁴ Fair	CDR/ADL/IADL (0-365)	Dem	IG1				357¶ (NR)		NR		208 [¶] (NR)		NR
Donepezil	Mori, 2012 ¹⁹⁵	CIBIC+ (1-7)	Dem	IG1				3.1 (NR)		NA	30	4.3 (NR)	NR	NR
Donepezil	Fair	CIBIC+ (1-7)	Dem	IG2	3			3.0 (NR)		NA		4.3 (NR)	NR	NR
Donepezil		CIBIC+ (1-7)	Dem	IG3	3	NA	32	3.2 (NR)	NR	NA	30	4.3 (NR)	NR	NR
Donepezil	Petersen,	CDR-SB (0-18)	MCI	IG1	12	1.80 (0.8)	NR	NR	0.25 (0.92)	1.87 (0.8)	NR	NR	0.40 (1.28)	NR
Donepezil	2005 ¹⁹⁶	CDR-SB (0-18)	MCI	IG1	18	1.80 (0.8)	NR	NR	0.51 (1.18)	1.87 (0.8)	NR	NR	0.72 (1.55)	NR
Donepezil	Fair	CDR-SB (0-18)	MCI	IG1	24	1.80 (0.8)	NR	NR	0.87 (1.55)	1.87 (0.8)		NR	0.97 (1.76)	
Donepezil		CDR-SB (0-18)	MCI	IG1	30	1.80 (0.8)	NR	NR	1.19 (1.69)	1.87 (0.8)	NR	NR	1.26 (2.15)	NR
Donepezil		CDR-SB (0-18)	MCI	IG1	36	1.80 (0.8)	161	NR	1.60 (2.09)	1.87 (0.8)		NR	1.64 (2.55)	
Donepezil		CDR-SB (0-18)	MCI	IG1	6	1.80 (0.8)		NR	0.05 (0.66)	1.87 (0.8)		NR	0.14 (0.86)	
Donepezil		GDS (1-7)	MCI	IG1		2.66 (0.6)		NR		2.72 (0.6)		NR	0.15 (0.65)	
Donepezil		GDS (1-7)	MCI	IG1		2.66 (0.6)	NR	NR		2.72 (0.6)		NR	0.27 (0.73)	
Donepezil		GDS (1-7)	MCI	IG1		2.66 (0.6)		NR		2.72 (0.6)		NR	0.38 (0.81)	
Donepezil		GDS (1-7)	MCI	IG1		2.66 (0.6)		NR		2.72 (0.6)		NR	0.48 (0.87)	
Donepezil		GDS (1-7)	MCI	IG1		2.66 (0.6)		NR		2.72 (0.6)		NR	0.56 (0.99)	
Donepezil		GDS (1-7)	MCI	IG1		2.66 (0.6)		NR		2.72 (0.6)		NR	0.07 (0.53)	
Donepezil	Rogers, 1996 ¹⁹⁸ Fair-Good	CDR-SB (0-18)	Dem	IG1	3			NR		6.7 (NR)		NR	0.10 (-2.0, 3.0) [#]	
Donepezil		CDR-SB (0-18)	Dem	IG2	3	6.9 (NR)	40	NR	0.23 (-3.0, 6.0) [#]	6.7 (NR)	40	NR	0.10 (-2.0, 3.0) [#]	NS
Donepezil	-	CDR-SB (0-18)	Dem	IG3		~ /	41	NR	5.0)#`	- ()	40	NR	3.0)#	NS
Donepezil	Rogers, 1998 ¹⁹⁷ Fair-Good	CIBIC+ (1-7)	Dem	IG1		NA		Mean (SE): 3.8 (0.08) [‡]		NA	150	Mean (SE): 4.2 (0.07)		MD (95% CI)=-0.4 (- 0.55, -0.13), 0.008
Donepezil	Rogers, 1998 ¹⁹⁷ Fair-Good	CIBIC+ (1-7)	Dem	IG2		NA		(0.08)‡		NA		4.2 (0.07)‡		MD (95% CI)=-0.3 (- 0.50, -0.08), 0.003
Donepezil		CDR-SB (0-18)	Dem	IG1	3	7.18 (0.20)‡	154	NR	-0.31 [§] (0.11) [‡]	6.81 (0.18) [‡]	150	NR	(0.11) [‡]	MDC (95% CI)=NR (- 0.46, 0.12), NS

Medication	Author, year Quality	Instrument (range)*	Pop	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU		IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU	CG FU mean (SD)	CG mean change (SD) from BL	Between group difference, p- value
Donepezil	Quanty	CDR-SB (0-18)	Dem	IG2	3	6.85 (0.18) [‡]	156	NR	-0.10 [§] (0.11) [‡]	\- <u></u>		NR	0.14 [§] (0.11) [‡]	MDC (95% CI)=NR (- 0.25, 0.33),
Donepezil	Wilkinson,	CIBIC+ (1-7)	Dem	IG1	6	NA	202	3.9 (NR)	ND	NA	188	4.1 (NR)	NR	0.32 NR, 0.047
	2003 ²⁰²	CIBIC+ (1-7) CIBIC+ (1-7)	Dem	IG1	6	NA		3.7 (NR)		NA		4.1 (NR) 4.1 (NR)	NR	NR, 0.047 NR, 0.004
Donepezil Donepezil	Fair-Good	CDR-SB (0-18)	Dem	IG2 IG1	6 6	6.1 (0.2) [‡]		NR	-0.21 [§] (0.12) [‡]			4.1 (NR) NR	0.16 [§] (0.13) [‡]	NR, 0.004 NR, 0.03
Donepezil		CDR-SB (0-18)	Dem	IG2	6	6.0 [†] (0.2) [‡]	202	NR	-0.15 [§] (0.12) [‡]	5.6† (0.2)	188	NR	0.16 [§] (0.13) [‡]	NR, 0.07
Donepezil	Winblad, 2001 ²⁰³	GBS (0-162)	Dem	IG1	12	29.51 (17.33)	138	NR	8.05 [§] (1.53) [‡]	29.77 (17.84)	144	NR	11.47 [§] (1.48) [‡]	NR, 0.054
Donepezil	Fair-Good	GBS (0-162)	Dem	IG1	3	29.51 (17.33)		NR	1.56 [§] (1.35)‡	(17.84)	129	NR	2.78 [§] (1.03) [‡]	NS
Donepezil		GBS (0-162)	Dem	IG1	6	29.51 (17.33)	122	NR	1.78 [§] (1.30) [‡]	(17.84)		NR	4.93 [§] (1.38) [‡]	NR, 0.046
Donepezil		GBS (0-162)	Dem	IG1	8	29.51 (17.33)	105		3.87 [§] (1.86) [‡] (2.01, 5.43) [∥]		105	NR	9.14 [§] (1.88) [‡] (7.26, 10.99) [∥]	NR, 0.012
Donepezil		GDS (1-7)	Dem	IG1	12	4.15 (0.83)	136	NR	0.25 [§] (0.07) [‡]	4.16 (0.90)	140	NR	0.44 [§] (0.06) [‡]	NR, 0.014
Donepezil		GDS (1-7)	Dem	IG1	3	4.15 (0.83)	128	NR	-0.33 (NR)	4.16 (0.90)	130	NR	-0.30 (NR)	NR, 0.26
Donepezil		GDS (1-7)	Dem	IG1	6	4.15 (0.83)	122		0.01 [§] (0.07) [‡]	(0.90)		NR	0.17 [§] (0.17) [‡]	NR, 0.004
Donepezil		GDS (1-7)	Dem	IG1	8	4.15 (0.83)	105	NR	0.09 [§] (0.07) [‡]	4.16 (0.90)	105	NR	0.37 [§] (0.08) [‡]	NR, 0.011
		CIBIC+ (1-7)	Dem	IG1	6	NA		5.3 (NR)		NA		5.1 (NR)	NR	NR
Galantamine		CIBIC+ (1-7)	Dem	IG2	6	NA		5.3 (NR)		NA		5.1 (NR)	NR	NR
Galantamine		CIBIC+ (1-7)	Dem	IG1	6	NA		5.3 (NR)		NA		5.1 (NR)	NR	NR
Galantamine	2000 ²⁰⁸ Fair-Good	CIBIC+ (1-7)	Dem	IG2	6	NA		5.3 (NR)		NA		5.1 (NR)	NR	NR
Galantamine	Rockwood, 2001 ²⁰⁸ Fair-Good	CIBIC+ (1-7)	Dem	IG1	3	NA	240	5.3 (NR)	NR	NA	259	5.1 (NR)	NR	NR
Galantamine	Rockwood, 2006 ²⁰⁹ Fair	CIBIC+ (1-7)	Dem	IG1	4	NA	61	5.3 (NR)	NR	NA	259	5.1 (NR)	NR	0.03

Medication	Author, year Quality	Instrument (range)*	Pop cat	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU		IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU		CG mean change (SD) from BL	Between group difference, p- value
Galantamine	Wilcock, 2000 ²¹²		Dem	IG1	6	NA	206	5.3 (NR)	NR	NA	259		NR	NR, <0.05
Galantamine	Fair-Good	CIBIC+ (1-7)	Dem	IG2	6	NA	198	5.3 (NR)	NR	NA	259	5.1 (NR)	NR	NR, <0.001
	Ballard, 2008 ²¹⁵ Fair	CIBIC+ (1-7)	Dem	IG1	6	NA	329	4.0 (1.31)	NR	NA	320	4.1 (1.27)	NR	MD=0.1, NS
Rivastigmine		GDS (1-7)	Dem	IG1	6	4.0 (0.8)	365	ŇR	-0.1 (0.85)	4.0 (0.8)	345	NR	0.0 (0.69)	MDC=0.1, NS
U	Corey-Bloom, 1998 ²¹⁶ Fair-Good	GDS (1-7)	Dem	IG1	6	4.0 (NR)	231	NR	-0.13 (-0.22, -0.04) ^{II}	3.9 (NR)	234		-0.32 (- 0.41, - 0.23) [∥]	MDC (95% CI): 0.19 (0.06, 0.32), <0.030
Rivastigmine		GDS (1-7)	Dem	IG2	6	4.0 (NR)	233	NR	-0.16 (-0.25, -0.07) [∥]	3.9 (NR)	234		-0.32 (- 0.41, - 0.23) ^{II}	NR
Rivastigmine	Feldman, 2007 ²¹⁷	CIBIC+ (1-7)	Dem	IG1	6	NA	222	3.9 (1.3)	NR	NR	216	4.5 (1.3)	NR	Cohen's d=0.46, NR
Rivastigmine	Fair	CIBIC+ (1-7)	Dem	IG2	6	NA	222	4.1 (1.3)	NR	NR	216	4.5 (1.3)	NR	Cohen's d=0.31,
Rivastigmine		GDS (1-7)	Dem	IG1	6	4.1 (0.9)	227	NR	0.0 (0.7)	4.1 (0.9)	222	NR	-0.3 (0.7)	NR
Rivastigmine		GDS (1-7)	Dem	IG2		4.0 (0.9)	227	NR	-0.2 (0.7)	4.1 (0.9)	222	NR	-0.3 (0.7)	NR
Rivastigmine	Mok, 2007 ²¹⁹ Fair	CDR-SB (0-18)	Dem	IG1	6	8.7 (5.1)	20	9.4 (5.5)	NR	9.1 (4.6)	19	9.5 (5.4)	NR	NR, 0.787
Rivastigmine	Rosler, 1999 ²²⁰ Fair-Good	CIBIC+ (1-7)	Dem	IG1	3	NA	191	3.88 (NR)	NR	NA	226	3.96 (NR)	NR	NR, <0.05
Rivastigmine		CIBIC+ (1-7)	Dem	IG1	4	NA	179	3.85 (NR)	NR	NA	218	4.09 (NR)	NR	NR, <0.05
Rivastigmine		CIBIC+ (1-7)	Dem	IG1	6	NA	193	3.88 (NR)	NR	NA	220	4.32 (NR)	NR	NR, <0.001
Rivastigmine		CIBIC+ (1-7)	Dem	IG2	6	NA	224	4.17 (NR)	NR	NA	220	4.32 (NR)	NR	NR, >0.05
Rivastigmine	Rosler, 1999 ²²⁰ Fair-Good	GDS (1-7)	Dem	IG1	6	NR	198	NR	-0.03 (-0.13, 0.13) [∥]	NR	223		-0.24 (- 0.31, - 0.09) ^{II}	NR, <0.05
Rivastigmine		GDS (1-7)	Dem	IG2	6	NR	225	NR	-0.20 (-0.31, -0.09) [∥]	NR	223		-0.24 (- 0.31, - 0.09) [∥]	NR
Rivastigmine	Winblad,	CIBIC+ (1-7)	Dem	IG1		NA		3.9 (1.3)		NA			NR	NR, 0.009
Rivastigmine	2007 ²²¹	CIBIC+ (1-7)	Dem	IG2	6	NA		4.0 (1.3)		NA		4.2 (1.3)	NR	NR, 0.054
Rivastigmine	Fair	CIBIC+ (1-7)	Dem	IG3		NA		3.9 (1.2)		NA		4.2 (1.3)	NR	NR, 0.01
Memantine		CIBIC+ (1-7)	Dem	IG1	3	NA	267	5.3 (NR)	NR	NA	259	5.1 (NR)	NR	MD (95% CI)=-0.21 (-

Medication	Author, year Quality	Instrument (range)*	Pop cat	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL		CG n at FU		BL	Between group difference, p- value
	Bakchine, 2008 ²²²													0.40, -0.02), 0.033
Memantine	Good	CIBIC+ (1-7)	Dem	IG1	4	NA	268	5.3 (NR)	NR	NA	259	5.1 (NR)		MD (95% Cl)=-0.28 (- 0.49, -0.06), 0.012
Memantine		CIBIC+ (1-7)	Dem	IG1	6	NA	268	5.3 (NR)	NR	NA	259	5.1 (NR)		MD (95% CI)=-0.07 (- 0.30, 0.15), 0.523
Memantine	Choi, 2011 ^{**223} Fair	CDR-SB (0-18)	Dem	IG1	4	5.92 (3.08)	84	NR	()	5.84 (3.51)	74	NR	0.34 (1.55)	NR, 0.71
Memantine	Orgogozo, 2002 ²²⁷	CGIC (1-7)	Dem	IG1	6	NA	116	3.58 (1.09)	NR	NA	117	3.85 (1.19)	NR	NR, 0.0938
Memantine	Fair-Good	CIBIC+ (1-7)	Dem	IG1	6	NA	114	3.82 (1.39)	NR	NA	114	4.11 (1.48)	NR	NR, 0.284
Memantine		GBS (0-162)	Dem	IG1	6	NR	114	ŇR	-0.36 (15.38)	NA	118	NR	3.38 (16.34)	NR, 0.1194
Memantine	Peskind, 2006 ²²⁸	CIBIC+ (1-7)	Dem	IG1	3	NA	178	3.99 (0.80)	NR	NA	179	4.18 (0.85)	NR	NR, 0.02
Memantine	Fair-Good	CIBIC+ (1-7)	Dem	IG1	4	NA	167	4.17 (0.88)	NR	NA	172	4.43 (0.90)	NR	NR, 0.03
Memantine		CIBIC+ (1-7)	Dem	IG1	6	NA	195	4.20 (0.96)	NR	NA	198	4.52 (1.06)	NR	NR, 0.004
Memantine	Peters, 2015**229	CDR-SB (0-18)	Dem	IG1	12	5.0 (1.5)‡	94	NR	1.14 (0.25)	4.8 (1.4) [‡]	96	ŇR	1.17 (0.25)	NR, 0.921
Memantine	Fair	CDR-SB (0-18)	Dem	IG1		5.0 (1.5)‡		NR		4.8 (1.4)‡		NR	0.44 (0.26)	NS
Memantine		CDR-SB (0-18)	Dem	IG1	6	5.0 (1.5) [‡]	87	NR	0.32 (0.15)	4.8 (1.4)‡	90	NR	0.22 (0.14)	NS
Memantine	Peters, 2015 ^{**229} Fair		Dem	IG1	9	5.0 (1.5) [‡]	86	NR		4.8 (1.4)‡	91	NR	0.51 (0.19)	NS
Memantine	Porsteinsson, 2008 ²³⁰ Good	CIBIC+ (1-7)	Dem	IG1	6	NA	214	4.38 (1.00)	NR	NA	213	4.42 (0.96)		MD (95% CI)=0.0 (-0.2, 0.2), 0.843

* Lower scores indicate better outcomes for all instruments

† Least squares mean ‡ Standard error

§ Least squares mean change

95% confidence interval

¶ Median

Range

** New study

Abbreviations: BL = baseline; CDR-SB = Clinical Dementia Rating Scale Sum of Boxes; CG = control group; CGI = Clinical Global Impression scale; CI = confidence interval; CIBIC+ = Clinician's Interview-Based Impression of Change with caregiver's input; Dem = dementia; FU = followup; GBS = Gottfries-Brane-Steen scale; GDS = Global Deterioration Scale; IG = intervention group; Int arm = intervention arm; MCI = mild cognitive impairment; MDC = mean difference in change; mo. = months; Pop cat = population category; NR = not reported; NS = not statistically significant; SD = standard deviation

									IG mean				CG mean	
		-	ADL or ADL,			IG BL		IG FU	change (SE or			CG FU	change (SE	
Medication	Author, year Quality	Pop	-	Int arm	Time	mean (SE)	IG n at FU	mean (SE)	95% CI) from BL	mean (SE)	at FU	mean (SE)	or 95% CI) from BL	Between group difference, p-value
Donepezil	Black, 2003 ¹⁸⁶				, mo . 6	(3E) 15.3*		(3⊑) NR	0.53 [†] (0.38)	(3⊏) 15.9*		(SE) NR		NR
Donepezii	Fair-Good	Dem	(ADFACS, 0-54, ↓)		0	(0.7)	100		0.00* (0.00)	(0.7)	103		1.44* (0.42)	
Donepezil		Dem		IG2	6	17.3*	181	NR	0.64† (0.36)	15.9*	180	NR	1.44† (0.42)	NR
			(ADFACS, 0-54, ↓)			(0.8)			(0.00)	(0.7)			(•••=)	
Donepezil		Dem		IG1	6	NR	189	NR	0.13 [†] (0.27)	NR	180	NR	0.87† (0.32)	NR
•			IADL, 0-30, ↓)										. ,	
Donepezil				IG2	6	NR	181	NR	-0.02† (0.25)	NR	180	NR	0.87† (0.87)	NR, <0.05
			IADL, 0-30, ↓)											
Donepezil	Burns, 1999 ¹⁸⁷			IG1					NR			69.75	NR	NR, 0.0085
	Fair-Good		performance scale,			(1.71)		(0.40)		(1.68)		(0.74)		
Demonstra	_		33-231, ↓)	04	4	00.05	000	00.00		00.04	040	70.00		
Donepezil			ADL/IADL (IDDD - performance scale,	IG1		69.85 (1.71)		68.66 (0.40)	NR	69.84 (1.68)		70.93 (0.48)	NR	NR, 0.0033
			33-231, ↓)			(1.71)		(0.40)		(1.00)		(0.40)		
Donepezil	_			IG1	6	69.85	273	69.30	NR	69.84	274	71.45	NR	NR, 0.0072
Donopozii			performance scale,			(1.71)		(0.46)		(1.68)		(1.94)		
			33-231, ↓)			()		()		((
Donepezil		Dem	ADL/IADL (IDDD -	IG2	3	67.78	211	68.94	NR	69.84	219	69.75	NR	NR
			performance scale,			(1.61)		(0.36)		(1.68)		(0.74)		
			33-231,											
Donepezil			``	IG2				69.46	NR			70.93	NR	NR
			performance scale,			(1.61)		(0.40)		(1.68)		(0.48)		
			33-231, ↓)		0	07 70	074	70.00		00.04	074	74.45		
Donepezil				IG2		67.78 (1.61)		70.36 (0.45)	NR	69.84 (1.68)		71.45 (1.94)	NR	NR, 0.0072
			performance scale, 33-231, ↓)			(1.01)		(0.45)		(1.00)		(1.94)		
Donepezil	Feldman,		ADL/IADL (DAD, 0-	IG1	3	52.11	127	NR	1.51 [†] (1.28)	54.07	132	NR	-3.16† (1.22)	NR, 0.0037
Donopozii	2001 ¹⁸⁹	Dom	100, ↑)		Ŭ	(2.07)	121		1.01 (1.20)	(2.00)	102		0.10 (1.22)	1111, 0.0007
Donepezil	Fair-Good	Dem	ADL/IADL (DAD, 0-	IG1	6	52.11	134	NR	-0.74† (1.31)	54.07	140	NR	-8.98† (1.40)	MDC=8.23,
			100, ↑)	-	_	(2.07)			- (-)	(2.00)	_			<0.0001
Donepezil		Dem	IADL (Lawton and	IG1	6	64.34	144	NR	NR	63.88	146	NR	NR	MDC=6.83,
_			Brody IADL, NR, ↑)			(2.06)				(1.97)				<0.0001
Donepezil		Dem	ADL (PSMS, NR,	IG1	6	7.90	144	NR	NR	7.63	146	NR	NR	MDC=1.32, 0.0015
	-		↑)			(0.43)				(0.41)				
Donepezil	Petersen,			IG1	12	46.49	NR	NR	-1.41 (4.48)‡		NR	NR	-1.44 (5.00)‡	NR
Damas II	2005 ¹⁹⁶		ADL, 0-53, ↑)	0.4	4.0	(4.3) [‡]			4 70 (5 00)+	(5.2) [‡]			0.04 (0.00)+	
Donepezil	Fair		IADL (ADCS-MCI-	IG1	18	46.49	NR	NR	1.78 (5.02) [‡]		NR	NR	-2.34 (6.02)‡	NR
Dononozil	4		ADL, 0-53, ↑) IADL (ADCS-MCI-	IG1	24	(4.3) [‡] 46.49	NR	NR	-3.09 (6.24)‡	(5.2) [‡] 45.87	NR	NR	-3.43 (6.73) [‡]	NR
Donepezil			ADL (ADCS-MCI- ADL, 0-53, ↑)	IG1		46.49 (4.3) [‡]	INK		-3.09 (0.24)+	45.87 (5.2)‡	INK	NR .	-3.43 (0.73)+	
		1	ADL, 0-55, $ $)			(4 .3)⁺		I		<u>(</u> 3.∠)⁺				

									IG mean				CG mean	
	A	D	ADL or ADL,	11	T :	IG BL	10.1	IG FU	change (SE or				change (SE	Defense and
Medication	Author, year Quality	Pop cat	(Instrument, range, direction)	arm	Time		IG n at FU		95% CI) from BL	mean (SE)	at FU	mean (SE)	or 95% CI) from BL	Between group difference, p-value
Donepezil	Quality				, -	46.49			NR	45.87		-5.00	NR	NR
Donepezii			ADL, 0-53, ↑)	101		(4.3) [‡]		(7.39) [‡]		(5.2) [‡]		-3.00 (8.05) [‡]		
Donepezil			IADL (ADCS-MCI-	IG1		46.49	161	NR	-6.26 (8.67) [‡]	45.87			-6.39 (8.99)‡	NR
			ADL, 0-53, ↑)			(4.3) [‡]	-		()	(5.2)‡			(/	
Donepezil				IG1		46.49	NR	NR	-0.21 (3.43)‡	45.87	NR	NR	-1.06 (4.54)‡	NR
			ADL, 0-53, ↑)			(4.3) [‡]				(5.2) [‡]				
			ADL/IADL (Unified	IG1	3	105.5	38	NR	-3.1 (-36, 15)§	92.4	40	NR	1.5 (-38, 57) [§]	NR, NS
	Fair-Good		ADL, NR, ↓)	100	-	(NR)	10			(NR)	10			
Donepezil			ADL/IADL (Unified ADL, NR, ↓)	IG2	3	98.8 (NR)	40	NR	0.6 (-21, 30)§	92.4 (NR)	40	NR	1.5 (-38, 57) [§]	NR, NS
Donepezil			ADL/IADL (Unified	IG3	3		41	NR	4.0 (-25, 97) [§]	92.4	40	NR	1.5 (-38, 57)§	NR, NS
			ADL, NR, ↓)			(NR)				(NR)				
	Wilkinson,		ADL/IADL	IG1		16.1*	203	NR	-0.23† (0.40)	15.1*	188	NR	0.76† (0.39)	NS
	2003 ²⁰²		(ADFACS, 0-54, ↓)			(0.7)				(0.7)				
Donepezil	Fair-Good			IG2		15.7*	202	NR	0.11† (0.45)	15.1*	188	NR	0.76† (0.39)	NS
Donepezil	Winblad,		(ADFACS, 0-54, ↓) ADL/IADL	IG1		(0.7) 52.77	93	NR	-11.19 [†] (NR)	(0.7) 52.93	97	NR	-15.25 [†] (NR)	NR, <0.05
	2001 ²⁰³		(ADFACS, 0-54, ↓)	IG I		(20.58) [‡]	93			(20.45) [‡]			-15.25 [°] (INK)	NR, <0.05
	Fair-Good		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			(20.00)				(20.10)				
Galantamine	Auchus,	Dem	ADL/IADL (ADCS-	IG1	6	48.3	388	NR	0.8 (9.78)		379	NR	0.2 (9.12)	NR, 0.789
	2007 ²⁰⁴		ADL, 0-78, ↑)			(17.2) [‡]				(16.8) [‡]				
	Fair	_			_				(
Galantamine	Brodaty, 2005 ²⁰⁵		ADL/IADL (ADCS-	IG1			279	NR	1.1 (0.47)	54.5	281	NR	-0.3 (0.46)	NR
Galantamine			ADL, 0-78, ↑) ADL/IADL(ADCS-	101		(0.90) 52.0	242	NR	-1.0 (0.05)	(0.87) 54.5	258	NR	-2.7 (0.56)	NR (95% CI)=(0.22,
Galantamine	Fail-Good		ADL, 0-78, ↑)	IGT		52.0 (0.90)	242	INK	-1.0 (0.05)	54.5 (0.87)	200	INK		3.04), 0.018
Galantamine			ADL/IADL (ADCS-	IG2			276	NR	0.4 (0.48)	(0.07) 54.5	281	NR	-0.3 (0.46)	NR
			ADL, 0-78, ↑)			(0.88)				(0.87)				
Galantamine	Brodaty,		ADL/IADL (ADCS-	IG2	6	53.5 [´]	245	NR	0.0 (0.48)	54.5 [´]	258	NR	-2.7 (0.56)	NR (95% CI)=(1.09,
	2005 ²⁰⁵		ADL, 0-78, ↑)			(0.88)				(0.87)				3.91), <0.001
	Fair-Good													
Galantamine	Erkinjuntti, 2002 ²⁰⁶		ADL/IADL (DAD, 0-	IG1	6	NR	288	NR	0.2 (0.9)	NR	161	NR	-4.4 (1.3)	MDC=4.6, 0.0017
	2002 ²⁰⁰ Fair-Good		100, ↑)											
		Dem	ADL/IADL (DAD, 0-	IG1	12	61.8	811	NR	-4.55 (14.68)‡	60.9	822	NR	-6.50 (16.17)‡	NR 0.009
	Fair	Deni	100, ↑)			(21.61) [‡]			7.00 (14.00)	(21.09) [‡]			0.00 (10.17)	NIX, 0.003
Galantamine		Dem	ADL/IADL (DAD, 0-	IG1		61.8	810	NR	-8.16 (17.25)‡	60.9		NR	-10.81	NR, 0.002
			100, ↑)			(21.61) [‡]			((21.09)‡			(18.27) [‡]	,

									IG mean				CG mean	
	Author, year	Рор	ADL or ADL, (Instrument,	Int	Time	IG BL mean	lG n	IG FU mean	change (SE or 95% CI) from	CG BL mean	CG n at	CG FU mean	change (SE or 95% CI)	Between group
Medication	Quality	cat	range, direction)	arm	, mo.	(SE)	at FU		BĹ	(SE)	FU	(SE)	from BL	difference, p-value
Galantamine		Dem	ADL/IADL (DAD, 0-	IG1		73.0	241	NR	-0.4 (0.76)	69.1	123	NR	-5.2 (1.18)	NR, <0.001
	2001 ²¹⁰		100, ↑)			(1.91)				(1.42)				
	Fair-Good					70.4				70.0				
Galantamine	Rockwood, 2006 ²⁰⁹	Dem	ADL/IADL (DAD, 0- 100, ↑)	IG1		76.4 (19.7) [‡]	NR	NR	NR	70.6 (21.4) [‡]	NR	NR	NR	ES=0.28, 0.13
	Fair		100,)			(19.7)*				(21.4)*				
	Tariot, 2000 ²¹¹	Dem	ADL/IADL (ADCS-	IG1	5	51.9	253	NR	-1.5 (0.6)	52.3	262	NR	-3.8 (0.6)	NR, <0.01
	Fair-Good		ADL, 0-78, ↑)			(1.0)	_00		110 (010)	(0.9)	-0-		0.0 (0.0)	
Galantamine			ADL/IADL (ADCS-	IG2	5	51.6	255	NR	-0.7 (0.5)		262	NR	-3.8 (0.6)	NR, <0.001
			ADL, 0-78, ↑)			(0.9)				(0.9)				
Galantamine			ADL/IADL (ADCS-	IG3		54.2	129	NR	-3.2 (0.8)		262	NR	-3.8 (0.6)	NR
			ADL, 0-78, ↑)			(1.2)				(0.9)				
Galantamine	Wilcock, 2000 ²¹²	Dem	ADL/IADL (DAD, 0-	IG1		69.9	212	NR	-3.2 (1.02)		210	NR	-6.0 (1.08)	MDC (95% CI)=2.8
Galantamine		Dom	100,	100		(21.4) [‡] 69.6	214	NR	-2.5 (1.07)	(22.5) [‡] 66.6	210	NR	-6.0 (1.08)	(-0.6, 6.1), 0.1 MDC (95% CI)=3.4
Galantamine	Fail-Good		ADL/IADL (DAD, 0- 100, ↑)	IG2		09.0 (20.6) [‡]	214	INK	-2.5 (1.07)	(22.5) [‡]	210	INIT	-0.0 (1.06)	(0.1, 6.7), <0.05
Galantamine	Wilkinson.	Dem		IG1		(20.0) NA	56	50	NR		87	65	NR	NR
	2001 ²¹³		D)		-			(89.3) [¶]				(74.7) [¶]		
Galantamine	Fair-Good	Dem	ADL/IADL (PDS,	IG2	3	NA				NA		65	NR	NR
			D)					(77.8) [¶]				(74.7) [¶]		
Galantamine		Dem	ADL/IADL (PDS,	IG3	3	NA			NR	NA		65	NR	NR
Diversion	A mint 4000214	D	D) ADL (NOSGER	04	_	NR		(81.8) [¶]	$0.1(0.1)^{\dagger}$	NR		(74.7) [¶] NR	$0.1(0.7)^{+}$	NR
Ų	Agid, 1998 ²¹⁴ Fair-Good		ADL (NOSGER ADL subscale, 1-5,	IG1	3	NR	103	NR	-0.1 (2.1) [‡]	NR	117	NR	0.1 (2.7) [‡]	NR
	Fail-Good													
Rivastigmine		Dem	ADL (NOSGER	IG2	3	NR	111	NR	0.2 (2.8) [‡]	NR	117	NR	0.1 (2.7) [‡]	NR
5			ADL subscale, 1-5,	-	_				- (-)				- ()	
			↓)											
Rivastigmine			(IG1	3	NR	103	NR	-0.7 (3.5) [‡]	NR	117	NR	-0.2 (3.3)‡	NR
			ADL subscale, 1-5,											
Diventionaire	A mid 1000 ²¹⁴	Dama	↓) ADL (NOSGER	IG2	2	NR	111	NR	0.0.(2.2)†	NR	447	NR	$(2, 2)^{+}$	NR
	Agid, 1998 ²¹⁴ Fair-Good		ADL (NOSGER ADL subscale, 1-5,	IG2	3	NR	111	INR	0.0 (3.3) [‡]	INR	117	NK	-0.2 (3.3)‡	INR
Rivastigmine	Ballard, 2008 ²¹⁵	Dem	↓) ADL/IADL (ADCS-	IG1	6	46.7	365	NR	-0.1 (0.59)	46.4	345	NR	-0.7 (0.60)	MDC (95% CI)=0.6,
0	Fair		ADL, 0-78, ∱)			(17.7) [‡]			()	(17.2) [‡]	_		(/	NS
Rivastigmine	Corey-Bloom,	Dem	ADL/IADL (PDS, 0-	IG1	3	NR	169	NR	-0.7 (NR)	NR	216	NR	-1.9 (NR)	NR
	1998 ²¹⁶		100, ↑)											
Rivastigmine	Fair-Good		ADL/IADL (PDS, 0-	IG1	4	NR	157	NR	-0.6 (NR)	NR	201	NR	-4.0 (NR)	NR, <0.05
			100, ↑)											

Author, year Pop (instrument, int) IT Time mean 95% (2) BL (SE) at mean of 35% (2) Between group Rivastigmine Dem ADU/ADL (PDS, 0- IG1 6 NR 231 NR 1.52 (-2.85, - 0.19) NR 234 NR 4.90 (-6.22, - 0.19) MDC (95%, - 0.19, -3.38 (1.51, 5.25), - -0.01 Rivastigmine Dem /ADL/IADL (PDS, 0-IG2 3 NR 223 NR 3.6 (NR) NR 216 NR 1.9 (NR) NR Rivastigmine Dem /ADL/IADL (PDS, 0-IG2 6 NR 208 NR 3.4 (NR) NR 210 NR 4.90 (-6.22, - 9.0 (7.1) NR 4.90 (-6.22, - 9.0 (7.1) NR 4.90 (-6.22, - 9.0 (7.1) NR 1.9 (NR) NR 234 NR 4.90 (-6.22, - 9.0 (7.1) NR 1.9 (NR) NR 234 NR 4.90 (-6.22, - 9.0 (7.1) NR 1.9 (7.1) NR 4.90 (-6.22, - 9.0 (7.1) NR 1.90, (7.1) 100, (7.1) 100, (7.1) 100, (7.1) 100, (7.1) 10				ADL or ADL,			IG BL		IG FU	IG mean change (SE or	CG BL	CG n	CG FU	CG mean change (SE	
Rivastigmine Dem ADL/ADL (PDS, 0-]G1 6 NR 231 NR 1.52 (-2.85, - 0.19) NR 234 NR 4.90 (-6.22, - 3.58) MDC (95% (15.1, 5.25), <0.001		Author, year	Рор		Int	Time		IG n							Between group
Image: Rivastigmine Image: Rivastigmine <thimage: rivastigmine<="" th=""> Image: Rivastigmine</thimage:>	Medication	Quality	cat	range, direction)	arm	, mo.	(SE)	at FU	(SE)	BĹ	(SE)	FU	(SE)	from BL	difference, p-value
Rivastigmine Dem ADL/IADL (PDS, 0-IG2 3 NR 223 NR 3.6 (NR) NR 216 NR 1.9 (NR) NR Rivastigmine Dem ADL/IADL (PDS, 0-IG2 4 NR 208 NR 3.4 (NR) NR 216 NR 4.0 (NR) NR Rivastigmine Dem ADL/IADL (PDS, 0-IG2 4 NR 208 NR 3.4 (NR) NR 234 NR 4.0 (NR) NR Rivastigmine Dem ADL/IADL (PDS, 0-IG2 6 NR 233 NR 5.19 (-6.52, - NR 4.90 (-6.22, - NR 100, 1) Rivastigmine Dem ADL/IADL (PDS, IG1 6 NA 145 36 NR NA 192 29 NR NR 0.006 100, 1) NR 207717 NR 4.9 (11.2)* NR 100, 1) NR 2.4 (11.1)* 49.0 221 NR 4.9 (11.2)* NR 100, 1) 100, 1) 100, 1) 100, 1) 100, 1) 100, 1) 100, 1) 100, 1)	Rivastigmine		Dem	ADL/IADL (PDS, 0-	IG1	6	NR	231	NR	-1.52 (-2.85, -	NR	234	NR	-4.90 (-6.22, -	MDC (95%
Rivastigmine Dem ADL/IADL (PDS, 0-IG2 3 NR 223 NR 3.6 (NR) NR 216 NR -1.9 (NR) NR Rivastigmine Dem ADL/IADL (PDS, 0-IG2 4 NR 208 NR 3.4 (NR) NR 216 NR 4.0 (NR) NR Rivastigmine Dem ADL/IADL (PDS, 0-IG2 6 NR 233 NR 5.19 (-6.52, - NR 4.0 (NR) NR 4.90 (-6.22, - NR Rivastigmine Dem ADL/IADL (PDS, IG1 6 NA 145 36 NR NR 1.5 (11.3) ¹ 49.0 221 NR NR 0.006 Rivastigmine Dem ADL/IADL (PDS, IG1 6 49.2 225 NR 1.5 (11.3) ¹ 49.0 221 NR 4.9 (11.2) ¹ NR Rivastigmine Pain/L/ADL (PDS, 0-IG1 6 2.3 (0.7) ¹ 20 2.3 NR 2.3 19 2.2 NR 4.9 (11.2) ¹ NR Rivastigmine Dem ADL/IADL (PDS, 0-IG1 6 2.3 (0.7) ¹ 20	_			100, ↑)						0.19)				3.58)	CI)=3.38 (1.51,
International Rivastigmine International Rivastigmine <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.25), <0.001</td></th<>															5.25), <0.001
Rivastigmine Dem ADL/ADL (PDS, 0-IG2 4 NR 208 NR 3.4 (NR) NR 201 NR 4.0 (NR) NR Rivastigmine Dem ADL/ADL (PDS, 0-IG2 6 NR 233 NR 5.19 (-6.52, - 3.58) NR 24 NR 4.90 (-6.22, - 3.58) NR Rivastigmine Dem ADL/ADL (PDS, IG1 6 NA 145 36 NR NA 192 29 NR NR, 0.006 Rivastigmine Dem ADL/ADL (PDS, IG1 6 NA 145 36 NR NA 192 29 NR NR, 0.006 Rivastigmine Dem ADL/ADL (PDS, 0-IG1 49.2 225 NR 1.5 (11.3) [±] 49.0 221 NR 4.9 (11.2) [±] NR Rivastigmine Dem ADL/ADL (PDS, 0-IG1 49.2 227 NR 2.6 (11.1) [±] 49.0 221 NR 4.9 (11.2) [±] NR Rivastigmine Dem ADL/ADL (PDS, 0-IG1 3 NR 19 NR 0.8 (NR) NR 221	Rivastigmine				IG2	3	NR	223	NR	-3.6 (NR)	NR	216	NR	-1.9 (NR)	NR
Image: Construction of the image: Constrent of the image: Construction of the image: Construction of the i	Rivastigmine				IG2	4	NR	208	NR	-3.4 (NR)	NR	201	NR	-4.0 (NR)	NR
Image: Rivastigmine Image: response of the system of the sys				· · ·											
Image: Rivastigmine Image: response of the system of the sys	Rivastigmine		Dem	ADL/IADL (PDS, 0-	IG2	6	NR	233	NR	-5.19 (-6.52, -	NR	234	NR	-4.90 (-6.22, -	NR
D D (24.8)* (15.1)* Rivastigmine Dem ADL/IADL (PDS, 0 IG1 6 NA 194 NR* NR NA 192 29 NR NS Rivastigmine Dem ADL/IADL (PDS, 0-IG1 6 49.2 225 NR -1.5 (11.3)* 49.0 221 NR -4.9 (11.2)* NR Rivastigmine Dem ADL/IADL (PDS, 0-IG2 6 48.7 227 NR -2.6 (11.1)* 49.0 221 NR -4.9 (11.2)* NR Rivastigmine Dem ADL/IADL (PDS, 0-IG2 6 48.7 227 NR 2.6 (11.1)* 49.0 221 NR -4.9 (11.2)* NR Rivastigmine Dem ADL/IADL (PDS, 0-IG1 3 NR 191 NR 0.48 (NR) NR 226 NR 0.12 (NR) NS Rivastigmine Dem ADL/IADL (PDS, 0-IG1 4 NR 179 NR 0.48 (NR) NR 218 NR -0.99 (NR) NS Rivastigmine Dem ADL/IADL (PD	0													3.58)	
Rivastigmine Dem ADL/IADL (PDS, D, D) G1 6 NA 194 NR [#] NR NA 192 29 NR NS Rivastigmine Dem ADL/IADL (PDS, 0- IG1 6 49.2 225 NR -1.5 (11.3) [±] 49.0 (19.6) [±] -4.9 (11.2) [±] NR -4.9 (11.2) [±] NR Rivastigmine Fair Dem ADL/IADL (PDS, 0- IG2 6 48.7 227 NR -2.6 (11.1) [±] 49.0 221 NR -4.9 (11.2) [±] NR Rivastigmine Fair Dem ADL/IADL (PDS, 0- IG1 48.7 227 NR 2.6 (11.1) [±] 49.0 221 NR -4.9 (11.2) [±] NR Rivastigmine Fair Dem ADL/IADL (PDS, 0- IG1 2.3 NR 2.3 19 2.2 NR -0.99 (NR) NS Rivastigmine Fair-Good IO0, 1 Dem ADL/IADL (PDS, 0- IG1 NR 198 NR 0.5 (-1.32, 2.52) NR 218 NR -2.23 (-4.02, - NR, >0.05	Rivastigmine		Dem	ADL/IADL (PDS,	IG1	6	NA			NR	NA	192		NR	NR, 0.006
b) (15.1)* (15.1)* Rivastigmine Dem ADL/IADL (PDS, 0-IG1 49.2 225 NR -1.5 (11.3)* 49.0 221 NR -4.9 (11.2)* NR Rivastigmine Fair Dem ADL/IADL (PDS, 0-IG2 6 48.7 227 NR -2.6 (11.1)* 49.0 221 NR -4.9 (11.2)* NR Rivastigmine Dem ADL/IADL (PDS, 0-IG2 6 48.7 227 NR -2.6 (11.1)* 49.0 21 NR -4.9 (11.2)* NR Rivastigmine Dem IADL (Lawton and IG1 G 2.3 (0.7)*20 2.3 NR 2.3 19 2.2 NR NR 0.8)* Rivastigmine Dem ADL/IADL (PDS, 0-IG1 NR 191 NR 0.48 (NR) NR 226 NR 0.12 (NR) NS Rivastigmine Dem ADL/IADL (PDS, 0-IG1 NR 198 NR 0.5 (-1.32, 2.52) NR -2.23 (-4.02, - NR, <0.05	_			D)									(15.1)#		
Rivastigmine Dem ADL/IADL (PDS, 0-IG1 6 49.2 225 NR -1.5 (11.3)* 49.0 (221 NR -4.9 (11.2)* NR -100, 1) NR -4.9 (11.2)* NR -4.9 (11.2)* NR -4.9 (11.2)* NR -4.9 (11.2)* NR -4.9 (11.2)* NR -1.5 (11.3)* 49.0 (231 NR -1.5 (11.3)* 49.0 (19.5)* 221 NR -4.9 (11.2)* NR -4.9 (11.2)* NR -1.5 (11.3)* 49.0 (19.5)* 221 NR -4.9 (11.2)* NR -1.5 (11.3)* 49.0 (19.5)* 221 NR -1.5 (11.3)* 49.0 (19.5)* 221 NR -4.9 (11.2)* NR -1.5 (11.3)* 49.0 (19.5)* 221 NR -4.9 (11.2)* NR -1.5 (11.3)* 49.0 (19.5)* 221 NR -1.5 (11.3)* 49.0 (11.2)* NR -1.5 (11.3)* 49.0 (11.2)* NR -1.5 (11.3)* 49.0 (11.2)* NR -1.5 (11.3)* 49.0 (11.5)* NR -1.5 (11.3)* 49.0 (11.5)* NR -1.5 (11.3)* 49.0 (11.2)* NR -1.5 (11.3)* 49.0 (11.5)* NR -1.5 (11.3)* 49.0 (11.2)* NR -1.5 (11.3)* 49.0 (11.5)* NR -1.5 (11.3)* 49.0 (12.1)* NR -1.5 (11.3)* 49.0 (12.1)* NR -1.2 (11.2)* NR -1.2 (11.2)* NR -1.5 (11.3)* 49.0 (12.1)* NR -1.5 (11.3)* 49.0 (11.5)* NR -1.5 (11.3)* 10.0 (1.1)*	Rivastigmine		Dem	ADL/IADL (PDS,	IG1	6	NA	194	NR [#]	NR	NA	192		NR	NS
2007 ²¹⁷ 100, \uparrow) (19.8) [±] (19.6) [±] (19.6) [±] Rivastigmine Fair Dem ADL/IADL (PDS, 0-IG2 6 48.7 227 NR -2.6 (11.1) [±] 49.0 221 NR -4.9 (11.2) [±] NR Rivastigmine Mok, 2007 ²¹⁹ Dem IADL (Lawton and IG1 6 2.3 (0.7) [±] 20 2.3 NR 2.3 19 2.2 NR NR NR 0.6) [±] Rivastigmine Brody IADL, 0-8, \uparrow) IG1 3 NR 191 NR 0.48 (NR) NR 226 NR 0.12 (NR) NS Rivastigmine Dem ADL/IADL (PDS, 0-IG1 4 NR 179 NR 0.08 (NR) NR 228 NR -0.99 (NR) NS Rivastigmine Dem ADL/IADL (PDS, 0-IG2 3 NR 198 NR 0.5 (-1.32, 2.52)NR 223 NR -2.23 (-4.02, - NR, <0.05													(15.1)#		
Rivastigmine Fair Dem ADL/IADL (PDS, 0-IG2 6 48.7 227 NR -2.6 (11.1) [‡] 49.0 221 NR -4.9 (11.2) [‡] NR Rivastigmine Mok, 2007 ²¹⁹ Dem IADL (Lawton and IG1 6 2.3 (0.7) [‡] 20 2.3 NR 2.3 19 2.2 NR NR 0.63) [‡] (0.6) [‡] NR 0.48 (NR) NR 226 NR 0.12 (NR) NS Rivastigmine Pem ADL/IADL (PDS, 0-IG1 NR 198 NR 0.5 (-1.32, 2.52) NR 2.23 NR 2.23 (-4.02, - NR, <0.05					IG1			225	NR			221	NR	-4.9 (11.2) [‡]	NR
Image: constraint of the stress of															
Rivastigmine Mok, 2007 ²¹⁹ Dem ADL (Lawton and IG1 6 Brody IADL, 0-8, ↑) G 2.3 (0.7) [‡] 20 2.3 (0.5) [‡] NR 2.3 (0.6) [‡] I9 2.2 NR NR NR, 0.299 Rivastigmine Brody IADL, 0-8, ↑) Dem ADL/IADL (PDS, 0-IG1 3 NR 191 NR 0.6) [‡] I9 0.28 NR 0.12 (NR) NS Rivastigmine Dem ADL/IADL (PDS, 0-IG1 4 NR 191 NR 0.48 (NR) NR 226 NR 0.12 (NR) NS Rivastigmine Dem ADL/IADL (PDS, 0-IG1 6 NR 198 NR 0.5 (-1.32, 2.52)NR 223 NR -2.23 (-4.02, - NR, <0.05 -0.38)	Rivastigmine	Fair			IG2			227	NR			221	NR	-4.9 (11.2) [‡]	NR
Fair Brody IADL, 0-8, ↑) (0.5) [‡] (0.6) [‡] (0.8) [‡] Rivastigmine Rosler, 1999 ²²⁰ Dem ADL/IADL (PDS, 0-IG1 3 NR 191 NR 0.48 (NR) NR 226 NR 0.12 (NR) NS Rivastigmine Rosler, 1999 ²²⁰ Dem ADL/IADL (PDS, 0-IG1 4 NR 179 NR 0.08 (NR) NR 218 NR -0.99 (NR) NS Rivastigmine Rosler, 1999 ²²⁰ Dem ADL/IADL (PDS, 0-IG1 6 NR 198 NR 0.5 (-1.32, 2.52) NR -2.23 (-4.02, - NR, <0.05		M L 0007210			104			00	0.0			4.0	0.0		
Rivastigmine Fair-Good Dem ADL/IADL (PDS, 0-IG1 3 NR 191 NR 0.48 (NR) NR 226 NR 0.12 (NR) NS Rivastigmine Rivastigmine Dem ADL/IADL (PDS, 0-IG1 4 NR 179 NR 0.08 (NR) NR 218 NR -0.99 (NR) NS Rivastigmine Dem ADL/IADL (PDS, 0-IG1 6 NR 198 NR 0.5 (-1.32, 2.52)NR 223 NR -2.23 (-4.02, - NR, <0.05					IG1	6	2.3 (0.7)+							NR	NR, 0.299
Fair-Good 100, ↑) Image: Constraint of the stress of the						2								0.12 (ND)	NC
Rivastigmine Dem ADL/IADL (PDS, 0-IG1 4 NR 179 NR 0.08 (NR) NR 218 NR -0.99 (NR) NS Rivastigmine Dem ADL/IADL (PDS, 0-IG1 6 NR 198 NR 0.5 (-1.32, 2.52)NR 223 NR -2.23 (-4.02, - NR, <0.05					IGI	3	INK	191	INIT	0.40 (INK)		220		0.12 (INK)	113
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					IG1	Л	NR	170	NR	0.08 (NR)	NR	218	NR	-0.99 (NR)	NS
$ \begin{array}{c} \mbox{Rivastigmine} \\ Rivastig$	rtivastiginine					-		175		0.00 (INIX)		210		-0.33 (INIX)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rivastigmine				IG1	6	NR	198	NR	0 5 (-1 32 2 52)	NR	223	NR	-2 23 (-4 02 -	NR <0.05
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				· · ·		•				0.0 (,
Image: Rivastigmine Image: Rivastigmine <thimage: rivastigmine<="" th=""> Image: Rivastigmine</thimage:>	Rivastigmine		Dem		IG2	3	NR	226	NR	-0.90 (NR)	NR	226	NR		NS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	U			100, ↑)										. ,	
Rivastigmine Rosler, 1999 ²²⁰ Dem ADL/IADL (PDS, 0- IG2 6 NR 225 NR -3.31 (-5.10, - NR 223 NR -2.23 (-4.02, - NR, >0.05 Rivastigmine Winblad, 2007 ²²¹ Dem ADL/IADL (PDS, 1G1 6 NA 198 66 (33.3) [#] NR NA 223 45 (20.2) [#] NR NR, <0.01	Rivastigmine		Dem	ADL/IADL (PDS, 0-	IG2	4	NR	219	NR	-1.78 (NR)	NR	218	NR	-0.99 (NR)	NS
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $															
Rivastigmine Winblad, 2007 ²²¹ Fair Dem ADL/IADL (PDS, D) IG1 6 NA 198 66 (33.3) [#] NR NA 223 45 (20.2) [#] NR NR, <0.01 Rivastigmine Dem ADL/IADL (PDS, 2007 ²²¹ IG2 6 NA 225 45 (20.0) [#] NR NR NR, <0.01					IG2	6	NR	225			NR	223	NR		NR, >0.05
$\begin{array}{c c c c c c c c c c c c c c c c c c c $															
Fair Fair Fair Pem ADL/IADL (PDS, IG2 6 NA 225 45 (20.0)# NA 223 (20.0)# NR NR, >0.05 (20.0)# Rivastigmine Dem ADL/IADL (ADCS- IG1 6 49.3 (15.8)‡ 254 NR -0.5 (9.5) 49.2 (21.0)# 281 NR -2.3 (9.4)‡ NR, 0.04 Rivastigmine Dem ADL/IADL (ADCS- IG2 6 47.6 263 NR 0.0 (11.6) 49.2 281 NR -2.3 (9.4)‡ NR, 0.02	Rivastigmine	Winblad,			IG1	6	NA			NR	NA	223		NR	NR, <0.01
Rivastigmine Winblad, 2007 ²²¹ Dem ADL/IADL (PDS, D) IG2 6 NA 225 45 (20.0) [#] NR NA 223 45 (20.0) [#] NR NR, >0.05 Rivastigmine Fair Dem ADL/IADL (ADCS- IG1 6 49.3 (15.8) [‡] 254 NR -0.5 (9.5) 49.2 (16.0) [‡] 281 NR -2.3 (9.4) [‡] NR, 0.04 Rivastigmine Dem ADL/IADL (ADCS- IG2 6 47.6 263 NR 0.0 (11.6) 49.2 281 NR -2.3 (9.4) [‡] NR, 0.02				D)					(33.3)#				(20.2)#		
2007 ²²¹ D) (20.0)# (20.0)# Rivastigmine Fair Dem ADL/IADL (ADCS- IG1 6 49.3 (15.8) [‡] 254 NR -0.5 (9.5) (9.5) (16.0) [‡] 49.2 (16.0) [‡] 281 NR -2.3 (9.4) [‡] NR, 0.04 Rivastigmine Dem ADL/IADL (ADCS- IG2 6 47.6 263 NR 0.0 (11.6) 49.2 281 NR -2.3 (9.4) [‡] NR, 0.02			Der		100	6	NIA	225	45			222	45		
Rivastigmine Fair Dem ADL/IADL (ADCS- IG1 6 49.3 (15.8) [‡] 254 NR -0.5 (9.5) (16.0) [‡] 49.2 (16.0) [‡] 281 NR -2.3 (9.4) [‡] NR, 0.04 (16.0) [‡] Rivastigmine Dem ADL/IADL (ADCS- IG2 6 47.6 263 NR 0.0 (11.6) 49.2 281 NR -2.3 (9.4) [‡] NR, 0.02			Dem		162	o	INA	220	40 (20 0)#	INIX	INA	223		INF	CU.U<, >U.U5
ADL, 0-78, ↑) (15.8) [‡] (16.0) [‡] Rivastigmine Dem ADL/IADL (ADCS- IG2 6 47.6 263 NR 0.0 (11.6) 49.2 281 NR -2.3 (9.4) [‡] NR, 0.02			Dom	-/		6	10.3				10.2	281		-2 3 (0 4) [±]	
Rivastigmine Dem ADL/IADL (ADCS-IG2 6 47.6 263 NR 0.0 (11.6) 49.2 281 NR -2.3 (9.4) [‡] NR, 0.02	isivasugiiiiile				101			204		-0.0 (9.0)		201		-2.3 (9.4)*	INIX, 0.04
	Rivastiamine				IG2			263	NR			281	NR	-23(94)‡	NR 0.02
	rtrastigrinite			ADL, 0-78, ↑)	102		47.0 (15.7) [‡]	200	1 41 1		49.2 (16.0) [‡]	201		2.0 (0.4)	1111, 0.02

Medication	Author, year Quality	Pop cat	•		Time , mo.		IG n at FU		IG mean change (SE or 95% CI) from BL	CG BL mean (SE)	CG n at FU	CG FU mean (SE)	CG mean change (SE or 95% CI) from BL	Between group difference, p-value
Rivastigmine	\$		ADL/IADL (ADCS- ADL, 0-78, ↑)	IG3	6	50.1 (16.3) [‡]	247	NR	-0.1 (9.1)	49.2 (16.0) [‡]	281	NR	-2.3 (9.4)‡	NR, 0.01
Memantine	Bakchine, 2008 ²²² Good	Dem	ADL, 0-78, †) ADL/IADL (ADCS- ADL, 0-78, †)	IG1	3		268	NR	-0.67 (NR)	NR	135	NR		MDC (95% CI)=- 0.48 (-1.8, 0.85), 0.480
Memantine			ADL/IADL(ADCS- ADL, 0-78, ↑)			NR	267	NR	-1.99 (NR)	NR	134	NR	-2.08 (NR)	MDC (95% Cl)=0.09 (-1.52, 1.70), 0.912
Memantine	Choi, 2011 ^{∥223} Fair		ADL/IADL(ADCS- ADL, 0-78, ↑)	IG1	4	51.0 (13.8) [‡]	84	NR	-1.4 (7.9)	52.4 (15.9) [‡]	74	NR	-2.4 (8.5)‡	NR, 0.50
Memantine	Dysken, 2014 ^{∥224}	Dem	ADL/IADL(ADCS- ADL, 0-78, ↑)	IG1		57.3 (14.2) [‡]	119	NR		56.8 (13.7) [‡]	112	NR	-8.14 [†] (-10.5, -5.73)	NR
Memantine	Good	Dem	ADL/IADL (ADCS- ADL, 0-78, ↑)	IG1	18		95	NR			96	NR		NR
Memantine			ADL/IADL(ADCS- ADL, 0-78, ↑)	IG1	24		80	NR		56.8 (13.7) [‡]	77	NR	-16.2 [†] (-19.6, -12.8)	NR
Memantine	Dysken, 2014 ^{∥224}	Dem	ADL/IADL(ADCS- ADL, 0-78, ↑)	IG1	30	57.3 (14.2) [‡]	64	NR	-18.4† (-22.1, -		54	NR	-19.7 [†] (-23.7, -15.6)	NR
Memantine	Good	Dem	ADL/IADL(ADCS- ADL, 0-78, ↑)	IG1	36	57.3 (14.2) [‡]	38	NR	-18.9 [†] (-23.5, - 14.0)	56.8 (13.7) [‡]	33	NR	-24.8 [†] (-29.7, -19.9)	NR
Memantine		Dem	ADL/IADL(ADCS- ADL, 0-78, ↑)	IG1	42	57.3 (14.2) [‡]	38	NR	-23.6 [†] (-28.7, - 18.3)		33	NR	-28.1 [†] (-33.5, -22.7)	NR
Memantine		Dem	ADL/IADL(ADCS- ADL, 0-78, ↑)	IG1	48	57.3 (14.2) [‡]	142	NR		56.8 (13.7) [‡]	140	NR	-16.96† (1.11)	MDC (95% Cl)=1.98 (-0.24, 4.20), 0.40
Memantine	Dysken, 2014 ^{∥224} Good		ADL/IADL(ADCS- ADL, 0-78, ↑)	IG1		57.3 (14.2) [‡]	139	NR		56.8 (13.7) [‡]	135	NR	-4.54† (-6.42, -2.68)	NR
Memantine	Orgogozo, 2002 ²²⁷ Fair-Good		ADL (NOSGER ADL subscale, 1-5,	IG1	6	NR	93	NR	0.40 (NR)	NR	95	NR	0.19 (NR)	NR, 0.931
Memantine			ADL (NOSGER ADL subscale, 1-5,	IG1	6	NR	116	NR	1.05 (NR)	NR	118	NR	0.34 (NR)	NR, 0.321
Memantine	Peskind, 2006 ²²⁸ Fair-Good		ADL/IADL(ADCS- ADL, 0-78, ↑)	IG1		57.2 (14.77) [‡]	196	NR		56.2 (13.11) [‡]	197	NR	-1.77† (7.18)‡	NR, 0.63
Memantine	Peters, 2015 ^{⊪229} Fair		ADL/IADL (ADCS- ADL, 0-78, ↑)	IG1		62.1 (10.5) [‡]	94	NR	-6.83 (1.33)‡	62.1 (12.9) [‡]	96	NR	-6.16 (1.34)‡	NR, 0.719

Appendix E Table 4. AChEIs and Memantine: Detailed Results for Physical Function Outcomes, by Medication Type

									IG mean				CG mean	
			ADL or ADL,			IG BL		IG FU	change (SE or	CG BL	CG n	CG FU	change (SE	
	Author, year	Pop	(Instrument,	Int	Time	mean	IG n	mean	95% CI) from	mean	at	mean	or 95% CI)	Between group
Medication	Quality	cat	range, direction)	arm	, mo.	(SE)	at FU	(SE)	BL	(SE)	FU	(SE)	from BL	difference, p-value
Memantine		Dem	ADL/IADL (ADCS-	IG1	4	62.1	77	NR	-0.92 (0.90) [‡]	62.1	74	NR	-1.40 (0.92) [‡]	NS
			ADL, 0-78, ↑)			(10.5) [‡]				(12.9) [‡]				
Memantine		Dem	ADL/IADL (ADCS-	IG1	6	62.1	72	NR	-2.53 (1.09) [‡]	62.1	77	NR	-3.38 (1.05)‡	NS
			ADL, 0-78, ↑)			(10.5) [‡]				(12.9) [‡]				
Memantine	Porsteinsson,	Dem	ADL/IADL (ADCS-	IG1	6	54.7	214	51.8	NR	54.8	213	52.0	NR	MDC (95% CI)=-0.2
	2008 ²³⁰		ADL, 0-78, ↑)			(14.44) [‡]		(15.89)		(13.08)‡		(15.70) [‡]		(-1.6, 1.3), 0.816
	Good							‡						

* Least squares mean

† Least squares mean change

‡ Standard deviation

§ Range

New study

¶ Number (%) of participants demonstrating no change, improvement, or much improvement on PDS

Number (%) of participants demonstrating clinically meaningful improvement ($\geq 10\%$ improvement in PDS total score)

Abbreviations: ADL = Activities of Daily Living; ADCS-ADL = Alzheimer's Disease Cooperative Study Activities of Daily Living 23 items; ADFACS = Alzheimer's Disease Functional Assessment and Change Scale; BL = baseline; CG = control group; CI = confidence interval; D = dichotomized; DAD = Disability Assessment for Dementia scale; Dem = dementia; ES = effect size; FU = followup; IADL = Instrumental Activities of Daily Living; IDDD = Interview for Deterioration in Daily Living Activities in Dementia; IG = intervention group; Int arm = intervention arm; MCI = mild cognitive impairment; MDC = mean difference in change; mo. = months; PDS = Progressive Deterioration Scale; Pop cat = population category; NA = not applicable; NOSGER = Nurses' Observation Scale for Geriatric Patients scale; NR = not reported; NS = not statistically significant; PSMS = Physical Self-Maintenance Scale; SE = standard error

Appendix E Table 5. AChEls and Memantine: Detailed Results for Mental Health and Neuropsychiatric Symptom Outcomes, by Medication Type

			Symptom			IG BL	IG n	IG FU	IG mean	CG BL	CG n	CG FU	CG mean	
	Author, year		(Instrument,	Int	Time,	mean	at	mean		mean	at	mean	change (SD)	
Medication	Quality	Pop cat		arm	mo.	(SD)	FU	(SD)	from BL	(SD)	FU	(SD)		difference, p-value
Donepezil	Doody, 2009 ¹⁸⁸ Fair	MCI	NPS (NPI-12, 0-144)	IG1	11	4.0 (7.3)	379	NR	1.8 (0.5) [‡]	3.4 (5.8)	378	NR	3.4 (5.8) [‡]	NS
Donepezil	Feldman, 2001 ¹⁸⁹ Fair-Good	Dem	NPS (NPI-12, 0-144)	IG1		19.55 (1.48) [‡]	127	NR	-4.69 [§] (1.22) [‡]	19.30 (1.45)	132	NR	-3.06 [§] (1.14) [‡]	NR
Donepezil		Dem	NPS (NPI-12, 0-144)	IG1		19.55 (1.48) [‡]	122	NR	-3.86 [§] (1.39)‡		126	NR	-0.47 [§] (1.29) [‡]	NR
Donepezil		Dem	NPS (NPI-12, 0-144)	IG1	6	19.55 (1.48) [‡]	138	NR	-4.6 [§] (1.24) [‡]		144	NR	1.0 [§] (1.19) [‡]	MDC=-5.64, 0.0005
Donepezil	Holmes, 2004 ¹⁹⁰ Fair-Good	Dem	NPS (NPI-10, 0-120)	IG1	6		41	NR	-2.9 (1.6)‡	(1.8) [‡]	55	NR	3.3 (2.1) [‡]	NR, 0.02
Donepezil		Dem	NPS (NPI-10, 0-120)	IG1	3	16.6 (11.7)	49	NR	-5.5 (1.4)‡	20.5 (15.0)	44	NR	-6.4 (1.5)‡	MDC (95% CI)=0.9 (-3.1, 4.9), 0.660
Donepezil		Dem	NPS (NPI-10, 0-120)	IG2	3	18.9 (15.3)	45	NR		20.5 (15.0)	44	NR	-6.4 (1.5)‡	MDC (95% CI)=3.0 (-1.0, 7.1), 0.143
	Mori, 2012 ¹⁹⁵ Fair	Dem	NPS (NPI-10, 0-120)	IG1	3	19.5 (12.8)	35	NR		18.3 (8.9)	32	NR	0.3 (17.5)	MDC (95% CI)=-8.3 (-15.8, -0.9), 0.019
Donepezil		Dem	NPS (NPI-10, 0-120)	IG2		14.0 (8.3)	32	NR	-5.5 (6.7)	18.3 (8.9)	32	NR	0.3 (17.5)	MDC (95% CI)=-5.8 (-12.4, 0.8), 0.047
Donepezil		Dem	NPS (NPI-10, 0-120)	IG3		20.7 (12.8)	35	NR	-3.9 (22.0)	18.3 (8.9)	32	NR	0.3 (17.5)	MDC (95% CI)=-4.2 (-13.9, 5.6), 0.602
Donepezil	Tune, 2003 ²⁰¹ Fair-Good	Dem	NPS (NPI-12, 0-144)	IG1	3	18.36 (12.40)	14	NR	0.91 [§] (14.50)		13	NR	-1.52 [§] (13.30)	NR (95% CI)=NR (- 7.50, 12.37), 0.652
Donepezil		Dem	NPS (NPI-12, 0-144)	IG1	6	18.36 (12.40)	14	NR	5.40 [§] (17.80)		13	NR		NR (95% CI)=NR (- 9.87, 15.39), 0.688
	Brodaty, 2005 ²⁰⁵ Fair-Good	Dem	NPS (NPI-12, 0-144)	IG1		12.6 (NR)	242	NR		10.3 (NR)	258	NR	0.6 (0.62)‡	NR (95% CI)=NR (- 3.42, 0.23), 0.102
Galantamine		Dem	NPS (NPI-12, 0-144)	IG2	6	11.2 (NR)	245	NR	-0.6 (0.66)‡	10.3 (NR)	258	NR	0.6 (0.62)‡	NR (95% CI)=NR (- 1.85, 1.82), 0.941
Galantamine	Erkinjuntti, 2002 ²⁰⁶ Fair-Good	Dem	NPS (NPI-10, 0-120)	IG1		12.2 (12.98)	279	NR	-1.2 (0.6) [‡]	11.4 (11.27)	154	NR	1.0 (0.9) [‡]	MDC=-2.2, 0.0164
Galantamine		Dem	NPS (NPI-10, 0-120)	IG1		9.2 (0.66) [‡]	241	NR		9.4 (1.01) [‡]	123	NR	0.5 (0.65)‡	NS
Galantamine		Dem	NPS (NPI-10, 0-120)	IG1		11.9 (0.8) [‡]	253	NR		11.0 (0.7) [‡]	262	NR	2.0 (0.7)‡	NR, 0.03
Galantamine	Tariot, 2000 ²¹¹ Fair-Good	Dem	NPS (NPI-10, 0-120)	IG2	5	(0.8) [‡]	255	NR	-0.1 (0.7)‡	(0.7) 11.0 (0.7) [‡]	262	NR	2.0 (0.7)‡	NR, 0.04
Galantamine		Dem	NPS (NPI-10, 0-120)	IG3	5	(0.8)* 12.9 (1.2) [‡]	129	NR	2.3 (1.0) [‡]	(0.7)* 11.0 (0.7) [‡]	262	NR	2.0 (0.7)‡	NR

Appendix E Table 5. AChEls and Memantine: Detailed Results for Mental Health and Neuropsychiatric Symptom Outcomes, by Medication Type

			Symptom			IG BL	IG n	IG FU	IG mean	CG BL	CG n	CG FU	CG mean	
	Author, year		(Instrument,	Int	Time,	mean	at	mean	change (SD)	mean	at		change (SD)	
Medication	Quality	Pop cat	range [†])	arm	mo.	(SD)	FU	(SD)	from BL	(SD)	FU	(SD)	from BL	difference, p-value
Rivastigmine	Ballard, 2008 ²¹⁵ Fair	Dem	NPS (NPI-12, 0-144)	IG1		13.4 (12.5)	364	NR		12.9 (11.5)	342	NR	-1.8 (0.64) [‡]	MDC=0.4, NS
Rivastigmine	McKeith, 2000 ²¹⁸ Fair-Good	Dem	NPS (NPI-10, 0-120)	IG1		23.2 (15.0)	47	NR	-5.0 (16.2)	20.2 (14.2)	53	NR	-1.2 (10.7)	MDC (95% CI)=-3.8 (-1.6, 9.2), 0.048
Rivastigmine	Mok, 2007 ²¹⁹ Fair	Dem	Anxiety (NPI, Anxiety subscale, 0- 12)	IG1		0.8 (1.9)	20	0.3 (0.7)	NR	0.2 (Ó.5)	19	0.2 (0.7)	NR	NR, 0.346
Rivastigmine		Dem	NPS (NPI-12, 0-144)	IG1	6	15.0 (14.6)	20	11.4 (9.4)	NR	9.5 (6.5)	19	10.4 (11.3)	NR	NR, 0.282
Rivastigmine	Winblad, 2007 ²²¹ Fair	Dem	NPS (NPI-12, 0-144)	IG1		15.1 (14.1)	253	NR	-2.2 (11.9)	14.9 (15.7)	281	NR	-1.7 (13.8)	NR, 0.51
Rivastigmine		Dem	NPS (NPI-12, 0-144)	IG2	6	15.1 (13.4)	263	NR	-2.3 (13.3)	14.9 (15.7)	281	NR	-1.7 (13.8)	NR, 0.69
Rivastigmine		Dem	NPS (NPI-12, 0-144)	IG3		13.9 (14.1)	248	NR	-1.7 (11.5)	14.9 (15.7)	281	NR	-1.7 (13.8)	NR, 0.74
	Bakchine, 2008 ²²² Good	Dem	NPS (NPI-12, 0-144)	IG1		NR	268	NR	-1.37 (NR)	ŇR	135	NR	-1.02 (NR)	MDC (95% CI)=- 0.35 (-1.96, 1.26), 0.671
Memantine		Dem	NPS (NPI-12, 0-144)	IG1	6	NR	267	NR	-1.45 (NR)	NR	134	NR	-2.73 (NR)	MDC (95% CI)=1.28 (-0.5, 3.05), 0.159
Memantine	Choi, 2011* ²²³ Fair	Dem	NPS (NPI-12, 0-144)	IG1	4	14.7 (18.4)	84	NR	1.2 (10.8)	13.3 (18.7)	74	NR	1.0 (15.8)	NR, 0.88
Memantine	Dysken, 2014* ²²⁴ Good	Dem	NPS (NPI-12, 0-144)	IG1		8.0 ^{II} (NR)	139	NR	-0.26 [§] (-2.26, 1.89) [¶]	8.0 ^{ll} (NR)	135		0.47 [§] (-1.62, 2.57) [¶]	NR
Memantine		Dem	NPS (NPI-12, 0-144)	IG1		8.0 [#] (NR)	119		2.70) [¶] `	8.0 [#] (NR)	112	NR	1.08 [§] (-1.36, 3.53) [¶]	NR
Memantine		Dem	NPS (NPI-12, 0-144)	IG1		8.0 ¹ (NR)	94	NR	1.14 [§] (-1.62,		96		4.05 [§] (1.26, 6.87) [¶]	NR
Memantine		Dem	NPS (NPI-12, 0-144)			8.0 [#] (NR)	80		7.81) [¶]	8.0 [#] (NR)	75		3.59 [§] (0.004, 7.19) [¶]	
Memantine		Dem	NPS (NPI-12, 0-144)	IG1		8.0 ¹ (NR)	64			8.0 [#] (NR)	55	NR	1.68 [§] (-1.88, 5.21) [¶]	NR
Memantine		Dem	NPS (NPI-12, 0-144)	IG1	36	8.0 [#] (NR)	45		3.17 (-0.83, 7.31) [¶]	8.0 ^{lí} (NR)	41	NR		NR
Memantine		Dem	NPS (NPI-12, 0-144)	IG1	42	8.0 [#] (NR)	38		3.58 [§] (-1.75,		33	NR		NR
Memantine	Dysken, 2014 ^{*224} Good	Dem	NPS (NPI-12, 0-144)	IG1	48	8.0 [#] (NR)	142	NR	1.87 [§] (1.00) [‡]		140			MDC (95% CI)=- 0.39 (-2.47, 1.70), 0.94

Appendix E Table 5. AChEls and Memantine: Detailed Results for Mental Health and Neuropsychiatric Symptom Outcomes, by Medication Type

			Symptom			IG BL	IG n	IG FU	IG mean	CG BL	CG n	CG FU	CG mean	
Madiaation	Author, year	Demost	(Instrument,	Int	Time,	mean	at		change (SD)		at	mean	change (SD)	
Medication	Quality	Pop cat		arm	mo.	(SD)	FU	(SD)	from BL	(SD)	FU	(SD)		difference, p-value
	Herrmann, 2013* ²²⁶ Fair	Dem	NPS (NPI-12, 0-144)	IG1	6	30.94 (1.17) [‡]	159	NR	-3.90 (1.24)‡	29.18 (1.03) [‡]	165	NR	-5.13 (1.23)‡	MDC (95% CI)=1.23 (-1.75, 4.21), 0.42
Memantine	Peskind, 2006 ²²⁸ Fair-Good	Dem	NPS (NPI-12, 0-144)	IG1	3	11.5 (13.20)	183		-1.70 [§] (13.66)	12.2 (13.00)	179	NR		LSM change (95% Cl)=-2.4 (-4.7, -0.2), 0.035
Memantine		Dem	NPS (NPI-12, 0-144)	IG1	6	11.5 (13.20)	196	NR	-1.37§ (13.30)	12.2 (13.00)	198	NR		LSM change (95% Cl)=-2.34 (-4.5, - 0.18), 0.03
Memantine	Peters, 2015* ²²⁹ Fair	Dem	NPS (NPI-12, 8-96)	IG1	12	NR	94	NR	NR	NR	96	NR	NR	NR, 0.106
Memantine	Porsteinsson, 2008 ²²⁹ Good	Dem	NPS (NPI-12, 0-144)		6	11.8 (13.11)		12.9 (14.48)		12.3 (13.28)	209	12.6 (14.56)	NR	MDC (95% CI)=0.3 (-1.7, 2.4), 0.743
Memantine	Wilkinson, 2012 ²³³ Fair	Dem	NPS (NPI-12, 0-144)	IG1	12	13.1 (12.8)	103	NR	NR	12.8 (12.4)	114	NR	NR	MDC (SE)=0.56 (1.19), NS

* New study

† Lower scores indicate better outcomes for all instruments

‡ Standard error

§ Least squares mean change

| Median

¶95% CI

Abbreviations: BL = baseline; CG = control group; CI = confidence interval; Dem = dementia; FU = followup; IG = intervention group; Int arm = intervention arm; LSM = least squares mean; MCI = mild cognitive impairment; MDC = mean difference in change; mo. = months; NPI-10 = Neuropsychiatric Inventory-10 item; NPI-12 = Neuropsychiatric Inventory-12 item; NPS = Composite neuropsychiatric symptoms; NR = not reported; NS = not statistically significant; SD = standard deviation; SE = standard error

Medication	Author, year Quality	Outcome	Int arm	Time, mo.	IG n at FU	IG FU N (%) with event	CG n at FU	CG FU N (%) with event	Between group difference, p-value
Donepezil	Black, 2003 ¹⁸⁶ Fair-Good	Adverse events	IG1	6	206	195 (94.7)	-	176 (88.4)	
Donepezil		Adverse events	IG2	6	198	176 (88.9)	199	176 (88.4)	NR, 1.0
Donepezil		Serious adverse events	IG1	6	206	45 (21.8)	199	30 (15.1)	NR
Donepezil		Serious adverse events	IG2	6	198	32 (16.2)	199	30 (15.1)	NR
Donepezil		Withdrawals due to adverse events	IG1	6	206	45 (21.8)	199	22 (11.1)	NR
Donepezil		Withdrawals due to adverse events	IG2	6	198	22 (11.1)	199	22 (11.1)	NR
Donepezil	Burns, 1999 ¹⁸⁷ Fair-Good	Serious adverse events	IG1	6	273	24 (8.8)	274	25 (9.1)	NR
Donepezil		Serious adverse events	IG2	6	271	24 (8.9)	274	25 (9.1)	NR
Donepezil			IG1	6	273	50 (18.3)	274	27 (9.9)	NR
Donepezil			IG2	6	271	24 (8.9)	274	27 (9.9)	NR
Donepezil	Doody, 2009 ¹⁸⁸ Fair	Adverse events	IG1	11	391	318 (81.3)	387	267 (69.0)	NR
Donepezil		Serious adverse events	IG1	11	391	48 (12.3)	387	41 (10.6)	NR
Donepezil	-	Withdrawals due to adverse events	IG1	11	391	72 (18.4)	387	32 (8.3)	NR
Donepezil	Feldman, 2001 ¹⁸⁹	Adverse events	IG1	6	144	120 (83.3)	146	117 (80.1)	NR
Donepezil	Fair-Good	Serious adverse events	IG1	6	144	19 (13.2)	146	18 (12.3)	NR
Donepezil		Withdrawals due to adverse events	IG1	6	144	12 (8.3)	146	9 (6.2)	NR
Donepezil	Holmes, 2004 ¹⁹⁰ Fair-Good			6	41	. ,	55	0 (0.0)	NR
Donepezil	lkeda, 2015 ^{*191} Fair	Adverse events	IG1	3	49	, , ,	46	· · · /	NR
Donepezil		Adverse events	IG2	3	47	30 (63.8)	46	31 (67.4)	NR

									Between
Medication	Author, year Quality	Outcome	Int arm	Time, mo.	IG n at FU	IG FU N (%) with event	CG n at FU	CG FU N (%) with event	group difference, p-value
Donepezil	quality	Serious adverse events		3	49	1 (2.0)		3 (6.5)	NR
Donepezil		Serious adverse events	IG2	3	47	4 (8.5)	46	3 (6.5)	NR
Donepezil	-		IG1	3	49	2 (4.1)	46	5 (10.9)	NR
Donepezil			IG2	3	47	10 (21.3)	46	5 (10.9)	NR
Donepezil	Krishnan, 2003 ¹⁹²	Adverse events	IG1	6	34	32 (94.1)	33	28 (84.8)	NS
Donepezil	Fair-Good	Withdrawals due to adverse events	IG1	6	34	0 (0.0)	33	1 (3.0)	NR
Donepezil	Mazza, 2006 ¹⁹³ Fair-Good	Adverse events	IG1	6	25	4 (16.0)	26	0 (0.0)	NR
Donepezil	Mohs, 2001 ¹⁹⁴ Fair	Serious adverse events	IG1	12	214	26 (12.1)	217	19 (8.8)	NR
Donepezil		Withdrawals due to adverse events	IG1	12	214	20 (9.3)	217	12 (5.5)	NR
Donepezil	Mori, 2012 ¹⁹⁵ Fair	Adverse events	IG1	3	37	32 (86.5)	34	24 (70.6)	NR
Donepezil		Adverse events	IG2	3	33	27 (81.8)	34	24 (70.6)	NR
Donepezil		Adverse events	IG3	3	35	24 (68.6)	34	24 (70.6)	NR
Donepezil	_	Serious adverse events	IG1	3	37	4 (10.8)	34	2 (5.9)	NR
Donepezil		Serious adverse events	IG2	3	33	2 (6.1)	34	2 (5.9)	NR
Donepezil	_	Serious adverse events	IG3	3	35	2 (5.7)	34	2 (5.9)	NR
Donepezil			IG1	3	37	3 (8.1)	34	4 (11.8)	NR
Donepezil		Withdrawals due to adverse events	IG2	3	33	1 (3.0)		4 (11.8)	NR
Donepezil	Mori, 2012 ¹⁹⁵ Fair	Withdrawals due to adverse events	IG3	3	35	3 (8.6)	34	4 (11.8)	NR

Medication	Author, year Quality	Outcome	Int arm	Time, mo.	IG n at FU	IG FU N (%) with event	CG n at FU	CG FU N (%) with event	Between group difference, p-value
Donepezil	Petersen, 2005 ¹⁹⁶ Fair	Adverse events		36	253	221 [†]			NR, <0.01
Donepezil		Adverse events	IG1	3	39	26 (66.7)	40	26 (65.0)	NR
Donepezil		Adverse events	IG2	3	40	27 (67.5)	40	26 (65.0)	NR
Donepezil		Adverse events	IG3	3	42	27 (64.3)	40	26 (65.0)	NR
Donepezil		Withdrawals due to adverse events	IG1	3	39	3 (7.7)	40	2 (5.0)	NR
Donepezil	_		IG2	3	40	2 (5.0)	40	2 (5.0)	NR
Donepezil	-		IG3	3	42	5 (11.9)	40	2 (5.0)	NR
Donepezil	Rogers, 1998 ¹⁹⁷ Fair-Good	Adverse events	IG1	3	158	124 (78.5)	153	106 (69.3)	NR
Donepezil		Adverse events	IG2	3	157	106 (67.5)	153	106 (69.3)	NR
Donepezil		Serious adverse events	IG1	3	158	6 (3.8)	153	7 (4.6)	NR
Donepezil		Serious adverse events	IG2	3	157	6 (3.8)	153	7 (4.6)	NR
Donepezil		Withdrawals due to adverse events	IG1	3	158	16 (10.1)	153	3 (2.0)	NR
Donepezil		Withdrawals due to adverse events	IG2	3	157	7 (4.5)	153	3 (2.0)	NR
Donepezil	Salloway, 2004 ¹⁹⁹	Adverse events	IG1	6	132	116 (87.9)	137	100 (73.0)	NR, ≤0.03
Donepezil	Fair-Good	Serious adverse events	IG1	6	133	5 (3.8)	137	6 (4.4)	NR
Donepezil			IG1	6	133	29 (21.8)	137	10 (7.3)	NR
Donepezil	Seltzer, 2004 ²⁰⁰ Fair-Good	Adverse events	IG1	6	96	67 (69.8)	57	37 (64.9)	NR
Donepezil		Serious adverse events	IG1	6	96	5 (5.2)			NR
Donepezil	Seltzer, 2004 ²⁰⁰ Fair-Good		IG1	6	96	15 (15.6)	57	5 (8.8)	NR

Medication	Author, year Quality	Outcome	Int arm	Time, mo.	IG n at FU	IG FU N (%) with event	CG n at FU	CG FU N (%) with event	Between group difference, p-value
Donepezil	Tune, 2003 ²⁰¹ Fair-Good			6	14	0 (0.0)	14	0 (0.0)	NR
Donepezil	Wilkinson, 2003 ²⁰²	Adverse events	IG1	6	215	197 (91.6)		167 (86.5)	NR
Donepezil	Fair-Good	Adverse events		6	208	188 (90.4)		167 (86.5)	
Donepezil		Serious adverse events	IG1	6	215	31 (14.4)	193		NR
Donepezil		Serious adverse events	IG2	6	208	28 (13.5)	193	32 (16.6)	NR
Donepezil		Withdrawals due to adverse events	IG1	6	215	35 (16.3)	193	17 (8.8)	NR
Donepezil	-	Withdrawals due to adverse events	IG2	6	208	21 (10.1)	193	17 (8.8)	NR
Donepezil	Winblad, 2001 ²⁰³	Adverse events	IG1	12	142	116 (81.7)	144	109 (75.7)	NR
Donepezil	2001 ²⁰³ Fair-Good	Serious adverse events	IG1	12	142	35 (24.6)	144	20 (13.9)	NR
Donepezil	-		IG1	12	142	10 (7.0)	144	9 (6.3)	NR
Galantamine	Auchus, 2007 ²⁰⁴ Fair	Adverse events	IG1	6	396	301 (76.0)	390	278 (71.3)	NR
Galantamine		Serious adverse events	IG1	6	396	80 (20.2)	390	72 (18.5)	NR
Galantamine	-		IG1	6	396	54 (13.6)	390	27 (6.9)	NR
Galantamine	Brodaty, 2005 ²⁰⁵ Fair-Good	Adverse events	IG1	6	326	235 (72.1)	320	224 (70.0)	NR
Galantamine		Adverse events	IG2	6	319	253 (79.3)	320	224 (70.0)	NR
Galantamine		Serious adverse events	IG1	6	326	3 (0.9)	320	3 (0.9)	NR
Galantamine		Serious adverse events	IG2	6	319	3 (0.9)	320	3 (0.9)	NR
Galantamine	Brodaty, 2005 ²⁰⁵ Fair-Good		IG1	6	326	24 (7.4)	320	15 (4.7)	NR
Galantamine		Withdrawals due to	IG2	6	319	28 (8.8)	320	15 (4.7)	NR

Medication	Author, year Quality	Outcome	Int arm	Time, mo.	IG n at FU	IG FU N (%) with event	CG n at FU	CG FU N (%) with event	Between group difference, p-value
		adverse							
Galantamine	Erkinjuntti, 2002 ²⁰⁶	events Adverse events	IG1	6	396	330 (83.3)	196	133 (67.9)	NR
Galantamine	Fair-Good		IG1	6	396	78 (19.7)	196	16 (8.2)	NR
Galantamine	Hager, 2014 ^{*207} Fair	Adverse events	IG1	24	1024	553 (54.0)	1021	496 (48.6)	NR
Galantamine		Serious adverse events	IG1	24	1024	129 (12.6)	1021	123 (12.0)	NR
Galantamine			IG1	24	1024	87 (8.5)	1021	66 (6.5)	NR
Galantamine	Raskind, 2000 ²⁰⁸	Adverse events		6	212	195 (92.0)	213	168 (78.9)	NR
Galantamine	Fair-Good	Adverse events	IG2	6	211	195 (92.4)	213	168 (78.9)	NR
Galantamine		Serious adverse events	IG1	6	212	NR	213	NR	NS
Galantamine		Serious adverse events	IG2	6	211	NR	213	NR	NS
Galantamine			IG1	6	212	49 (23.1)	213	16 (7.5)	NR
Galantamine			IG2	6	211	67 (31.8)	213	16 (7.5)	NR
Galantamine	Rockwood, 2001 ²¹⁰	Adverse events	IG1	3	261	225 (86.2)	125	79 (63.2)	NR
Galantamine	Fair-Good	Serious adverse events	IG1	3	261	21 (8.0)	125	8 (6.4)	NR
Galantamine		Withdrawals due to adverse events	IG1	3	261	66 (25.3)	125	5 (4.0)	NR
Galantamine	Rockwood, 2006 ²⁰⁹	Adverse events	IG1	4	64	54 (84.4)	66	41 (62.1)	NR
Galantamine	Fair	Serious adverse events		4	64	5 (7.8)	66		NR
Galantamine	Rockwood, 2006 ²⁰⁹ Fair	Withdrawals due to adverse events	IG1	4	64	5 (7.8)	66	2 (3.0)	NR
Galantamine	Tariot, 2000 ²¹¹ Fair-Good	Adverse events		5	273	219 (80.2)		206 (72.0)	
Galantamine		Adverse events	IG2	5	279	206 (73.8)	286	206 (72.0)	NR

						IG FU N		CG FU N	Between group
Medication	Author, year Quality	Outcome	Int arm	Time, mo.	IG n at FU	(%) with event	CG n at FU	(%) with event	difference, p-value
Galantamine	Quality			5	140	106 (75.7)		206 (72.0)	
Galantamine			IG1	5	273	35 (12.8)	286	31 (10.8)	NR
Galantamine		Serious adverse events	IG2	5	279	28 (10.0)	286	31 (10.8)	NR
Galantamine			IG3	5	140	14 (10.0)	286	31 (10.8)	NR
Galantamine		Withdrawals due to adverse events	IG1	5	273	27 (9.9)	286	20 (7.0)	NR
Galantamine		Withdrawals due to adverse events	IG2	5	279	19 (6.8)	286	20 (7.0)	NR
Galantamine		Withdrawals due to adverse events	IG3	5	140	9 (6.4)	286	20 (7.0)	NR
	Wilcock, 2000 ²¹² Fair-Good		IG1	6	220	182 (82.7)	215	165 (76.7)	NR
Galantamine		Adverse events	IG2	6	218	194 (89.0)	215	165 (76.7)	NR
Galantamine		Serious adverse events	IG1	6	220	28 (12.7)	215	26 (12.1)	NR
Galantamine		Serious adverse events	IG2	6	218	28 (12.8)	215	26 (12.1)	NR
Galantamine		Withdrawals due to adverse events	IG1	6	220	31 (14.1)	215	19 (8.8)	NR
Galantamine		Withdrawals due to adverse events	IG2	6	218	48 (22.0)	215	19 (8.8)	NR
	Wilkinson, 2001 ²¹³		IG1	3	56	33†	87	38†	NR
Galantamine	Fair-Good	Adverse events	IG2	3	54	38†	87	38†	NR
Galantamine			IG3	3	88	49 [†]	87	38†	NR
	Wilkinson, 2001 ²¹³ Fair-Good		IG1	3	56	0 (0.0)	87	3 (3.4)	NR
Galantamine			IG2	3	54	5 (9.3)	87	3 (3.4)	NR
Galantamine			IG3	3	88	6 (6.8)	87	3 (3.4)	NR

	Author, year			Time,	IG n at	IG FU N (%) with	CG n at	• •	Between group difference,
Medication	Quality		Int arm		FU	event	FU	event	p-value
Galantamine		Withdrawals due to adverse events	IG1	3	56	10 (17.9)		8 (9.2)	NR
Galantamine		Withdrawals due to adverse events	IG2	3	54	24 (44.4)	87	8 (9.2)	NR
Galantamine		Withdrawals due to adverse events	IG3	3	88	19 (21.6)	87	8 (9.2)	NR
Rivastigmine	Agid, 1998 ²¹⁴ Fair-Good	Adverse events	IG1	3	133	133 [†]	133	38†	NR
Rivastigmine		Adverse events	IG2	3	136	67†	133	38†	NR
Rivastigmine		adverse events	IG1	3	133	8 (6.0)		2 (1.5)	NR
Rivastigmine		Serious adverse events	IG2	3	136	7 (5.1)	133	2 (1.5)	NR
Rivastigmine		Withdrawals due to adverse events	IG1	3	133	16 (12.0)	133	5 (3.8)	NR
Rivastigmine			IG2	3	136	14 (10.3)	133	5 (3.8)	NR
Rivastigmine	Ballard, 2008 ²¹⁵ Fair	Serious adverse events	IG1	6	363	55 (15.2)	344	38 (11.0)	NR
Rivastigmine		Withdrawals due to adverse events	IG1	6	365	49 (13.4)	345	19 (5.5)	NR
Rivastigmine	Corey-Bloom, 1998 ²¹⁶	Adverse events	IG1	6	231	NR	235	NR	NS
Rivastigmine	Fair-Good	Adverse events	IG2	6	233	NR	235	NR	NS
Rivastigmine		Withdrawals due to adverse events	IG1	6	231	66 (28.6)	235	17 (7.2)	NR
Rivastigmine	Corey-Bloom, 1998 ²¹⁶ Fair-Good	due to adverse events	IG2	6	233	19 (8.2)	235	17 (7.2)	NR
Rivastigmine	Feldman, 2007 ²¹⁷	events	IG1	6	227	208 (91.6)		169 (76.1)	
Rivastigmine	Fair	Adverse events	IG2	6	228	208 (91.2)		169 (76.1)	NR
Rivastigmine		Serious adverse events	IG1	6	227	40 (17.6)	222	33 (14.9)	NR

Author, year Time, IG n at (%) with CG n at (%) with diffe	tween
Rivastigmine Serious adverse IG2 adverse 6 228 40 (17.5) 222 33 (14.9) NR adverse Rivastigmine Withdrawals IG1 due to adverse events 6 227 24 (10.6) 222 20 (9.0) NR Rivastigmine McKeith, 2000 ²¹⁸ McKeith, 2000 ²¹⁸ IG1 5 59 54 (91.5) 61 46 (75.4) NR Rivastigmine McKeith, 2000 ²¹⁸ Adverse events IG1 5 59 54 (91.5) 61 46 (75.4) NR Rivastigmine McKeith, 2000 ²¹⁸ Adverse IG1 5 59 7 (11.9) 61 7 (11.5) NR Rivastigmine Mok, 2007 ²¹⁹ Adverse IG1 6 20 12 (60.0) 20 10 (50.0) NR Rivastigmine Fair Adverse IG1 6 20 6 (30.0) 20 3 (15.0) NR Rivastigmine Fair Adverse IG1 6 242 122 (90.9) 239 172 (72.0)<	roup erence, value
adverse events adverse events adverse events adverse events adverse events Rivastigmine McKeith, 2000 ²¹⁸ Withdrawals due to adverse events IG1 6 227 24 (10.6) 222 20 (9.0) NR Rivastigmine McKeith, 2000 ²¹⁸ Withdrawals due to adverse events IG1 5 59 54 (91.5) 61 46 (75.4) NR Rivastigmine Fair-Good Adverse events IG1 5 59 10 (16.9) 61 8 (13.1) NR Rivastigmine Mok, 2007 ²¹⁹ Adverse events IG1 5 59 7 (11.9) 61 7 (11.5) NR Rivastigmine Mok, 2007 ²¹⁹ Adverse IG1 6 20 12 (60.0) 20 10 (50.0) NR Rivastigmine Rivastigmine Rosler, 1999 ²²⁰ Adverse IG1 6 20 6 (30.0) 20 3 (15.0) NR Rivastigmine Rivastigmine Rivastigmine IG1 6 242 172 (71.1) 239 <td>value</td>	value
events events 24 (10.6) 222 20 (9.0) NR Rivastigmine Withdrawals IG1 6 227 24 (10.6) 222 20 (9.0) NR Rivastigmine Withdrawals IG2 6 228 38 (16.7) 222 20 (9.0) NR Rivastigmine McKeith, 2000 ²¹⁶ Adverse events IG1 5 59 54 (91.5) 61 46 (75.4) NR Rivastigmine Fair-Good Adverse events IG1 5 59 10 (16.9) 61 8 (13.1) NR Rivastigmine Mok, 2007 ²¹⁹ Adverse events IG1 5 59 7 (11.9) 61 7 (11.5) NR Rivastigmine Mok, 2007 ²¹⁹ Adverse events IG1 6 20 12 (60.0) 20 10 (50.0) NR Rivastigmine Rivastigmine Rosler, 1999 ²²⁰ Adverse events IG1 6 242 220 (90.9) 239 172 (72.0) NR Rivastigmine <t< td=""><td></td></t<>	
Rivastigmine Withdrawals IG1 6 227 24 (10.6) 222 20 (9.0) NR Rivastigmine Withdrawals IG2 6 228 38 (16.7) 222 20 (9.0) NR Rivastigmine McKeith, 2000 ²¹⁸ Withdrawals IG2 6 228 38 (16.7) 222 20 (9.0) NR Rivastigmine McKeith, 2000 ²¹⁸ Adverse IG1 5 59 54 (91.5) 61 46 (75.4) NR Rivastigmine Fair-Good Serious adverse IG1 5 59 10 (16.9) 61 8 (13.1) NR Rivastigmine Mok, 2007 ²¹⁹ Adverse IG1 5 59 7 (11.9) 61 7 (11.5) NR Rivastigmine Mok, 2007 ²¹⁹ Adverse IG1 6 20 12 (60.0) 20 10 (50.0) NR Rivastigmine Rivastigmine Rivastigmine Adverse IG1 6 242 220 (90.9) 239 172 (72.0)	
due to adverse events due to adverse events due to adverse due to< adverse due to< adverse due to	
Rivastigmine events G2 6 228 38 (16.7) 222 20 (9.0) NR Rivastigmine McKeith, 2000 ²¹⁸ Adverse events IG1 5 59 54 (91.5) 61 46 (75.4) NR Rivastigmine Fair-Good Serious adverse events IG1 5 59 54 (91.5) 61 46 (75.4) NR Rivastigmine Fair-Good Serious adverse IG1 5 59 10 (16.9) 61 8 (13.1) NR Rivastigmine Mok, 2007 ²¹⁹ Adverse events IG1 5 59 7 (11.9) 61 7 (11.5) NR Rivastigmine Mok, 2007 ²¹⁹ Adverse events IG1 6 20 12 (60.0) 20 10 (50.0) NR Rivastigmine Fair Fair-Good IG1 6 20 6 (30.0) 20 3 (15.0) NR Rivastigmine Rivastigmine Rivastigmine Rivastigmine IG1 6 242 172 (71.1) 23	
Rivastigmine Withdrawals due to adverse events IG2 bit for adverse events 6 228 38 (16.7) 222 20 (9.0) NR Rivastigmine McKeith, 2000 ²¹⁸ Adverse events IG1 5 59 54 (91.5) 61 46 (75.4) NR Rivastigmine Fair-Good Serious adverse events IG1 5 59 10 (16.9) 61 8 (13.1) NR Rivastigmine Mok, 2007 ²¹⁹ Adverse events IG1 5 59 7 (11.9) 61 7 (11.5) NR Rivastigmine Mok, 2007 ²¹⁹ Adverse events IG1 6 20 12 (60.0) 20 10 (50.0) NR Rivastigmine Rosler, 1999 ²²⁰ Adverse events IG1 6 20 6 (30.0) 20 3 (15.0) NR Rivastigmine Rivastigmine Rosler, 1999 ²²⁰ Adverse events IG2 6 242 172 (71.1) 239 172 (72.0) NR Rivastigmine Rivastigmine Serious adverse events I	
due to adverse events due to adverse events due to adverse due to events due to adverse due to serious due to adverse full	
adverse events adverse events adverse events adverse events adverse fair adverse events adverse fair adverse events adverse fair adverse events adverse fair fair fair fair <td></td>	
events events Gamma adverse Gadverse Gamma adverse	
Rivastigmine Rivastigmine McKeith, 2000 ²¹⁸ Adverse events IG1 5 59 54 (91.5) 61 46 (75.4) NR Rivastigmine Fair-Good Serious adverse events IG1 5 59 10 (16.9) 61 8 (13.1) NR Rivastigmine Mok, 2007 ²¹⁹ Fair Kithdrawals due to adverse events IG1 5 59 7 (11.9) 61 7 (11.5) NR Rivastigmine Mok, 2007 ²¹⁹ Fair Adverse events IG1 6 20 12 (60.0) 20 10 (50.0) NR Rivastigmine Rosler, 1999 ²²⁰ Fair Adverse events IG1 6 20 6 (30.0) 20 3 (15.0) NR Rivastigmine Rosler, 1999 ²²⁰ Fair-Good Adverse events IG1 6 242 172 (71.1) 239 172 (72.0) NR Rivastigmine Rivastigmine Serious adverse events IG1 6 242 44 (18.2) 239 43 (18.0) NR Rivastigmine Withdrawals IG1 <	
2000 ²¹⁸ events Image: Constraint of the second s	
Rivastigmine RivastigmineFair-GoodSerious adverse eventsIG155910 (16.9)618 (13.1)NRRivastigmineRivastigmineMok, 2007219 FairAdverse eventsIG15597 (11.9)617 (11.5)NRRivastigmineMok, 2007219 FairAdverse eventsIG162012 (60.0)2010 (50.0)NRRivastigmineFairWithdrawals due to adverse eventsIG16206 (30.0)203 (15.0)NRRivastigmineRosler, 1999220 Fair-GoodAdverse eventsIG16242220 (90.9)239172 (72.0)NRRivastigmineRivastigmineRosler, 1999220 Fair-GoodAdverse eventsIG26242172 (71.1)239172 (72.0)NRRivastigmineSerious adverse eventsIG1624244 (18.2)23943 (18.0)NRRivastigmineSerious adverse eventsIG2624244 (18.2)23943 (18.0)NRRivastigmineWithdrawalsIG1624255 (22.7)23916 (6.7)NRRivastigmineWithdrawalsIG1624255 (22.7)23916 (6.7)NR	
adverse eventsadverse eventsadverse eventsadverse eventsadverse eventsadverse for adverse eventsadverse for adverseadverse eventsadverse for adverseadverse eventsadverse for adverseadverse eventsadverse for adverseadverse eventsadverse for adverseadverse eventsadverse eventsadverse eventsadverse for adverseadverse eventsadverse for adverseadverse eventsadverse for adverseadverse eventsadverse for adverseadverse eventsadverse for adverseadverse eventsadverse for adverseadverse eventsadverse for adverseadverse for adverse<	
Rivastigmine events Sevents Sevents Sevents Sevents Sevents Sevents Sevents Sevents Sevents Rivastigmine Mok, 2007 ²¹⁹ Adverse events Adverse IG1 6 20 12 (60.0) 20 10 (50.0) NR Rivastigmine Mok, 2007 ²¹⁹ Fair Adverse events IG1 6 20 12 (60.0) 20 10 (50.0) NR Rivastigmine Fair Withdrawals due to adverse events IG1 6 20 6 (30.0) 20 3 (15.0) NR Rivastigmine Rosler, 1999 ²²⁰ Adverse events IG1 6 242 220 (90.9) 239 172 (72.0) NR Rivastigmine Fair-Good IG2 6 242 172 (71.1) 239 172 (72.0) NR Rivastigmine Serious adverse events IG1 6 242 44 (18.2) 239 43 (18.0) NR Rivastigmine Serious adverse events IG1 6 242 55 (22.7) 239 43 (18.0) NR	
Rivastigmine Withdrawals due to adverse events IG1 5 59 7 (11.9) 61 7 (11.5) NR Rivastigmine Mok, 2007 ²¹⁹ Fair Mok, 2007 ²¹⁹ Adverse IG1 6 20 12 (60.0) 20 10 (50.0) NR Rivastigmine Fair Adverse IG1 6 20 6 (30.0) 20 10 (50.0) NR Rivastigmine Rosler, 1999 ²²⁰ Fair-Good Adverse IG1 6 242 220 (90.9) 239 172 (72.0) NR Rivastigmine Fair-Good IG1 6 242 172 (71.1) 239 172 (72.0) NR Rivastigmine Fair-Good IG1 6 242 44 (18.2) 239 43 (18.0) NR Rivastigmine Serious adverse events IG1 6 242 44 (18.2) 239 43 (18.0) NR Rivastigmine Withdrawals due to IG1 6 242 55 (22.7) 239 43 (18.0) NR	
due to adverse events due to adverse events due to adverse due to events due to adverse due to adverse due to events due to adverse due to	
events IG1 6 20 12 (60.0) 20 10 (50.0) NR Rivastigmine Fair Withdrawals IG1 6 20 12 (60.0) 20 10 (50.0) NR Rivastigmine Withdrawals IG1 6 20 6 (30.0) 20 3 (15.0) NR Rivastigmine Rosler, 1999 ²²⁰ Adverse IG1 6 242 220 (90.9) 239 172 (72.0) NR Rivastigmine Fair-Good Adverse IG2 6 242 172 (71.1) 239 172 (72.0) NR Rivastigmine Serious IG1 6 242 172 (71.1) 239 172 (72.0) NR Rivastigmine Serious IG1 6 242 44 (18.2) 239 43 (18.0) NR Rivastigmine Withdrawals IG2 6 242 44 (18.2) 239 43 (18.0) NR werse events Serious IG2 6 242	
Rivastigmine Mok, 2007 ²¹⁹ Fair Adverse events IG1 6 20 12 (60.0) 20 10 (50.0) NR Rivastigmine Withdrawals due to adverse events IG1 6 20 6 (30.0) 20 3 (15.0) NR Rivastigmine Rosler, 1999 ²²⁰ Fair-Good Adverse events IG1 6 242 220 (90.9) 239 172 (72.0) NR Rivastigmine Fair-Good Adverse events IG2 6 242 172 (71.1) 239 172 (72.0) NR Rivastigmine Serious adverse events IG1 6 242 44 (18.2) 239 43 (18.0) NR Rivastigmine Serious adverse events IG2 6 242 44 (18.2) 239 43 (18.0) NR Rivastigmine Withdrawals due to IG1 6 242 55 (22.7) 239 16 (6.7) NR	
FaireventsControlRivastigmineFairWithdrawalsIG16206 (30.0)203 (15.0)NRRivastigmineRosler, 1999220AdverseIG16242220 (90.9)239172 (72.0)NRRivastigmineFair-GoodAdverseIG26242172 (71.1)239172 (72.0)NRRivastigmineSeriousIG1624244 (18.2)23943 (18.0)NRRivastigmineSeriousIG1624244 (18.2)23943 (18.0)NRRivastigmineSeriousIG2624244 (18.2)23943 (18.0)NRRivastigmineWithdrawalsIG1624255 (22.7)23916 (6.7)NRRivastigmineWithdrawalsIG1624255 (22.7)23916 (6.7)NR	
Rivastigmine Withdrawals due to adverse events IG1 due to adverse 6 20 6 (30.0) 20 3 (15.0) NR Rivastigmine Rosler, 1999 ²²⁰ Fair-Good Adverse events IG1 6 242 220 (90.9) 239 172 (72.0) NR Rivastigmine Fair-Good Adverse events IG2 6 242 172 (71.1) 239 172 (72.0) NR Rivastigmine Serious adverse events IG1 6 242 44 (18.2) 239 43 (18.0) NR Rivastigmine Serious adverse events IG2 6 242 44 (18.2) 239 43 (18.0) NR Rivastigmine Withdrawals due to IG2 6 242 44 (18.2) 239 43 (18.0) NR	
due to adverse eventsdue to adverse eventsdue to adverse eventsdue to adverse eventsdue todue toRivastigmineRosler, 1999220 Fair-GoodAdverse eventsIG16242220 (90.9) 239172 (72.0) NRRivastigmineFair-GoodAdverse eventsIG26242172 (71.1) 239172 (72.0) NRRivastigmineSerious adverse eventsIG1624244 (18.2)23943 (18.0) NRRivastigmineSerious adverse eventsIG2624244 (18.2)23943 (18.0) NRRivastigmineWithdrawals due toIG1624255 (22.7)23916 (6.7)NR	
adverse events adverse events adverse adverse </td <td></td>	
events IG1 6 242 220 (90.9) 239 172 (72.0) NR Rivastigmine Fair-Good Adverse IG2 6 242 172 (71.1) 239 172 (72.0) NR Rivastigmine Adverse IG2 6 242 172 (71.1) 239 172 (72.0) NR Rivastigmine Serious IG1 6 242 44 (18.2) 239 43 (18.0) NR Rivastigmine Serious IG2 6 242 44 (18.2) 239 43 (18.0) NR Rivastigmine Serious IG2 6 242 44 (18.2) 239 43 (18.0) NR Rivastigmine Withdrawals IG1 6 242 55 (22.7) 239 16 (6.7) NR	
Rivastigmine Rosler, 1999 ²²⁰ Fair-Good Adverse events IG1 6 242 220 (90.9) 239 172 (72.0) NR Rivastigmine Fair-Good Adverse IG2 6 242 172 (71.1) 239 172 (72.0) NR Rivastigmine Serious IG1 6 242 172 (71.1) 239 172 (72.0) NR Rivastigmine Serious IG1 6 242 44 (18.2) 239 43 (18.0) NR Rivastigmine Serious IG2 6 242 44 (18.2) 239 43 (18.0) NR Rivastigmine Withdrawals IG2 6 242 44 (18.2) 239 43 (18.0) NR	
Fair-GoodeventsIG26242172 (71.1) 239172 (72.0) NRRivastigmineSerious adverse eventsIG1624244 (18.2)23943 (18.0) NRRivastigmineSerious adverse eventsIG2624244 (18.2)23943 (18.0) NRRivastigmineSerious adverse eventsIG2624244 (18.2)23943 (18.0) NRRivastigmineWithdrawals due toIG1624255 (22.7)23916 (6.7)NR	
Rivastigmine Adverse events IG2 6 242 172 (71.1) 239 172 (72.0) NR Rivastigmine Serious adverse events IG1 6 242 44 (18.2) 239 43 (18.0) NR Rivastigmine Serious adverse events IG2 6 242 44 (18.2) 239 43 (18.0) NR Rivastigmine Serious adverse events IG2 6 242 44 (18.2) 239 43 (18.0) NR Rivastigmine IG2 6 242 55 (22.7) 239 16 (6.7) NR Rivastigmine Withdrawals IG1 6 242 55 (22.7) 239 16 (6.7) NR	
eventsIG1624244 (18.2)23943 (18.0)NRRivastigmineSerious eventsIG2624244 (18.2)23943 (18.0)NRRivastigmineSerious adverse eventsIG2624244 (18.2)23943 (18.0)NRRivastigmineWithdrawals due toIG1624255 (22.7)23916 (6.7)NR	
RivastigmineSerious adverse eventsIG1624244 (18.2)23943 (18.0)NRRivastigmineSerious adverse eventsIG2624244 (18.2)23943 (18.0)NRRivastigmineWithdrawals due toIG1624255 (22.7)23916 (6.7)NR	
adverse eventsadver	
Rivastigmine Serious adverse events IG2 6 242 44 (18.2) 239 43 (18.0) NR Rivastigmine Withdrawals due to IG1 6 242 55 (22.7) 239 16 (6.7) NR	
adverse eventsadverse eventsRivastigmineWithdrawalsIG1624255 (22.7)23916 (6.7)NRdue toURURURURURURURURURUR	
eventseventsRivastigmineWithdrawalsIG1624255 (22.7)23916 (6.7)NRdue todue toGamma and the second	
Rivastigmine Withdrawals IG1 6 242 55 (22.7) 239 16 (6.7) NR due to 0 <td< td=""><td></td></td<>	
due to	
adverse	
events	
Rivastigmine Withdrawals IG2 6 242 18 (7.4) 239 16 (6.7) NR	
adverse	
events	
Rivastigmine Winblad, Serious IG1 6 294 21 (7.1) 302 27 (8.9) NR	
2007 ²²¹ adverse	
Fair events	
Rivastigmine Serious IG2 6 303 36 (11.9) 302 27 (8.9) NR	
adverse	
events 22 (7.0) 202 27 (8.0) ND	
Rivastigmine Serious IG3 6 291 23 (7.9) 302 27 (8.9) NR adverse IG3 6 291 23 (7.9) 302 27 (8.9) NR	
events	
Rivastigmine Withdrawals IG1 6 297 24 (8.1) 302 15 (5.0) NR	
due to	
adverse	
events	

Medication	Author, year Quality		Int arm		IG n at FU	IG FU N (%) with event	CG n at FU	event	Between group difference, p-value
Rivastigmine		Withdrawals due to adverse events	IG2	6	303	26 (8.6)	302	15 (5.0)	NR
Rivastigmine		Withdrawals due to adverse events	IG3	6	293	28 (9.6)	302	15 (5.0)	NR
Memantine	Bakchine, 2008 ²²²	Adverse events	IG1	6	318	178 (56.0)	152	80 (52.6)	NR
Memantine	Good	Withdrawals due to adverse events	IG1	6	318	28 (8.8)	152	6 (3.9)	NR
Memantine	Choi, 2011* ²²³ Fair	Adverse events	IG1	4	88	47 (53.4)	83	42 (50.6)	NR, 0.71
Memantine		Serious adverse events	IG1	4	88	4 (4.5)	83	4 (4.8)	NR
Memantine		Withdrawals due to adverse events	IG1	4	88	6 (6.8)	83	4 (4.8)	NR, 0.82
Memantine	Dysken, 2014* ²²⁴	Adverse events	IG1	48	155	97 (62.6)	152	89 (58.6)	NR
Memantine	Good	Serious adverse events	IG1	48	155	84 (54.2)	152	95 (62.5)	NR
Memantine	Ferris, 2007 ²²⁵ Fair	Adverse events	IG1	3	30	19 (63.3)	30	20 (66.7)	NR
Memantine		Serious adverse events	IG1	3	30	0 (0.0)	30	0 (0.0)	NR
Memantine	Herrmann, 2013* ²²⁶	Adverse events	IG1	6	182	138 (75.8)	187	136 (72.7)	NR
Memantine	Fair	Serious adverse events	IG1	6	182	18 (9.9)	187	11 (5.9)	NR
Memantine		Withdrawals due to adverse events	IG1	6	182	15 (8.2)	187	9 (4.8)	NR
Memantine	Orgogozo, 2002 ²²⁷	Adverse events	IG1	6	165	125 (75.8)	156	115 (73.7)	NR
Memantine	Fair-Good	Serious adverse events	IG1	6	165	38 (23.0)	156	40 (25.6)	NR
Memantine		Withdrawals due to adverse events		6	165			, ,	NR
Memantine	Peskind, 2006 ²²⁸	Adverse events	IG1	6	201	143 (71.1)		149 (73.8)	
Memantine	Fair-Good	Serious adverse events	IG1	6	201	20 (10.0)	202	20 (9.9)	NR

Medication	Author, year Quality		Int arm	Time, mo.	IG n at FU	IG FU N (%) with event	CG n at FU	event	Between group difference, p-value
Memantine		Withdrawals due to adverse events		6	201	19 (9.5)	202	10 (5.0)	NR, 0.09
Memantine	Peters, 2015* ²²⁹ Fair	Adverse events	IG1	12	112	89 (79.5)	114	80 (70.2)	NR, 0.108
Memantine		Serious adverse events	IG1	12	112	15 (13.4)	114	15 (13.2)	NR
Memantine	Porsteinsson, 2008 ²³⁰ Good	Serious adverse events	IG1	6	217	27 (12.4)	216	30 (13.9)	NR
Memantine		Withdrawals due to adverse events	IG1	6	217	13 (6.0)	216	17 (7.9)	NR
Memantine	Saxton, 2012 ²³¹ Good	Adverse events	IG1	3	135	66 (48.9)	129	64 (49.6)	NR
Memantine		Serious adverse events	IG1	3	135	4 (3.0)	129	13 (10.1)	NR
Memantine		Withdrawals due to adverse events	IG1	3	136	3 (2.2)	129	4 (3.1)	NR
Memantine	Wilcock, 2002 ²³² Fair-Good	Adverse events	IG1	6	295	226 (76.6)	284	212 (74.6)	NR
Memantine		Serious adverse events	IG1	6	295	37 (12.5)	284	47 (16.5)	NR
Memantine		Withdrawals due to adverse events	IG1	6	295	27 (9.2)	284	20 (7.0)	NR
Memantine	Wilkinson, 2012 ²³³	Adverse events	IG1	12	133	32 (24.1)	144	22 (15.3)	NR
Memantine	Fair	Serious adverse events	IG1	12	133	17 (12.8)	144	20 (13.9)	NR
Memantine	Wilkinson, 2012 ²³³ Fair	Withdrawals due to adverse events	IG1	12	133	15 (11.3)	144	12 (8.3)	NR

* New study

† Number of events reported

Abbreviations: CG = control group; FU = followup; IG = intervention group; Int arm = intervention arm; mo. = months; n (%) = number (percentage) of participants reporting events

										IG mean				00	Between
Medication		Author, year	Pon	Instrument	Int	Timo	IG BL mean	IG n at	IG FU mean	change (SD) from	CG BL mean	CG n at	CG FU mean	CG mean	group difference, p-
type	Intervention	Quality	cat	(range) [†]	arm	mo.	(SD)	FU	(SD)	BL	(SD)	FU	(SD)	from BL	value
Antihypertensive		Moonen.		MMSE (0-30)		4	26 [‡]	180		1.15 (0.85,			NR	-	NR, 0.12
	of	2015* ²³⁷				l.	(NR)	100		1.45) [§]	(NR)			1.12) [§]	
	antihypertensive						· /			- /	· /			,	
HMG-CoA	Atorvastatin	Feldman,	Dem	ADAS-Cog 11	IG1	3	22.3	296	NR	0.17 [∎]	22.5	316	NR	0.35 ^{II} (0.26) [¶]	LSM change
reductase		2010 ²³⁸		(0-70)			(9.1)			(0.27) [¶]	(9.9)				(SE)=-0.18
inhibitor		Fair													(0.38), 0.63
HMG-CoA	Atorvastatin		Dem	ADAS-Cog 11	IG1	6		263	NR		22.5	308	NR	0.79 ^{II} (0.32) [¶]	LSM change
reductase				(0-70)			(9.1)			(0.34) [¶]	(9.9)				(SE)=-0.42
inhibitor															(0.47), 0.36
HMG-CoA	Atorvastatin		Dem	ADAS-Cog 11	IG1	11		236	NR			278	NR	4.12 [∥] (0.42) [¶]	LSM change
reductase				(0-70)			(9.1)			(0.45) [¶]	(9.9)				(SE)=-0.51
inhibitor		-													(0.61), 0.41
HMG-CoA	Atorvastatin		Dem	ADAS-Cog 11	IG1	18		202	NR			235	NR	6.82 [∥] (0.52)¶	LSM change
reductase				(0-70)			(9.1)			(0.56) [¶]	(9.9)				(SE)=-0.84
inhibitor	A	4	_		101	_				0.44		0.4.0			(0.76), 0.27
HMG-CoA	Atorvastatin		Dem	MMSE (0-30)	IG1	3		295	NR			316	NR	-0.07 [∥] (0.15) [¶]	
reductase							(3.2)			(0.16) [¶]	(3.2)				(SE)=0.17
inhibitor HMG-CoA	Atorvastatin	-	Dom	MMSE (0-30)	IG1	6	21.8	263		-0.28"	21.9	308	NR	0.45 (0.46)	(0.22), 0.42 LSM change
reductase	Alorvasialin		Dem	IVIIVISE (0-30)	IGI	0	(3.2)	203	INK	-0.28° (0.17)¶	21.9 (3.2)	300		-0.45" (0.16)"	(SE)=0.16
inhibitor							(3.2)			(0.17)*	(3.2)				(0.24), 0.49
HMG-CoA	Atorvastatin	-	Dem	MMSE (0-30)	IG1	11	21.8	236	NR	-0.96"	21.9	278	NR	-1 35 (0 21)¶	LSM change
reductase			Dem		101		(3.2)	200		(0.22) [¶]	(3.2)	210		-1.55 (0.21)*	(SE)=0.39
inhibitor							(0.2)			(0.22)	(0)				(0.2) = 0.00 (0.31), 0.20
HMG-CoA	Atorvastatin	-	Dem	MMSE (0-30)	IG1	18	21.8	205	NR	-1.66 [∎]	21.9	234	NR	-2.18 ^{II} (0.24) [¶]	
reductase				(****)			(3.2)			(0.26) [¶]	(3.2)				(SE)=0.52
inhibitor							、 <i>,</i>			· · /	· /				(0.35), 0.14
HMG-CoA	Simvastatin	Sano,	Dem	ADAS-Cog 11	IG1	3	24.5	204	NR	1.89 (5.35)	23.9	202	NR	1.11 (5.32)	NS
reductase		2011 ²³⁹		(0-70)			(9.7)			. ,	(10.5)				
inhibitor		Fair		. ,			. ,				. ,				
HMG-CoA	Simvastatin	Sano,	Dem	ADAS-Cog 11	IG1	6		204	NR	2.51 (5.61)	23.9	202	NR	2.32 (5.9)	NS
reductase		2011 ²³⁹		(0-70)			(9.7)				(10.5)				
inhibitor		Fair													
HMG-CoA	Simvastatin		Dem	ADAS-Cog 11	IG1	12		204	NR	5.79 (7.76)		202	NR	5.36 (6.95)	NS
reductase				(0-70)			(9.7)				(10.5)				
inhibitor		4				ļ									
HMG-CoA	Simvastatin		Dem	ADAS-Cog 11	IG1	18		204	NR	9.51 (9.48)		202	NR	8.18 (8.7)	NS
reductase				(0-70)			(9.7)				(10.5)				
inhibitor															

Medication type Intervention (SD) Columbia et (SD) (SD)								IG BI	lG n	IG FU	IG mean change	CG BI	CG n	CG FU	CG mean	Between group
HMC-CoA Simvastatin eductase Dem MMSE (0-30) G1 3 20.0 204 NR -0.2 20.7 202 NR -0.1 (3.1) NS HMC-CoA Simvastatin Dem MMSE (0-30) IG1 8 20.0 204 NR -0.72 202 NR -0.1 (3.1) NS HMC-CoA Simvastatin Dem MMSE (0-30) IG1 8 20.0 204 NR -0.72 202 NR -0.89 (3.23) NS HMC-CoA Simvastatin Dem MMSE (0-30) IG1 12 20.0 204 NR -2.47 (3.8) 20.7 202 NR -3.75 (4.38) NS HMG-CoA Simvastatin Z002*0 Dem MMSE (0-30) IG1 18 20.0 204 NR 4.23 20.7 202 NR -3.75 (4.38) NS HMG-CoA Simvastatin Z005*00 Fair MMSE (0-30) IG1 6 17.8 20.1 1.1 1.7 1.4.4 1.7.0 1.9 1.2.4 1.7.0	Medication		Author, year	Pop	Instrument	Int	Time,				(SD) from					
Feductase inhibitor Image: Simvastatin reductase inhibitor Image: Simvastatin reductase Image: Simvastatin reductase Image: Simvastatin reductase <thi< th=""><th>type</th><th>Intervention</th><th>Quality</th><th>cat</th><th>(range)[†]</th><th>arm</th><th>mo.</th><th>(SD)</th><th>FU</th><th>(SD)</th><th></th><th>(SD)</th><th>FU</th><th>(SD)</th><th>from BL</th><th></th></thi<>	type	Intervention	Quality	cat	(range) [†]	arm	mo.	(SD)	FU	(SD)		(SD)	FU	(SD)	from BL	
Inhibitor Imb I	HMG-CoA	Simvastatin		Dem	MMSE (0-30)	IG1	3	20.0	204			20.7	202	NR	-0.1 (3.1)	NS
HMG-CoA reductase inhibitor Simvastatin reductase inhibitor Dem MMSE (0-30) IG1 6 20.0 204 NR -0.72 202 NR -0.89 (3.23) NS HMG-CoA reductase inhibitor Simvastatin reductase Dem MMSE (0-30) IG1 12 20.0 204 NR -2.27 (3.8) 20.7 202 NR -2.28 (4.08) NS HMG-CoA reductase Simvastatin reductase Dem MMSE (0-30) IG1 18 20.0 204 NR -2.47 (3.8) 20.7 202 NR -2.28 (4.08) NS HMG-CoA reductase Simvastatin reductase Simvastatin reductase Simvastatin reductase Dem MMSE (0-30) IG1 6 29.4 20 NR 4.1 (6.5) 33.2 17 NR 3.4 (7.0) NS HMG-CoA reductase Atorvastatin reductase Sparks, 2005 ²⁴¹ Dem ADAS-Cog 11 IG1 5 20.6 32 20.7 NR 19.9 31 20.7 NR NR NR NR 0.70) NR 17.31* NR 17.31* NR 17.31* NR 17.31* 18.4								(4.5)			(2.74)	(4.9)				
reductase nhibitor HMG-CoA reductase nhibitor HMG-CoA reductase nhibitor HMG-CoA reductase nhibitor HMG-CoA reductase nhibitor HMG-CoA reductase nhibitor HMG-CoA reductase nhibitor HMG-CoA reductase nhibitor HMG-CoA reductase nhibitor HMG-CoA reductase nhibitor HMG-CoA reductase nhibitor HMG-CoA reductase nhibitor HMG-CoA reductase nhibitor HMG-CoA reductase nhibitor HMG-CoA reductase nhibitor HMG-CoA reductase nhibitor HMG-CoA Atorvastatin reductase nhibitor HMG-CoA Atorvastatin reductase nhibitor HMG-CoA Atorvastatin reductase nhibitor HMG-CoA Atorvastatin reductase nhibitor HMG-CoA Atorvastatin reductase nhibitor HMG-CoA Atorvastatin reductase nhibitor HMG-CoA Atorvastatin reductase nhibitor HMG-CoA Atorvastatin reductase nhibitor HMG-CoA Atorvastatin reductase nhibitor HMG-CoA Atorvastatin reductase nhibitor HMG-CoA Atorvastatin reductase nhibitor HMG-CoA Atorvastatin reductase nhibitor HMG-CoA Atorvastatin reductase nhibitor HMG-CoA Atorvastatin reductase nhibitor HMG-CoA Atorvastatin reductase nhibitor HMG-CoA Atorvastatin reductase Perm ADAS-Cog 11 [G1 20.6 (1.73) ⁴ (1.73) ⁴ (2.0) ⁴ (1.73) ⁴ (2.0) ⁴ (1.73) ⁴ (2.0) ⁴ (1.73) ⁴ (2.0) ⁴ (1.73) ⁴ (2.0) ⁴ (2.0) ⁴ (1.73) ⁴ (inhibitor															
Inhibitor Image: constraint of the constratene constraint of the constratene of the constraint of	HMG-CoA	Simvastatin		Dem	MMSE (0-30)	IG1	6	20.0	204	NR	-0.72		202	NR	-0.89 (3.23)	NS
HMG-CoA reductase inhibitor Simvastatin reductase inhibitor Dem MMSE (0-30) IG1 12 20.0 20.4 NR -2.47 (3.8) 20.7 202 NR -2.28 (4.08) NS HMG-CoA reductase Simvastatin reductase Dem MMSE (0-30) IG1 18 20.0 204 NR -2.47 (3.8) 20.7 202 NR -3.75 (4.38) NS HMG-CoA reductase Simvastatin reductase Simvastatin Simons, 2002 ²⁴⁰ Per ADAS-Cog 11 IG1 6 29.4 20 NR 4.1 (6.5) 33.2 17. NR 3.4 (7.0) NS HMG-CoA reductase Simvastatin reductase Simvastatin Dem MMSE (0-30) IG1 6 17.8 20 17.2 NR 11.1 17 NR NR 0.02 HMG-CoA reductase Simvastatin reductase Sparks, 2005 ²⁴¹ Dem ADAS-Cog 11 IG1 3 20.6 32 20.5 NR 19.9 31 22.1 NR NR, 0.003 HMG-CoA reductase Atorvastatin rhibitor Fair Dem ADAS-Cog 11 IG1 8 <td>reductase</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>(4.5)</td> <td></td> <td></td> <td>(3.26)</td> <td>(4.9)</td> <td></td> <td></td> <td></td> <td></td>	reductase							(4.5)			(3.26)	(4.9)				
reductase inhibitor MG-CoA Simvastatin Dem MMSE (0-30) IG1 18 20.0 204 NR 4.23 20.7 202 NR -3.75 (4.38) NS HMG-CoA Simvastatin Simons, 2002 ²⁴⁰ Fair Dem MDSE (0-30) IG1 6 29.4 NR 4.23 20.7 (4.9) 20 NR -3.75 (4.38) NS HMG-CoA Simvastatin 2002 ²⁴⁰ Fair Dem MDSE (0-30) IG1 6 29.4 20 NR 4.1 (6.5) 33.2 17 NR 3.4 (7.0) NS inbibitor Fair Dem MDSE (0-30) IG1 6 17.8 20 17.2 NR 17.1 17 14.4 NR NR, <0.02																
Inhibitor Image: Constraint of the constrain		Simvastatin		Dem	MMSE (0-30)	IG1	12		204	NR	-2.47 (3.8)		202	NR	-2.28 (4.08)	NS
HMG-CoA reductase inhibitor Simvastatin Simons, 2002 ²⁴⁰ inhibitor Dem MMSE (0-30) IG1 IG1 18 (2,1) 20.0 (4.5) VR (4.77) 4.23 (4.77) 20.7 (4.77) 202 (4.9) NR (4.77) 3.75 (4.38) NS HMG-CoA reductase inhibitor Simvastatin reductase inhibitor Dem Fair Dem MMSE (0-30) IG1 18 20.0 (4.5) 20 NR 4.16.5) 33.2 (11.3) 17 NR 3.4 (7.0) NS HMG-CoA reductase inhibitor Simvastatin reductase inhibitor Dem MMSE (0-30) IG1 6 17.8 (5.0) 20 17.2 (4.8) NR 17.1 (4.8) 17 14.4 (1.4) NR NR NR NR 0.02 HMG-CoA reductase inhibitor Atorvastatin reductase inhibitor Dem ADAS-Cog 11 IG1 3 20.6 (0.70) 18.8 (1.73) ⁴ NR 19.9 (1.73) ⁴ 31 22.7 (1.4) ⁴ NR NR, 0.03 HMG-CoA reductase inhibitor Atorvastatin reductase inhibitor Atorvastatin reductase inhibitor Atorvastatin Fair Dem MMSE (0-30) IG1 8 20.6 (1.73) ⁴ 20.8 (1.73) ⁴ NR 19.9 (1.73) ⁴ 31 22.8 (1.5) ⁵ NR NR,								(4.5)				(4.9)				
reductase inhibitor MMG-CoA simvastatin reductase Simvastatin 2002 ²⁴⁰ inhibitor Dem ADAS-Cog 11 IG1 (0-70) 6 29.4 (10.4) 20 NR 4.1 (6.5) 33.2 (11.3) 17 NR 3.4 (7.0) NS MG-CoA reductase Simvastatin inhibitor Fair Dem MMSE (0-30) IG1 6 17.8 (5.0) 20 NR 4.1 (6.5) 33.2 (11.3) 17 NR 3.4 (7.0) NS HMG-CoA reductase Simvastatin inhibitor Fair Dem MMSE (0-30) IG1 6 17.8 (5.0) 20.5 (NR) NR 17.1 (4.9) 17 14.4 (4.9) NR NR NR 0.02 HMG-CoA reductase inhibitor Atorvastatin reductase Sparks, 2005 ^{2/11} Fair Dem ADAS-Cog 11 IG1 (0-70) 32 20.6 (1.73) ¹ 32 18.8 (1.4) ¹ NR 19.9 (1.73) ¹ 31 22.1 (1.73) ¹ NR NR, 0.003 HMG-CoA reductase Atorvastatin inhibitor Fair Dem ADAS-Cog 11 IG1 8 20.6 (0-70) 32 20.8 (1.73) ¹ NR 19.9 (1.73) ¹ 31 22.8 (1.5) ¹ NR NR, 0.45 HMG-CoA reductase Atorvastatin inhibitor <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																
Inhibitor Image: Mark and the second se		Simvastatin		Dem	MMSE (0-30)	IG1	18		204	NR			202	NR	-3.75 (4.38)	NS
HMG-CoA reductase inhibitor Simvastatin 2002 ²⁴⁰ Fair Dem ADAS-Cog 11 (D-70) ADAS-Cog 11 (G-70) IG1 (G-70) 6 (10.4) 20 (10.4) NR 4.1 (6.5) (1.3) 3.2 (1.3) 17 (T.3) NR 3.4 (7.0) NS HMG-CoA reductase inhibitor Simvastatin reductase inhibitor Sparks, 2005 ²⁴¹ Dem ADAS-Cog 11 IG1 G-70) 6 (1.73) ⁴ 17.2 (4.8) NR 17.1 (4.9) 17.4 (4.9) NR NR<								(4.5)			(4.77)	(4.9)				
reductase Inhibitor 2002 ²⁴⁰ Fair (0-70) (10.4) (11.3) (11.3) (11.3) HMG-CoA reductase Inhibitor Simvastatin Perm MMSE (0-30) IG1 6 17.8 20 17.2 NR 17.1 17 14.4 NR NR, <0.02																
Inhibitor Fair Dem MMSE (0-30) IG1 G 17.8 (5.0) 17.2 (4.8) NR 17.1 (4.9) 17.1 (4.9) 17.1 (5.6) NR NR </td <td></td> <td>Simvastatin</td> <td>Simons,</td> <td>Dem</td> <td></td> <td>IG1</td> <td>6</td> <td></td> <td>20</td> <td>NR</td> <td>4.1 (6.5)</td> <td></td> <td>17</td> <td>NR</td> <td>3.4 (7.0)</td> <td>NS</td>		Simvastatin	Simons,	Dem		IG1	6		20	NR	4.1 (6.5)		17	NR	3.4 (7.0)	NS
HMG-CoA reductase inhibitor Simvastatin reductase inhibitor Dem MMSE (0-30) IG1 6 17.8 (5.0) 20 17.2 (4.8) NR 17.1 (4.9) 17.1 (4.9) 17.1 (4.9) 17.1 (5.6) NR NR NR, <0.02 HMG-CoA reductase inhibitor Atorvastatin inhibitor Sparks, 2005 ²⁴¹ inhibitor Dem ADAS-Cog 11 IG1 3 20.6 (1.73) ⁴ 32 20.5 (NR) NR 19.9 (1.73) ⁴ 31 20.7 (NR) NR NS HMG-CoA reductase inhibitor Atorvastatin inhibitor Fair Dem ADAS-Cog 11 IG1 6 20.6 (1.73) ⁴ 32 18.8 (1.5) ⁴ NR 19.9 (1.73) ⁴ 31 22.1 (1.9) NR NR, 0.03 HMG-CoA reductase inhibitor Atorvastatin Pem ADAS-Cog 11 IG1 8 20.6 (1.73) ⁴ 32 20.8 (1.73) ⁴ NR 19.9 (1.73) ⁴ 31 22.8 (1.5) ⁴ NR NR, 0.18 HMG-CoA reductase reductase Atorvastatin rhibitor Sparks, 2005 ²⁴¹ Fair Dem MMSE (0-30) IG1 3 21.09 (0.61) ⁴					(0-70)			(10.4)				(11.3)				
reductase inhibitor Atorvastatin Sparks, 2005 ²⁴¹ Fair Dem ADAS-Cog 11 IG1 (0-70) 32 20.5 (NR) NR 19.9 (1.73) [§] 31 (NR) 20.7 (NR) NR NS HMG-CoA reductase inhibitor Atorvastatin Fair Dem ADAS-Cog 11 IG1 (0-70) 6 20.6 (1.73) [§] 32 18.8 (1.4) [§] NR 19.9 (1.73) [§] 31 22.1 (1.9) NR NR 0.9 1.173) [§] 1 1.9 NR NR 0.9 0.173) [§] 1 22.1 NR NR 0.9 0.173) [§] 1 2.1 NR NR 0.9 0.173) [§] 1 2.1 NR NR 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.1 0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1			Fair													
Inhibitor Atorvastatin Sparks, 2005 ²⁴¹ Dem ADAS-Cog 11 IG1 3 20.6 NR 19.9 31 20.7 NR NS Inhibitor Fair Fair Dem ADAS-Cog 11 IG1 3 20.6 (1.73) ¹ 32 20.5 NR 19.9 31 20.7 NR NS HMG-CoA Atorvastatin Fair Dem ADAS-Cog 11 IG1 6 20.6 32 18.8 NR 19.9 31 22.1 NR NR 0.003 Inhibitor Fair Dem ADAS-Cog 11 IG1 8 20.6 32 0.8 NR 19.9 31 22.8 NR NR 0.03 Inhibitor Inhibitor Dem ADAS-Cog 11 IG1 12 20.6 32 20.3 (1.73) ¹ 31 22.8 NR (1.5) ¹ NR 0.055 Inhibitor Pem ADAS-Cog 11 IG1 12 20.6		Simvastatin		Dem	MMSE (0-30)	IG1	6		20		NR		17		NR	NR, <0.02
HMG-CoA reductase inhibitor Atorvastatin Sparks, 2005 ²⁴¹ Fair Dem ADAS-Cog 11 (0-70) ADAS-Cog 11 (G 1) G1 3 20.6 (1.73) [§] 32 (1.73) [§] NR 19.9 (1.73) [§] 31 20.7 (NR) NR NS HMG-CoA reductase inhibitor Atorvastatin reductase Fair Dem ADAS-Cog 11 (G 1) G1 6 20.6 (1.73) [§] 32 18.8 (1.4) [¶] NR 19.9 (1.73) [§] 31 22.1 (1.9) NR NR, 0.003 HMG-CoA reductase inhibitor Atorvastatin reductase Dem ADAS-Cog 11 G1 6 20.6 (1.73) [§] 32 20.8 (1.5) [¶] NR 19.9 (1.73) [§] 31 22.8 (1.5) [¶] NR NR, 0.18 HMG-CoA reductase inhibitor Atorvastatin reductase Sparks, 2005 ²⁴¹ Dem MDSE (0-30) IG1 3 21.09 (0.61) [§] NR 20.52 (0.76) [§] 31 22.6 (1.73) [§] NR 19.9 (1.73) [§] 31 22.6 (2.0) [§] NR NR NR 0.55 HMG-CoA reductase Atorvastatin rhibitor Fair Dem MMSE (0-30) IG1 6 21.09 (0.61								(5.0)		(4.8)		(4.9)		(5.6)		
reductase inhibitor 2005 ²⁴¹ Fair (0-70) (1.73) [¶] (NR) (1.73) [¶] (NR) HMG-CoA reductase inhibitor Atorvastatin reductase Pem ADAS-Cog 11 (0-70) IG1 6 20.6 (1.73) [¶] 32 (1.4) [¶] 18.8 (1.4) [¶] NR 19.9 (1.73) [¶] 31 22.1 (1.9) NR NR, 0.003 HMG-CoA reductase Atorvastatin reductase Pem ADAS-Cog 11 (0-70) IG1 8 20.6 (1.73) [¶] 32 20.8 (1.5) [¶] NR 19.9 (1.73) [¶] 31 22.8 (1.5) [¶] NR NR, 0.18 HMG-CoA reductase Atorvastatin inhibitor Dem ADAS-Cog 11 (0-70) IG1 12 20.6 (1.73) [¶] 32 20.3 (1.7) [¶] NR 19.9 (1.73) [¶] 31 22.8 (2.0) [¶] NR NR, 0.055 HMG-CoA reductase Atorvastatin inhibitor Sparks, 2005 ²⁴¹ Dem MMSE (0-30) IG1 3 21.09 (0.61) [¶] 32 20.2 (NR) NR 20.52 (0.76) [¶] NR 1.0, [¶] 1.0, [¶] 1.0, [¶] 1.0, [¶] </td <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				_			_									
Inhibitor Fair Fair Construction Co		Atorvastatin		Dem		IG1	3		32		NR		31		NR	NS
HMG-CoA reductase inhibitor Atorvastatin reductase (0-70) Dem ADAS-Cog 11 IG1 6 20.6 (1.73)* 32 18.8 (1.4)* NR 19.9 (1.73)* 31 22.1 (1.9) NR NR 0.003 HMG-CoA reductase inhibitor Atorvastatin reductase inhibitor Dem ADAS-Cog 11 IG1 8 20.6 (1.73)* 32 20.8 (1.5)* NR 19.9 (1.73)* 31 22.8 (1.5)* NR NR 0.9 (1.73)* 31 22.8 (1.5)* NR NR 0.9 (1.73)* 1.5* NR 19.9 (1.5)* 31 22.8 (1.5)* NR NR 0.9 (1.73)* 1.5* NR 19.9 (1.73)* 31 22.8 (1.5)* NR 0.75* 1.5* NR 0.5* (1.5)* 0.5* (1.73)* 1.5* NR 0.5* (1.73)* 1.5* NR 0.5* (2.0** 1.5* NR 19.9 (1.73)* 31 23.6 (2.0** NR NR 0.5* 0.5* (1.73)* 1.5* NR 1.5* 1.5* NR 0.5* 1.5* 1.5* NR 0.5* 1.5* 1.5* <t< td=""><td></td><td></td><td></td><td></td><td>(0-70)</td><td></td><td></td><td>(1.73)⁼</td><td></td><td>(NR)</td><td></td><td>(1.73)⁼</td><td></td><td>(NR)</td><td></td><td></td></t<>					(0-70)			(1.73)⁼		(NR)		(1.73)⁼		(NR)		
reductase inhibitor MG-CoA reductase inhibitor Atorvastatin HMG-CoA reductase inhibitor Atorvastatin HMG-CoA reductase inhibitor MC MC 19.9 (1.73) [¶] 11 22.8 (1.5) [¶] NR NR 19.9 (1.73) [¶] 31 22.8 (1.5) [¶] NR NR NR 19.9 (1.73) [¶] 31 22.8 (1.5) [¶] NR			Fair	_			-									
Inhibitor HMG-CoA Atorvastatin Dem ADAS-Cog 11 IG1 8 20.6 32 20.8 NR 19.9 31 22.8 NR NR, 0.18 HMG-CoA Atorvastatin Dem ADAS-Cog 11 IG1 12 20.6 32 20.8 (1.73) [¶] (1.73) [¶] 19.9 31 22.8 NR NR, 0.18 HMG-CoA Atorvastatin Dem ADAS-Cog 11 IG1 12 20.6 32 20.3 NR 19.9 31 23.6 NR NR, 0.055 Inhibitor		Atorvastatin		Dem		IG1	6		32				31		NR	NR, 0.003
$ \begin{array}{c} HMG-CoA \\ reductase \\ inhibitor \\ HMG-CoA \\ HMG-CoA \\ HMG-CoA \\ reductase \\ inhibitor \\ HMG-CoA \\ HMG-CoA \\ HMG-CoA \\ reductase \\ inhibitor \\ HMG-CoA \\ reductase \\ inhibitor \\ HMG-CoA \\ HMG-CoA \\ HMG-CoA \\ reductase \\ inhibitor \\ HMG-CoA \\ HMG-CoA \\ HMG-CoA \\ reductase \\ inhibitor \\ HMG-CoA \\ reductase \\ inhibitor \\ HMG-CoA \\ HMG-CoA \\ Atorvastatin \\ reductase \\ inhibitor \\ HMG-CoA \\ HMG-CoA \\ Atorvastatin \\ reductase \\ inhibitor \\ HMG-CoA \\ reductase \\ inhibitor \\ HMG-CoA \\ Atorvastatin \\ reductase \\ inhibitor \\ HMG-CoA \\ HMG-CoA \\ Atorvastatin \\ reductase \\ inhibitor \\ HMG-CoA \\ reductase \\ inhibitor \\ HMG-CoA \\ Atorvastatin \\ reductase \\ inhibitor \\ HMG-CoA \\ Atorvastatin \\ reductase \\ hibitor \\ HMG-CoA \\ reductase \\ hibitor \\ hibitor \\ HMG-CoA \\ reductase \\ hibitor \\ $					(0-70)			(1.73)		(1.4)"		(1.73)		(1.9)		
reductase inhibitor (0-70) $(1.73)^{\$}$ $(1.5)^{\$}$ $(1.73)^{\$}$ $(1.73)^{\$}$ $(1.73)^{\$}$ $(1.5)^{\$$		A 4	-	D		104	0	00.0	00	00.0		40.0	04	00.0		
$\frac{\text{inhibitor}}{\text{HMG-CoA}}{\text{HMG-CoA}} = \frac{\text{Atorvastatin}}{\text{Atorvastatin}} = \frac{\text{Atorvastatin}}{\text{Inhibitor}} = \frac{\text{Atorvastatin}}{\text{Inhibitor}} = \frac{\text{Atorvastatin}}{\text{Inhibitor}} = \frac{\text{Sparks}}{\text{Inhibitor}} = \frac{\text{Dem}}{\text{Inhibitor}} = \frac{\text{Dem}}{$		Atorvastatin		Dem	Ų	IG1	8		32				31		NR	NR, 0.18
HMG-CoA reductase inhibitorAtorvastatinDemADAS-Cog 11IG11220.6 $(1.70)^{\$}$ 3220.3 $(1.71)^{\$}$ NR19.9 $(1.73)^{\$}$ 3123.6 $(2.0)^{\$}$ NRNR, 0.055HMG-CoA reductase inhibitorAtorvastatin (205^{241}) FairDemMMSE (0-30)IG1321.09 $(0.61)^{\$}$ 3220.2 (NR) NR20.52 $(0.76)^{\$}$ 3120.5 (NR) NRNSHMG-CoA reductase inhibitorAtorvastatin reductase inhibitorDemMMSE (0-30)IG1621.09 $(0.61)^{\$}$ 3221.2 $(0.61)^{\$}$ NR20.52 $(0.76)^{\$}$ 3119.4 $(1.0)^{\$}$ NRNR, 0.46HMG-CoA inhibitorAtorvastatin reductaseDemMMSE (0-30)IG1821.09 $(0.61)^{\$}$ 3220.7 $(0.7)^{\$}$ NR20.52 $(0.76)^{\$}$ 3118.1 $(1.0)^{\$}$ NRNR, 0.41					(0-70)			(1.73)		(1.5)"		(1.73)"		(1.5)"		
reductase inhibitor(0-70) $(1.73)^{\$}$ $(1.73)^{\$}$ $(1.73)^{\$}$ $(1.73)^{\$}$ $(2.0)^{\$}$ $(2.0)^{\$}$ HMG-CoA reductase inhibitorAtorvastatin 2005^{241} FairDemMMSE (0-30)IG13 21.09 $(0.61)^{\$}$ 32 $(0.61)^{\$}$ 20.52 (NR) NR 20.52 (NR) NRNSHMG-CoA reductase inhibitorAtorvastatin reductaseDemMMSE (0-30)IG16 21.09 $(0.61)^{\$}$ 32 $(0.61)^{\$}$ 20.52 $(0.76)^{\$}$ 31 $(1.0)^{\$}$ 19.4 $(1.0)^{\$}$ NRNR, 0.46HMG-CoA reductaseAtorvastatin reductaseDemMMSE (0-30)IG18 21.09 $(0.61)^{\$}$ 32 $(0.71)^{\$}$ 20.52 $(0.76)^{\$}$ 31 $(1.0)^{\$}$ 19.4 $(1.0)^{\$}$ NRNR, 0.46HMG-CoA reductaseAtorvastatin reductaseDemMMSE (0-30)IG1 8 $(0.61)^{\$}$ 21.09 $(0.61)^{\$}$ 32 $(0.71)^{\$}$ 20.52 $(0.76)^{\$}$ 31 $(1.0)^{\$}$ 18.1 $(1.1)^{\$}$ NRNR, 0.41		Atomostatin	-	Dom		101	10	20.6	22	20.2		10.0	24	22.6	ND	
inhibitorAtorvastatinSparks, 2005^{241} FairDemMMSE (0-30)IG13 21.09 $(0.61)^{\$}$ 32 $(0.61)^{\$}$ 20.52 (NR) NR 20.52 (NR) NRNSHMG-CoA reductase inhibitorAtorvastatin FairDemMMSE (0-30)IG16 21.09 $(0.61)^{\$}$ 32 $(0.61)^{\$}$ 20.52 $(0.76)^{\$}$ 31 $(1.0)^{\$}$ 19.4 $(1.0)^{\$}$ NRNR 0.46 HMG-CoA inhibitorAtorvastatin reductaseDemMMSE (0-30)IG16 21.09 $(0.61)^{\$}$ 32 $(0.61)^{\$}$ 20.52 $(0.76)^{\$}$ 31 $(1.0)^{\$}$ 19.4 $(1.0)^{\$}$ NRNR, 0.46HMG-CoA reductaseAtorvastatin reductaseDemMMSE (0-30)IG1 8 $(0.61)^{\$}$ 21.09 $(0.61)^{\$}$ 32 $(0.70)^{\$}$ 20.52 $(0.76)^{\$}$ 31 $(1.0)^{\$}$ 18.1 $(1.1)^{\$}$ NRNR, 0.41		Alorvastalin		Dem	Ų	IGI	12		32						INR	NR, 0.055
HMG-CoA Atorvastatin Sparks, 2005^{241} Dem MMSE (0-30) IG1 3 21.09 32 20.2 NR 20.52 31 20.5 NR NS inhibitor Fair Dem MMSE (0-30) IG1 6 21.09 32 21.2 NR 20.52 31 20.5 NR NS HMG-CoA Atorvastatin Fair Dem MMSE (0-30) IG1 6 21.09 32 21.2 NR 20.52 31 19.4 NR NR, 0.46 Immibitor Immibitor Dem MMSE (0-30) IG1 6 21.09 32 20.7 NR 20.52 31 19.4 NR NR, 0.46 HMG-CoA Atorvastatin Dem MMSE (0-30) IG1 8 21.09 32 20.7 NR 20.52 31 18.1 $(1.0)^{\$}$ HMG-CoA Atorvastatin Dem MMSE (0-30) IG1 8 21.09 32 20.7 NR 20.52 31 18.1 $(1$					(0-70)			(1.73)"		(1.7)"		(1.73)"		(2.0)"		
reductase inhibitor 2005 ²⁴¹ Fair Common Comm		Atonyastatin	Sparks	Dom		IC1	3	21.00	32	20.2	NP	20.52	31	20.5	NP	NS
Inhibitor Fair Fair HMG-CoA Atorvastatin reductase Dem MMSE (0-30) IG1 6 21.09 (0.61) [¶] 32 21.2 (0.8) [¶] NR 20.52 (0.76) [¶] 31 19.4 (1.0) [¶] NR NR, 0.46 HMG-CoA Atorvastatin Dem MMSE (0-30) IG1 8 21.09 (0.61) [¶] 32 20.7 (0.7) [¶] NR 20.52 (0.76) [¶] 31 18.1 (1.1) [¶] NR NR, 0.41		Allivasialin		Dem		101	3		52				51			NO
HMG-CoA Atorvastatin reductase Dem MMSE (0-30) IG1 6 21.09 32 21.2 NR 20.52 31 19.4 NR NR, 0.46 inhibitor Inhibitor Dem MMSE (0-30) IG1 8 21.09 32 20.7 NR 20.52 31 19.4 NR NR, 0.46 HMG-CoA Atorvastatin Dem MMSE (0-30) IG1 8 21.09 32 20.7 NR 20.52 31 18.1 NR NR, 0.41 reductase Dem MMSE (0-30) IG1 8 21.09 32 20.7 NR 20.52 31 18.1 NR NR, 0.41								(0.01)*		(111)		(0.70)*		(1111)		
reductase inhibitor (0.61) [¶] (0.8) [¶] (0.76) [¶] (1.0) [¶] Image: Inhibitor Dem MMSE (0-30) IG1 8 21.09 (0.61) [¶] 32 20.7 (0.7) [¶] NR 20.52 (0.7) [¶] 31 18.1 (1.1) [¶] NR NR, 0.41		Atorvastatin		Dem	MMSE (0-30)	IG1	6	21.00	32	21.2	NR	20 52	31	19.4	NR	NR 0.46
Inhibitor Dem MMSE (0-30) IG1 8 21.09 32 20.7 NR 20.52 31 18.1 NR NR, 0.41 reductase 0.61) [¶] (0.61) [¶] (0.7) [¶] (0.76) [¶] (1.1) [¶] NR 0.41				Dem			Ŭ		52							NIX, 0.70
HMG-CoA Atorvastatin Dem MMSE (0-30) IG1 8 21.09 32 20.7 NR 20.52 31 18.1 NR NR, 0.41 reductase (0.61) ¹ (0.61) ¹ (0.7) ¹ (0.76) ¹ (1.1) ¹ NR NR, 0.41								(0.01)*		(0.0)		(0.10)		(1.0)*		
reductase (0.61) [¶] (0.7) [¶] (1.1) [¶]		Atorvastatin	-	Dem	MMSE (0-30)	IG1	8	21.09	32	20.7	NR	20.52	31	18 1	NR	NR 041
				2011			ř		52							
	inhibitor							(0.01)*		(0.7)		(3.10)		()		

Medication type	Intervention	Author, year Quality	Pop	Instrument (range) [†]	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU	CG FU mean (SD)	CG mean change (SD) from BL	Between group difference, p- value
HMG-CoA reductase inhibitor	Atorvastatin				IG1	-	21.09 (0.61) [¶]	32	20.3 (0.9) [¶]	NR		31	18.1 (1.1) [¶]	NR	NR, 0.25
NSAID	Naproxen	Aisen, 2003 ²⁴² Good		ADAS-Cog 11 (0-70)	IG1	12	24.4 (10.2)		30.2 (13.9)	5.8 (8.0)	24.2 (9.6)		29.9 (13.7)	5.7 (8.2)	MDC (SE) (95% CI)=-0.1 (1.07) (-2.24, 2.04), 0.96
NSAID	Indomethacin	de Jong, 2008 ²⁴³ Fair		ADAS-Cog 11 (0-70)	IG1	6	20.2 (8.3)	20	NR	4.8 (5.8)	19.7 (8.8)	23	NR	3.9 (4.5)	MDC (95% CI)=0.9 (-2.2, 4.1), NR
NSAID	Indomethacin			ADAS-Cog 11 (0-70)	IG1	12	20.2 (8.3)	19	NR	7.8 (7.6)	19.7 (8.8)		NR	9.3 (10.0)	MDC (95% CI)=-1.5 (-7.5, 4.5), NR
NSAID	Indomethacin		Dem	MMSE (0-30)	IG1	6	19.1 (4.1)	20	NR	-2.3 (3.2)	20.2 (3.9)	23	NR	-2.4 (3.6)	MDC (95% CI)=-0.1 (-2.1, 1.9), NR
NSAID	Indomethacin		Dem	MMSE (0-30)	IG1	12	19.1 (4.1)	19	NR	-3.4 (4.3)	20.2 (3.9)	19	NR	-5.4 (5.5)	MDC (95% CI)=-1.6 (-4.8, 1.6), NR
NSAID	lbuprofen	Pasqualetti, 2009 ²⁴⁴ Fair		ADAS-Cog 11 (0-70)	IG1	12	26.8 (10.6)	66	NR	-3.0 (1.3)¶	25.6 (10.7)	66	NR	-3.1 (1.3)¶	MDC (95% CI)=0.1 (-2.7, 2.9), 0.951
NSAID	lbuprofen		Dem	MMSE (0-30)	IG1	12	19.7 (3.0)	66	NR	2.1 (0.5) [¶]	20.3 (3.8)	66	NR	2.7 (0.5)¶	MDC (95% CI)=-0.6 (-1.8, 0.5), 0.288
NSAID	Celecoxib	Soininen, 2007 ²⁴⁵		ADAS-Cog 11 (0-70)	IG1	3	24.8 (10.7)	263	NR	0.77 [∥] (NR)	24.6 (10.1)	124	NR	0.69 [∥] (NR)	NR, 0.897
NSAID	Celecoxib	Fair		ADAŚ-Cog 11 (0-70)		6	(10.7)	274		, ,	24.6 (10.1)	135		2.15 [∎] (NR)	NR, 0.461
NSAID	Celecoxib	Soininen, 2007 ²⁴⁵		ADAS-Cog 11 (0-70)	IG1	12	24.8 (10.7)	278	NR	4.39 [∥] (NR)	24.6 (10.1)	135	NR	5.00 ^{II} (NR)	NR, 0.541
NSAID	Celecoxib	Fair		ADAŚ-Cog 11 (D)		12		278	(56.8)#	NR	NA		(63.0)#	NR	NS
NSAID	Celecoxib		Dem	MMSE (0-30)	IG1	12	(4.2)	255	NR	-2.3 (NR)	19.4 (3.9)	_	NR	-2.0 (NR)	NR, 0.244
Gonadal steroid	Estrogen	Henderson, 2000 ²⁴⁷		ADAS-Cog 11 (0-70)		4	25.1 (2.2) [¶]		26.9 (2.6) [¶]	1.8 (1.2) [¶]	(2.8) [¶]		(2.5) [¶]	0.5 (1.7) [¶]	MDC =1.3, >0.1
Gonadal steroid	Estrogen	Fair		ADAS-Cog 11 (D)	IG1	4	NA		2 (11.8) ^{**}	NR	NA	17	5 (29.4) ^{**}	NR	NR

Medication		Author, year	Рор	Instrument	Int	Time,	IG BL mean	IG n at	IG FU mean	IG mean change (SD) from	CG BL mean	CG n at	CG FU mean		Between group difference, p-
type	Intervention	Quality	cat	(range) [†]	arm		(SD)	FU	(SD)	BL	(SD)	FU	(SD)	from BL	value
Gonadal steroid	Estrogen	Henderson, 2015* ²⁴⁶ Good		ADAS-Cog 11 (0-70)	IG1		24.3 (11.0)	21	NR	-1.5 (NR)	25.8 (12.0)	21	NR	2.3 (NR)	ES (95% CI)=-0.33 (- 0.66, 0.003), 0.048
Gonadal steroid	Estrogen			ADAS-Cog 11 (0-70)	IG1	6	24.3 (11.0)	21	NR	-0.7 (NR)	25.8 (12.0)	21	NR	1.8 (NR)	ES (95% CI)=-0.22 (- 0.54, 0.10), 0.18
Gonadal steroid	Estrogen			ADAS-Cog 11 (0-70)	IG1	9	24.3 (11.0)	21	NR	-1.1 (NR)	25.8 (12.0)	21	NR	1.3 (NR)	ES (95% CI)=-0.21 (- 0.52, 1.10), 0.17
Gonadal steroid	Estrogen			ADAS-Cog 11 (0-70)	IG1	12	24.3 (11.0)	21	NR	3.2 (NR)	25.8 (12.0)	21	NR	3.5 (NR)	ES (95% CI)=-0.03 (- 0.44, 0.39), 0.89
Gonadal steroid	Estrogen		Dem	MMSE (0-30)	IG1	6	21.2 (4.9)	21	NR	-0.8 (NR)	19.4 (6.2)	21	NR	-0.6 (NR)	ES (95% CI)=-0.05 (- 0.44, 0.35), NR
Gonadal steroid	Estrogen		Dem	MMSE (0-30)	IG1	12	21.2 (4.9)	21	NR	-2.5 (NR)	19.4 (6.2)	21	NR	-1.6 (NR)	ES (95% CI)=-0.17 (- 0.65, 0.31), NR
Gonadal steroid	Testosterone	Lu, 2006 ²⁴⁸ Fair		ADAS-Cog 11 (0-70)	IG1	6	25.0 (13.2)	5	27.4 (8.4)	2.4 (5.0)	25.2 (8.9)	6	28.3 (10.3)	3.2 (7.3)	NR, 0.82
Gonadal steroid	Estrogen	Mulnard, 2000 ²⁴⁹		ADAS-Cog 11 (0-70)	IG1	12	NR	42	NR	6.3 (8.7)	NR	39	NR	3.6 (4.7)	NR, 0.09
Gonadal steroid	Estrogen	Fair	Dem	ADAS-Cog 11 (0-70)	IG2	12	NR	39	NR	4.8 (5.4)	NR	39	NR	3.6 (4.7)	NR, 0.32
Gonadal steroid	Estrogen]	Dem	MMSÉ (0-30)	IG1	12	20.2 (4.7)	42	NR	-2.7 (3.5)	21.1 (3.3)	39	NR	-3.1 (4.1)	NR, 0.48
Gonadal steroid	Estrogen		Dem	MMSE (0-30)	IG2	12	20.8 (4.2)	39	NR	-2.7 (3.9)	21.1 (3.3)	39	NR	-3.1 (4.1)	NR, 0.64
Gonadal steroid	Estrogen plus progestin	Valen- Sendstad, 2010 ²⁵⁰ Fair	Dem	MMSE (0-30)	IG1	12		29	19.9 (4.7)	NR		26	19.8 (4.9)	NR	MDC (SD)=- 0.1 (3.1), 0.90

							IG BL	lG n	IG FU	IG mean change	CG BL	CG n	CG FU	CG mean	Between group
Medication type	Intervention	Author, year Quality	Pop cat	Instrument (range) [†]	Int arm	- ,	mean (SD)	at FU	mean (SD)	(SD) from BL	mean (SD)	at FU	mean (SD)		difference, p- value
Gonadal steroid		Wang, 2000 ²⁵¹ Fair				3	16.1 (4.3)		NR	0.2 (3.3)			NR	0.2 (2.5)	NR, 0.975
Dietary supplement	B vitamins (including folic acid)	Aisen, 2008 ²⁵² Good	Dem	ADAS-Cog 11 (0-70)	IG1		(9.0)	234	NR	1.58 (5.61)	22.63 (8.6)		NR	1.51 (4.68)	NR
Dietary supplement	B vitamins (including folic acid)			ADAS-Cog 11 (0-70)	IG1	6	22.43 (9.0)	232	NR	2.44 (6.04)	22.63 (8.6)	156	NR	1.72 (4.74)	NR
Dietary supplement	B vitamins (including folic acid)		Dem	ADAS-Cog 11 (0-70)	IG1	12	22.43 (9.0)	216	NR	4.42 (6.61)	22.63 (8.6)	143	NR	4.46 (6.32)	NR
Dietary supplement	B vitamins (including folic acid)		Dem	ADAS-Cog 11 (0-70)	IG1	18	22.43 (9.0)	197	NR	7.38 (9.72)	22.63 (8.6)	136	NR	6.54 (8.17)	NR
Dietary supplement	B vitamins (including folic acid)		Dem	MMSE (0-30)	IG1	3	20.98 (3.4)	235	NR	-0.17 (3.02)	20.91 (3.7)	164	NR	-0.67 (2.89)	NR
Dietary supplement	B vitamins (including folic acid)		Dem	MMSE (0-30)	IG1	6	20.98 (3.4)	231	NR	-0.44 (3.19)	20.91 (3.7)	160	NR	-1.13 (3.13)	NR
Dietary supplement	B vitamins (including folic acid)		Dem	MMSE (0-30)	IG1	12	20.98 (3.4)	215	NR	-1.64 (3.84)	20.91 (3.7)	147	NR	-1.8 (3.56)	NR
Dietary supplement	B vitamins (including folic acid)	Aisen, 2008 ²⁵² Good	Dem	MMSE (0-30)	IG1	18	20.98 (3.4)	206	NR	-2.65 (4.56)	20.91 (3.7)	140	NR	-3.08 (4.46)	NR
Dietary supplement	B vitamins (including folic acid)	Connelly, 2008 ²⁵³ Fair	Dem	MMSE (0-30)	IG1	6	23.48 (4.1)	23	NR	0.09 (3.3)	23.5 (2.75)	18	NR	0.22 (2.67)	NR
Dietary supplement	Vitamin E	Dysken, 2014 ^{*224} Good	Dem	ADAS-Cog 11 (0-70)	IG2	6	18.5 (8.8)	126	NR	1.37 [∥] (0.13, 2.63) [§]	19.1 (8.4)	128	NR	3.04 [∥] (1.81, 4.28)§	NR
Dietary supplement	Vitamin E		Dem	ADAS-Cog 11 (0-70)	IG2	12	18.5 (8.8)	114	NR	2.38 ^{́I} (0.98, 3.82) [§]	19.1 (8.4)	106	NR	4.24 [∥] (2.81, 5.70) [§]	NR
Dietary supplement	Vitamin E]		ÀDAŚ-Cog 11 (0-70)		18	(8.8)		NR	4.33 ^{́∥} (2.57, 6.12)§	(8.4)			6.04 [∥] (4.25, 7.86) [§]	NR
Dietary supplement	Vitamin E		Dem	ADAS-Cog 11 (0-70)	IG2	24	18.5 (8.8)	82	NR	4.32 [∥] (2.16, 6.47) [§]	19.1 (8.4)	69	NR	6.70 [∥] (4.43, 8.97) [§]	NR

										IG mean					Between
Medication		Author voor	Dan	Inctrument	Int	Time	IG BL mean		IG FU	change (SD) from			CG FU	CG mean	group difference, p-
type	Intervention	Author, year Quality	cat	Instrument (range) [†]	Int arm		(SD)	at FU	(SD)	BL	mean (SD)	at FU	mean (SD)	from BL	omerence, p- value
Dietary	Vitamin E	Quality		ADAS-Cog 11		30	18.5	56	NR	7.86 ^{II} (5.30,		48		8.9 ^{II} (6.20,	NR
supplement				(0-70)			(8.8)			10.42) [§]	(8.4)			11.62)§	
Dietary	Vitamin E		Dem	ADAS-Cog 11	IG2	36		42	NR	8.99" (6.02,		35	NR	10.76 ^{II} (7.58,	NR
supplement		_		(0-70)			(8.8)			12.00) [§]	(8.4)			13.96) [§]	
Dietary	Vitamin E		Dem	ADAS-Cog 11	IG2	42	18.5	27	NR	10.34 ^{II}		25	NR		NR
supplement				(0-70)			(8.8)			(7.22, 13.49)§	(8.4)			13.92)§	
Dietary	Vitamin E	-	Dem	ADAS-Cog 11	IG2	48	18.5	135	NR	5.97 ^{II}	19.1	137	NR	7.78 [∥] (0.70) [¶]	MDC (95%
supplement				(0-70)			(8.8)	100		(0.70) [¶]	(8.4)				CI)=-1.80 (-
				. ,			, ,				· /				3.28, -0.33),
															0.10
Dietary	Vitamin E		Dem	MMSE (0-30)	IG2	6	21.3	126			20.8	128	NR	-0.34 ^{II} (-0.91,	NR
supplement							(3.3)			0.90, 0.22)§	(3.8)			0.23)§	
Dietary	Vitamin E	-	Dem	MMSE (0-30)	162	12	21.3	115			20.8	106	NR	-1.39 ^{II} (-2.08,	NR
supplement			Dem		102	12	(3.3)	115			(3.8)	100		-0.69) [§]	
o appromoni							(0.0)			0.27)§	(0.0)			0.00)	
Dietary	Vitamin E		Dem	MMSE (0-30)	IG2	18		89	NR			88	NR	-2.21" (-3.09,	NR
supplement							(3.3)				(3.8)			-1.31) [§]	
		_	_		100	6.4	04.0	0.0		1.12)§	00.0	70			
Dietary	Vitamin E		Dem	MMSE (0-30)	IG2	24	21.3 (3.3)	83	NR		20.8 (3.8)	70	NR	-2.90 ^{II} (-3.99, -1.80) [§]	NR
supplement							(3.3)			5.65, - 1.58) [§]	(3.0)			-1.00)3	
Dietary	Vitamin E	Dysken,	Dem	MMSE (0-30)	IG2	30	21.3	56	NR		20.8	47	NR	-3.27" (-4.53,	NR
supplement		2014* ²²⁴	_	- (/	_		(3.3)			4.86, -	(3.8)			-2.01)§	
		Good					· · ·			2.47) [§]				-	
Dietary	Vitamin E		Dem	MMSE (0-30)	IG2	36		43	NR			36	NR	-3.88 ^{II} (-5.43,	NR
supplement							(3.3)				(3.8)			-2.31) [§]	
Dietary	Vitamin E	-	Dem	MMSE (0-30)	162	42	21.3	27	NR	3.51) [§] -4.85 [∥] (-	20.8	26	NR	-4.68" (-6.29,	NR
supplement			Dem		102	72	(3.3)	21			(3.8)	20		-3.05) [§]	
cappionion							(0.0)			3.28) [§]	(0.0)			0.00)	
Dietary	Vitamin E	1	Dem	MMSE (0-30)	IG2	48	21.3	136	NR	-2.97	20.8	137	NR	-3.16 ^{II} (0.33) [¶]	
supplement							(3.3)			(0.33) [¶]	(3.8)				CI)=0.19 (-
															0.54, 0.92),
Dietary	Omega-3 fatty	Fround Lové	Dom	ADAS-Cog 13	IG1	6	25.7	91	27.7	NR	27.2	87	28.3	NR	0.84 NR
supplement	acids	2006 ²⁵⁵		ADAS-Cog 13 (0-85)	101	0	25.7 (NR)	91	27.7 (NR)	INIX	27.2 (NR)	07	28.3 (NR)		INFX
Dietary	Omega-3 fatty	Fair		MMSE (0-30)	IG1	6		91		NR		87		NR	NR
supplement	acids			(0.00)		-		[.				[⁻ .			

										IG mean					Between
									IG FU	change	CG BL	CG n		CG mean	group
Medication		Author, year					mean	at	mean	(SD) from	mean	at			difference, p-
type	Intervention	Quality	cat	(range) [†]	arm	mo.	(SD)	FU	(SD)	BL	(SD)	FU	(SD)	from BL	value
Dietary	B vitamins	Kwok,		- \-	IG1			59	NR	-6 ⁺⁺ (-14, -		53	NR	-6** (-15, 0)	NR, 0.841
supplement	(including folic acid)	2011 ²⁵⁶ Fair		144)			(13.0)			2)	(10.6)				
Dietary	B vitamins		Dem	MMSE (0-30)	IG1	24	16.5	59	NR	-2** (-5, 0)	16.6	53	NR	-2** (-5, 0)	NR, 0.998
supplement	(including folic acid)						(4.9)				(4.6)				
Dietary	Vitamin E	Petersen,	MCI	ADAS-Cog 11	IG2	6	11.48	NR	NR	-0.16		NR	NR	-0.13 (3.34)	NR
supplement		2005 ¹⁹⁶		(0-70)			(4.4)			(4.19)	(4.2)				
Dietary	Vitamin E	Fair	MCI	ADAS-Cog 11	IG2	12	11.48	NR	NR	0.91 (4.21)		NR	NR	0.61 (4.10)	NR
supplement				(0-70)			(4.4)				(4.2)				
Dietary	Vitamin E			ADAS-Cog 11	IG2	18	11.48	NR	NR	1.19 (4.32)		NR	NR	1.29 (4.71)	NR
supplement				(0-70)			(4.4)				(4.2)				
Dietary	Vitamin E		MCI	ADAS-Cog 11	IG2	24	11.48	NR	NR	1.93 (5.13)		NR	NR	1.49 (5.07)	NR
supplement				(0-70)			(4.4)				(4.2)				
Dietary	Vitamin E		MCI	ADAS-Cog 11	IG2	30	11.48	NR	NR	3.01 (5.57)		NR	NR	2.98 (5.62)	NR
supplement				(0-70)			(4.4)				(4.2)				
Dietary	Vitamin E			ADAS-Cog 11	IG2	36	11.48	185	NR	4.59 (6.54)		193	NR	3.74 (6.97)	NR
supplement				(0-70)			(4.4)				(4.2)				
Dietary	Vitamin E		MCI	ADAS-Cog 13	IG2	6	18.04	NR	NR	-0.47		NR	NR	-0.09 (4.38)	NR
supplement		_		(0-85)			(6.0)			(5.06)	(6.0)				
Dietary supplement	Vitamin E			ADAS-Cog 13 (0-85)	IG2		18.04 (6.0)	NR	NR	0.27 (5.20)	17.40 (6.0)	NR	NR	0.60 (4.96)	NR
Dietary	Vitamin E	Petersen,		ADAS-Cog 13	IG2			NR	NR	0.49 (5.42)		NR	NR	0.99 (6.07)	NR
supplement		2005 ¹⁹⁶		(0-85)	102	10	(6.0)			0.10 (0.12)	(6.0)			0.00 (0.07)	
Dietary	Vitamin E	Fair		ADAS-Cog 13	IG2	24		NR	NR	1.15 (6.37)		NR	NR	1.02 (6.27)	NR
supplement				(0-85)		Γ.	(6.0)				(6.0)				
Dietary	Vitamin E		MCI	ADAS-Cog 13	IG2	30	18.04	NR	NR	2.48 (6.68)		NR	NR	2.65 (7.02)	NR
supplement			_	(0-85)	_		(6.0)			- ()	(6.0)				
Dietary	Vitamin E		MCI	ADAS-Cog 13	IG2		18.04	185	NR	3.98 (7.56)		193	NR	3.72 (8.54)	NR
supplement				(0-85)			(6.0)			, ,	(6.0)			,	
Dietary	Vitamin E		MCI	MMSE (0-30)	IG2	6	27.20	NR	NR	-0.53	27.35	NR	NR	-0.36 (2.02)	NR
supplement				. ,			(1.9)			(2.28)	(1.8)				
Dietary	Vitamin E		MCI	MMSE (0-30)	IG2	12	27.20	NR	NR	-0.54	27.35	NR	NR	-0.80 (2.34)	NR
supplement				. ,			(1.9)			(2.28)	(1.8)				
Dietary	Vitamin E		MCI	MMSE (0-30)	IG2	18	27.20	NR	NR	-0.96		NR	NR	-1.02 (2.61)	NR
supplement							(1.9)			(2.61)	(1.8)				
Dietary	Vitamin E		MCI	MMSE (0-30)	IG2	24		NR	NR			NR	NR	-1.49 (2.90)	NR
supplement							(1.9)			(2.78)	(1.8)				
Dietary	Vitamin E		MCI	MMSE (0-30)	IG2		27.20	NR	NR			NR	NR	-1.77 (3.24)	NR
supplement							(1.9)			(3.09)	(1.8)				

							IG BL	lG n	IG FU	IG mean change	CG BL	CG n	CG FU	CG mean	Between group
Medication		Author, year	Pop	Instrument	Int	Time,	mean	at	mean	(SD) from	mean	at	mean		difference, p-
type	Intervention	Quality	cat	(range) [†]	arm	mo.	(SD)	FU	(SD)	BL	(SD)	FU	(SD)	from BL	value
Dietary	Vitamin E		MCI	MMSE (0-30)	IG2		27.20	185	NR		27.35	193	NR	-2.75 (4.04)	NR
supplement							(1.9)			(3.64)	(1.8)				
Dietary	Omega-3 fatty	Quinn,	Dem	ADAS-Cog 11	IG1	6		215	NR		23.96	147	NR	3.1 (2.0,	NR
supplement	acids	2010 ²⁵⁸		(0-70)			(8.9)			3.3) [§]	(9.2)			3.9) [§]	
Dietary	Omega-3 fatty	Fair	Dem	ADAS-Cog 11	IG1	12		190	NR			139		5.5 (4.4,	NR
supplement	acids	_		(0-70)			(8.9)			5.0) [§]	(9.2)			6.7) [§]	
Dietary	Omega-3 fatty			ADAS-Cog 11	IG1	18		173	NR	7.98 (6.51,		127		8.27 (6.72,	MDC (95%
supplement	acids			(0-70)			(8.9)			9.45) [§]	(9.2)			9.82) [§]	CI)=NR (NR, NR), 0.41
Dietary	Omega-3 fatty		Dem	MMSE (0-30)	IG1	18		173	NR		20.3	127	NR	-4.04 (-4.85,	MDC (95%
supplement	acids						(3.6)			4.44, -	(3.7)			-3.23)§	CI)=NR (NR,
ļ										2.96) [§]					NR), 0.88
Dietary supplement	Vitamin E	Sano, 1997 ²⁵⁹		ADAS-Cog 11 (0-70)		24	NR	85	NR	8.3 (NR)			NR	6.7 (NR)	NR
Dietary	Vitamin E	Good	Dem	MMSE (0-30)	IG1	24		85	NR	-4.6 (NR)	13.3	84	NR	-4.6 (NR)	NR
supplement							(5.7)				(4.9)				
Dietary	Omega-3 fatty	Shinto,	Dem	ADAS-Cog 11	IG1			11	NR	4.4 (2.2) [¶]		11	NR	3.2 (2.1) [¶]	NR, 0.86
supplement	acids	2014* ²⁶⁰		(0-70)			(9.4) [¶]				(9.5) [¶]			-	
Dietary	Omega-3 fatty	Fair	Dem	ADAS-Cog 11	IG2	12		12	NR	2.8 (2.0) [¶]		11	NR	3.2 (2.1) [¶]	NR, 0.98
supplement	acids		_	(0-70)			(7.1) [¶]				(9.5) [¶]				
Dietary	Omega-3 fatty	Shinto,	Dem	MMSE (0-30)	IG1	6		11	NR	-1.63		11	NR	-1.59 (1.09) [¶]	NR, NR
supplement	acids	2014* ²⁶⁰					(2.7) [¶]			(0.97)¶	(3.1) [¶]				
Dietary	Omega-3 fatty	Fair	Dem	MMSE (0-30)	IG1	12		11	NR	-4.3 (1.3) [¶]		11	NR	-4.6 (1.4) [¶]	NR, 0.80
supplement	acids	-			100	-	(2.7) [¶]	10		0.00	(3.1) [¶]			4 50 (4 00)	
Dietary	Omega-3 fatty		Dem	MMSE (0-30)	IG2	6		12	NR	0.83		11	NR	-1.59 (1.09) [¶]	NR
supplement	acids	_	D		100	10	(3.0)¶	10		(0.80) [¶]	(3.1)¶	4.4		4.0 (4.4)	
Dietary	Omega-3 fatty		Dem	MMSE (0-30)	IG2	12		12	NR	-1.0 (0.7) [¶]		11	NR	-4.6 (1.4) [¶]	NR, <0.01
supplement	acids	0.007262	D		104	0	(3.0) [¶] 24.0	45	NR	0.07.((3.1)¶	44		00(077	
Dietary	Multivitamin			ADAS-Cog 11	IG1			45	NR		21.2 (10.5)	44	NR	-0.9 (-2.77,	NR, 0.34
supplement		Fair		(0-70)			(12.3)			2.33, 3.69) [§]	(10.5)			0.85) [§]	
Distant		Cura 2007262	Dam	MMSE (0-30)		C C	18.7	45	NR		18.6	44	NR	0.44 (4.40	
Dietary supplement	Multivitamin	Sun, 2007 ²⁰² Fair	Dem	IVIIVISE (U-30)	IG1	6	18.7 (4.6)	45	INK	0.15 (- 1.06,	18.6 (5.3)	44	INK	0.41 (-1.12, 1.93) [§]	NR, 0.79
Supplement							(4.0)			1.35) [§]	(0.0)			1.93)*	
Dietary	Omega-3 fatty	Yurko-	MCI	MMSE (0-30)	IG1	6	28.3	2/1	28.0	-0.4 (0.12) [¶]	28.2	242	27.9	-0.3 (0.11)¶	MDC (SE)=0
supplement	acids	Mauro.					20.3 (1.3)		28.0 (1.9)	-0. 4 (0.12)"	20.2 (1.3)		(1.9)	-0.3 (0.11)*	(0.15), 0.866
Sappiernent	40103	2010 ²⁶³					(1.5)		(1.5)		(1.5)		(1.3)		(0.10), 0.000
1		Good													

* New study

† Higher scores indicate better outcomes for all instruments except for ADAS-Cog 11 and ADAS-Cog 13 where lower scores indicate better outcomes

‡ Median
§ 95% CI
I Least squares mean change
¶ Standard error
Number (%) of participants who demonstrated deterioration (≥4 point increase) on ADAS-Cog 11
** Number (%) of participants who improved by ≥4 points (decreasing) on ADAS-Cog 11
†† Median change (IQR)

Abbreviations: ADAS-Cog 11 = Alzheimer's Disease Assessment Scale-cognitive subscale; 11-item; ADAS-Cog 13 = Alzheimer's Disease Assessment Scale-cognitive subscale; 13-item; BL = baseline; CG = control group; CI = confidence interval; D = results are dichotomized; Dem = dementia; ES = effect size; FU = followup; HMG-CoA = β -Hydroxy β -methylglutaryl-CoA; IG = intervention group; Int arm = intervention arm; LSM = least squares mean; MCI = mild cognitive impairment; MDC = mean difference in change; MMSE = Mini-Mental State Examination; mo. = months; Pop cat = population category; NR = not reported; NS = Not statistically significant; NSAID = Nonsteroidal Anti-inflammatory Drug; SD = standard deviation; SE = standard error

							IG BL		IG FU	IG mean change	CG BL		CG FU		Between group
Medication type	Medication	Author, year Quality	Pop	Instrument (range) [*]	Int arm	Time, mo.	mean (SD)	IG n at FU		(SD) from BL	mean (SD)	CG n at FU		(SD) from BL	difference, p- value
	Atorvastatin	Feldman,		CDR-SB (0-18)	IG1		5.7		NR	1.34 [§]			NR	1.35 [§]	LSM change
reductase		2010 ²³⁸					(2.4)			(0.14) [‡]			[(0.13) [‡]	(SE)=-0.01
inhibitor		Fair					、 <i>,</i>			(· ,	(0.19), 0.96
HMG-CoA	Atorvastatin		Dem	CDR-SB (0-18)	IG1	18	5.7	208	NR	1.98 [§]	5.9 (2.5)	238	NR	2.11 [§]	LSM change
reductase				· · · · ·			(2.4)			(0.18) [‡]	· · ·			(0.17) [‡]	(SE)=-0.12
inhibitor															(0.25), 0.63
HMG-CoA	Atorvastatin		Dem	CIBIC+ (1-7)	IG1	3	NR	293	4.2 [†]	NR	NR			NR	MD (SE)=0.010
reductase				. ,					(0.04) [‡]				(0.04) [‡]		(0.058), 0.8654
inhibitor															
HMG-CoA	Atorvastatin		Dem	CIBIC+ (1-7)	IG1	6	NR	258	4.3 [†]	NR	NR		4.4 [†]		MD (SE)=0.032
reductase									(0.06) [‡]				(0.03) [‡]		(0.073), 0.6578
inhibitor															
	Atorvastatin		Dem	CIBIC+ (1-7)	IG1	9	NR	244	4.6 [†]	NR	NR		4.6 [†]		MD (SE)=-0.021
reductase									(0.07)‡				(0.06) [‡]		(0.081), 0.7937
inhibitor															
	Atorvastatin		Dem	CIBIC+ (1-7)	IG1	12	NR	233	4.8 [†]	NR	NR		4.8 [†]	NR	MD (SE)=-0.034
reductase									(0.07)‡				(0.07) [‡]		(0.083), 0.6817
inhibitor		_	_												
	Atorvastatin		Dem	CIBIC+ (1-7)	IG1	15	NR	222	4.9 [†]	NR	NR		5.0 [†]		MD (SE)=0.019
reductase									(0.06)‡				(0.07)‡		(0.090), 0.8363
inhibitor		_	_												
	Atorvastatin		Dem	CIBIC+ (1-7)	IG1	18	NR	297	4.9 [†]	NR	NR			NR	MD (SE)=0.160
reductase									(0.06)‡				(0.07)‡		(0.086), 0.628
inhibitor	A:		_		104	6		00				64			
	Atorvastatin	Sparks, 2005 ²⁴¹	Dem	CIBIC+ (1-7)	IG1	3	NR	32	NR	-0.36 (NR)	NR	31	NR	-0.40 (NR)	NS
reductase inhibitor		2005 ²⁴¹ Fair													
		Fair	Dam		IG1	6	NR	29	NR		NR	27	NR		
	Atorvastatin		Dem	CIBIC+ (1-7)	IG1	6	NR	29	NR	-0.53 (NR)	NR	27	NK	-0.68 (NR)	NR, 0.62
reductase inhibitor															
	Atorvastatin	-	Dom	CIBIC+ (1-7)	IG1	8	NR	26	NR	-0.57	NR	22	NR	-0.90	NR, 0.058
reductase	Alorvasialin		Dem	CIDIC+(1-7)	IGT	0	INK	20	INK	-0.57 (0.16) [‡]	NK	22	INK	-0.90 (0.14) [‡]	NR, 0.000
inhibitor										(0.10)+				(0.14)*	
	Atorvastatin	4	Dom	CIBIC+ (1-7)	IG1	12	NR	25	NR	-0.73	NR	21	NR	-1.04	NR, 0.07
reductase	Alorvasialin		Dem			12		20		-0.73 (0.20) [‡]		~ '		-1.04 (0.15) [‡]	NR, U.U7
inhibitor										(0.20)*		1		(0.13)*	
	Naproxen	Aison 2002242	Dem	CDR-SB (0-18)	IG1	12	6.0	118	8.3 (4.0)	2.3 (2.3)	5.5 (2.5)	111	77(30)	2.2 (2.3)	NR, 0.89
	apiozen	Good	Dem			12	0.0 (2.9)	110	0.5 (4.0)	2.3 (2.3)	0.0 (2.0)	' ' '	1.1 (3.9)	L.L (L.J)	NIX, 0.03
		0000	1	l		1	(2.3)	1				1		1	

							IG BL		IG FU	IG mean change	CG BL		CG FU	CG mean change	Between group
Medication		Author, year		Instrument	Int	Time,		IG n	mean	(SD) from	mean	CG n	mean	(SD) from	difference, p-
type	Medication	Quality	cat	(range)*	arm	mo.		at FU		BL	(SD)	at FU	(SD)	BL	value
NSAID	Indomethacin	de Jong, 2008 ²⁴³	Dem	CIBIC+ (1-7)	IG1	6	NR	20	5.1 (0.8)	NR	NR	23	5.3 (0.7)		MD (95% CI)=-
		Fair													0.2 (-0.6, 0.2), NS
NSAID	Indomethacin		Dem	CIBIC+ (1-7)	IG1	12	NR	19	5.6 (0.8)	NR	NR	19	5.7 (0.7)		MD (95% CI)=- 0.1 (-0.5, 0.3), NS
NSAID	Ibuprofen	Pasqualetti, 2009 ²⁴⁴ Fair	Dem	CDR-SB (0-18)	IG1	12	4.5 (2.0)	66	NR	-1.7 (0.3) [‡]	4.4 (2.1)	66	NR	. ,	MDC (95% CI)=- 0.4 (-1.2, 0.4), 0.324
NSAID	Ibuprofen		Dem	CIBIC+ (1-7)	IG1	12	NR	66	4.0 (0.2) [‡]	NR	NR	66	3.9 (0.2)‡	NR	MD (95% Cl)=0.1 (-0.4, 0.5), 0.741
NSAID	Celecoxib	Soininen, 2007 ²⁴⁵	Dem	CIBIC+ (1-7)	IG1	3	NR	261	4.25 [†] (NR)	NR	NR	122	4.30 [†] (NR)	NR	NR, 0.571
NSAID	Celecoxib	Fair	Dem	CIBIC+ (1-7)	IG1	6	NR	276	4.51 [†] (NR)	NR	NR	135	4.40 [†] (NR)	NR	NR, 0.277
NSAID	Celecoxib	-	Dem	CIBIC+ (1-7)	IG1	12	NR	279	4.92 [†] (NR)	NR	NR	135	4.83 [†] (NR)	NR	NR, 0.446
NSAID	Celecoxib	-	Dem	CIBIC+ (D)	IG1	12	NA	278	201 (72.0) [∎]	NR	NA	135	99 (73.3) [∥]	NR	NS
Gonadal steroid	Estrogen	Henderson, 2000 ²⁴⁷	Dem	CIBIC+ (1-7)	IG1	4	NR	18	4.2 (0.2) [‡]	NR	NR	18		NR	MD=-0.1, >0.1
Gonadal steroid	Estrogen	Fair	Dem	CIBIC+ (D)	IG1	4	NA	18	13 (72.2) [¶]	NR	NA	18	14 (77.8) [¶]	NR	NR
Gonadal steroid	Estrogen	Henderson, 2015 ^{246#} Good	Dem	CDR (0-3)	IG1	6	1.0 (0.5)	21	NR	0.2 (NR)	1.2 (0.6)	21	NR	. ,	ES (95% CI)=0.08 (-0.57, 0.74), NS
Gonadal steroid	Estrogen		Dem	CDR (0-3)	IG1	12	1.0 (0.5)	21	NR	0.5 (NR)	1.2 (0.6)	21	NR		ES (95% CI)=0.30 (-0.56, 1.16), NS
Gonadal steroid	Estrogen		Dem	CDR-SB (0-18)	IG1	6	5.5 (3.0)	21	NR	0.8 (NR)	6.8 (3.1)	21	NR	. ,	ES (95% CI)=- 0.07 (-0.58, 0.44), NS
Gonadal steroid	Estrogen		Dem	CDR-SB (0-18)	IG1	12	5.5 (3.0)	21	NR	2.6 (NR)	6.8 (3.1)	21	NR	2.0 (NR)	ES (95% CI)=0.18 (-0.39, 0.75), NS
Gonadal steroid	Testosterone	Lu, 2006 ²⁴⁸ Fair	Dem	CIBIC+ (1-7)	IG1	6	NR	6	4.7 (0.49)	NR	NR	9	5.0 (0.49)	NR	NR, 0.30

Medication		Author, year		Instrument	Int	Time,	IG BL mean	IG n	IG FU mean	IG mean change (SD) from	CG BL mean			(SD) from	Between group difference, p-
type Caredal	Medication	Quality	cat	(range)*	arm IG1	mo .		at FU 42			(SD)	at FU		BL	value NR, 0.03
Gonadal steroid	Estrogen	Mulnard, 2000 ²⁴⁹	Dem	CDR (0-5)	IG1	12	1.2 (0.5)		NR	0.4 (0.7)	1.0 (0.5)	39	NR	0.2 (0.4)	NR, 0.03
Gonadal steroid	Estrogen	Fair	Dem	CDR (0-5)	IG2	12	1.1 (0.5)	39	NR	0.5 (0.6)	1.0 (0.5)	39	NR	0.2 (0.4)	NR, 0.01
Gonadal steroid	Estrogen		Dem	CIBIC+ (1-5)	IG2	12	NR	39	5.2 (0.9)	NR	NR	39	5.0 (1.1)	NR	NR, 0.36
Gonadal steroid	Estrogen		Dem	CIBIC+ (1-7)	IG1	12	NR	42	5.1 (0.9)	NR	NR	39	5.0 (1.1)	NR	NR, 0.66
	Estrogen		Dem	CIBIC+ (D)	IG1	12	NA	42	33 (78.6) ^I	NR	NA	39	28 (72.0) [∥]	NR	NR, 0.73
Gonadal steroid	Estrogen		Dem	CIBIC+ (D)	IG2	12	NA	39	31 (79.5) ^ı	NR	NA	39	28 (72.0) [∥]	NR	NR, 0.73
	Estrogen plus progestin	Valen- Sendstad, 2010 ²⁵⁰ Fair	Dem	GDS (1-7)	IG1	12	4.2 (0.6)	29	5.1 (0.7)	NR	4.4 (0.6)	26	5.0 (Ó.7)	NR	MDC (SD)=0.1 (0.6), 0.43
Gonadal steroid	Estrogen	Wang, 2000 ²⁵¹	Dem	CDR (0-3)	IG1	3	1.3 (0.5)	25	NR	0.0 (0.4)	1.2 (0.4)	25	NR	0.1 (0.4)	NR, 0.366
Gonadal steroid	Estrogen	Fair	Dem	CIBIC+ (1-7)	IG1	3	NR	25	NR	-0.2 (1.0)	NR	25	NR	-0.2 (0.8)	NR, 0.944
supplement	B vitamins (including folic acid)		Dem	CDR-SB (0-18)	IG1	6	5.61 (2.7)		0.69 (1.67)	NR	5.85 (2.9)	159	0.79 (2.9)	NR	NR, 0.57
supplement	B vitamins (including folic acid)		Dem	CDR-SB (0-18)	IG1	12	5.61 (2.7)	214	1.5 (1.92)	NR	5.85 (2.9)	144	1.6 (2.12)	NR	NR, 0.57
supplement	B vitamins (including folic acid)		Dem	CDR-SB (0-18)	IG1	18	5.61 (2.7)		2.58 (2.45)	NR	5.85 (2.9)	139	2.51 (2.57)	NR	NR, 0.57
Supplement	B vitamins (including folic acid)		Dem		IG1	6	NA		20 (71.4) ^{**}	NR	NA		(38.1)**	NR	NR, 0.02
Dietary supplement	Omega-3 fatty acids	Freund-Levi, 2006 ²⁵⁵	Dem	CDR (0-3)	IG1	6	(NR)		1.1 (NR)	NR	1.1 (NR)		1.1 (NR)	NR	NR
Dietary supplement	Omega-3 fatty acids	Fair	Dem	CDR-SB (0-18)	IG1	6	5.8 (NR)	91	6.2 (NR)	NR	6.0 (NR)	87	6.5 (NR)	NR	NR

							IG BL		IG FU	IG mean change	CG BL		CG FU	CG mean change	Between group
Medication		Author, year	Рор	Instrument	Int	Time.	mean	IG n	mean	(SD) from		CG n		(SD) from	
type	Medication	Quality	cat	(range)*	arm	mo.		at FU		BL		at FU		BL	value
Dietary supplement	Vitamin E	Petersen, 2005 ¹⁹⁶		CDR-SB (0-18)	IG2	6	1.78 (0.8)	NR	NR	0.17 (0.70)	1.87 (0.8)		NŘ	0.14 (0.86)	NR
supplement	Vitamin E	Fair		, , , , , , , , , , , , , , , , , , ,	IG2		1.78 (0.8)	NR	NR	0.51 (1.21)	, ,		NR	0.40 (1.28)	
supplement	Vitamin E			()	IG2	18	1.78 (0.8)	NR	NR	0.75 (1.44)	, ,		NR	0.72 (1.55)	
supplement	Vitamin E			· · · ·		24	1.78 (0.8)	NR	NR	1.02 (1.76)	, ,		NR	0.97 (1.76)	
supplement	Vitamin E			, , , , , , , , , , , , , , , , , , ,			1.78 (0.8)	NR	NR	1.26 (1.89)	, ,		NR	1.26 (2.15)	
supplement	Vitamin E			· · · ·			1.78 (0.8)	185	NR	1.67 (2.18)			NR	1.64 (2.55)	
Dietary supplement	Vitamin E			、 ,	IG2		2.64 (0.6)	NR	NR	0.11 (0.49)			NR	0.07 (0.53)	
Dietary supplement	Vitamin E		MCI	GDS (1-7)	IG2	12	2.64 (0.6)	NR	NR	0.21 (0.61)	2.72 (0.6)	NR	NR	0.15 (0.65)	NR
Dietary supplement	Vitamin E		MCI	GDS (1-7)	IG2	18	2.64 (0.6)	NR	NR	0.27 (0.73)	2.72 (0.6)	NR	NR	0.27 (0.73)	
Dietary supplement	Vitamin E		MCI	GDS (1-7)	IG2	24	2.64 (0.6)	NR	NR	0.42 (0.80)	2.72 (0.6)	NR	NR	0.38 (0.81)	NR
Dietary supplement	Vitamin E		MCI	GDS (1-7)	IG2	30	2.64 (0.6)	NR	NR	0.51 (0.85)	2.72 (0.6)	NR	NR	0.48 (0.87)	NR
Dietary supplement	Vitamin E		MCI	GDS (1-7)	IG2	36	2.64 (0.6)	185	NR	0.64 (0.96)	2.72 (0.6)	193	NR	0.56 (0.99)	NR
Dietary supplement	Omega-3 fatty acids	Quinn, 2010 ²⁵⁸	Dem	CDR-SB (0-18)	IG1	6	5.61 (2.62)	216	NR	1.2 (0.9, 1.5) ^{††}	5.77 (2.61)	148	NR	1.1 (0.8, 1.4) ^{††}	NR
supplement			Dem	CDR-SB (0-18)	IG1	12	5.61 (2.62)	191	NR	2.1) ^{††}	5.77 (2.61)	137	NR	2.0 (1.6, 2.4) ^{††}	NR
Dietary supplement				()	IG1	18	5.61 (2.62)	177	NR	3.30) ^{††}	(2.61)		NR	2.93 (2.44, 3.42) ^{††}	
Dietary supplement	Vitamin E	Sano, 1997 ²⁵⁹ Good		CDR (D)	IG1	24	NA	85	41 (48.2) ^{‡‡}	NR	NA		43 (51.2) ^{‡‡}	NR	NS

* Lower scores indicate better outcomes for all instruments

† Least squares mean

‡ Standard error

§ Least squares mean change

Number (%) of participants demonstrating functional deterioration (CIBIC + score 5-7)

¶ Number (%) of participants demonstrating minimal, moderate, or marked improvement (CIBIC+ score ≤ 3)

New study

** Number (%) of participants who improved or had no deterioration in MMSE score, as well as evidence of global function improvement on the basis of behavioral and/or functional assessment

†† 95% CI

‡‡ Number (%) of participants receiving a score of 3 on the CDR

Abbreviations: BL = baseline; CDR = Clinical Dementia Rating Scale; CDR-SB = Clinical Dementia Rating Scale Sum of Boxes; CG = control group; CI = confidence interval; CIBIC+ = Clinician's Interview-Based Impression of Change with caregiver's input; D = dichotomized; Dem = dementia; ES = effect size; FU = followup; GDS = Global Deterioration Scale; HMG-CoA = β -Hydroxy β -methylglutaryl-CoA; IG = intervention group; Int arm = intervention arm; LSM = least squares mean; MCI = mild cognitive impairment; MD = mean difference; MDC = mean difference in change; mo. = months; Pop cat = population category; NA = not applicable; NR = not reported; NS = not statistically significant; NSAID = Nonsteroidal Anti-inflammatory Drug; SD = standard deviation; SE = standard error

										10	CG		CG		Between
Medication		Author, year	Рор	ADL or ADL, (Instrument,	Int	Time,			IG FU	IG mean change (SD)		CG	FU	CG mean change (SD)	group
type	Medication	Quality		range, direction)					(SD)	from BL		FU		from BL	p-value
Antihypertensive		Moonen,		ADL/IADL (GARS,			23 [†]	180		-0.77 (-1.33,		176		-0.05 (-0.62,	
	of	2015* ²³⁷		18-72, ↓)		-	(NR)			-0.20)‡	(NR)			0.52) [‡]	,
	antihypertensive	Fair					、 <i>,</i>			,	```			,	
HMG-CoA	Atorvastatin	Feldman,				6		285	NR	2.51 [§] (0.30) [∥]		311	NR	2.06 [§] (0.29) [∥]	LSM
reductase		2010 ²³⁸		(ADFACS, 0-54, ↓)			(8.9)				(8.5)				change
inhibitor		Fair													(SE)=0.45
		_	_												(0.41), 0.27
HMG-CoA	Atorvastatin					11		233	NR	4.95§ (0.43) [∥]		279	NR	4.55 [§] (0.40) [∥]	LSM
reductase				(ADFACS, 0-54, ↓)			(8.9)				(8.5)				change
inhibitor															(SE)=0.40
HMG-CoA	Atorvastatin	-	Dom	ADL/IADL	IG1	18	13.2	214	ND	7.36 [§] (0.54) [∥]	13.1	256		6.91 [§] (0.50) [∥]	(0.58), 0.49 LSM
reductase	Alorvasialin			ADL/IADL (ADFACS, 0-54, ↓)	IGT	10	(8.9)	214	INK	7.363 (0.54)"	(8.5)	200	INK	0.913 (0.50)*	change
inhibitor				(ADFACS, 0-34, ↓)			(0.9)				(0.5)				(SE)=0.45
															(0.74), 0.54
HMG-CoA	Simvastatin	Sano, 2011 ²³⁹	Dem	ADL (ADCS-ADL,	IG1	3	67.2	204	NR	-1.54 (7.44)	68.6	202	NR	-1.2 (6.09)	NS
reductase		Fair		0-27, ↓)		-	(10.0)				(10.4)			(0.00)	
inhibitor							· ,				, ,				
HMG-CoA	Simvastatin			ADL (ADCS-ADL,	IG1	6	67.2	204	NR	-3.66 (8.18)		202	NR	-3.95 (8.42)	NS
reductase				0-27, ↓)			(10.0)				(10.4)				
inhibitor		-													
HMG-CoA	Simvastatin				IG1			204	NR	-7.45 (10.18)		202	NR	-6.21 (10.94)	NS
reductase				0-27, ↓)			(10.0)				(10.4)				
inhibitor HMG-CoA	Circula static		Dam	ADL (Denenderey	104	6	5.2	004		0.04 (0.05)	4.9	000		0 45 (0 07)	NS
reductase	Simvastatin			ADL (Dependency Scale, 0-5, ↓)	IGT	3	o.∠ (2.3)	204	NR	-0.04 (0.85)	4.9 (2.3)	202	NR	-0.15 (0.87)	NS
inhibitor				Scale, 0-5, ↓)			(2.3)				(2.3)				
HMG-CoA	Simvastatin	-	Dem	ADL (Dependency	IG1	6	5.2	204	NR	-0.1 (1.04)	4.9	202	NR	-0.21 (0.83)	NS
reductase	Cinivaolalin			Scale, 0-5, \downarrow)		Ŭ	(2.3)	201		0.1 (1.0 1)	(2.3)	202		0.21 (0.00)	
inhibitor							(=.0)				()				
HMG-CoA	Simvastatin		Dem	ADL (Dependency	IG1	12	5.2	204	NR	-0.26 (1.02)	4.9	202	NR	-0.36 (0.96)	NS
reductase				Scale, 0-5,			(2.3)			, ,	(2.3)			· · · ·	
inhibitor							. ,				. ,				
HMG-CoA	Simvastatin]		ADL (Dependency	IG1	18	5.2	204	NR	-0.48 (1.09)		202	NR	-0.53 (1.1)	NS
reductase				Scale, 0-5,			(2.3)				(2.3)				
inhibitor		_	L					ļ	L						
HMG-CoA	Simvastatin	Sano, 2011 ²³⁹		ADL/IADL (ADCS-	IG1	18		204	NR	-10.47		202	NR	-9.62 (13.86)	NS
reductase		Fair		ADL, 0-78, ↑)		1	(10.0)			(13.37)	(10.4)				
inhibitor												1			

Medication		Author	Dam	ADL or ADL,	luct	Time			IG FU	IG mean	CG BL	CG		CG mean	Between group
type	Medication	Author, year Quality	Pop cat	· · · · · ·	Int arm	mo.	mean (SD)	FU	(SD)	change (SD) from BL		FU		change (SD) from BL	p-value
	Atorvastatin	Sparks, 2005 ²⁴¹ Fair	Dem	ADL/IADL (ADCS- ADL, 0-78, ↑)				NR					33.6 (2.35) [∥]		NR, 0.263
HMG-CoA reductase inhibitor	Atorvastatin			ADL/IADL (ADCS- ADL, 0-78, ↑)		12	(1.93) ^{II}		(2.25) ^{II}	NR	41.2 (1.85) ^{II}		27.6 (2.33) [∥]	NR	NR, 0.226
NSAID	Naproxen	Aisen, 2003 ²⁴² Good		ADL/IADL (ADCS- ADL, 0-78, ↑)	IG1	12	60.0 (13.1)	118	51.3 (16.3)	-8.7 (10.5)	62.8 (11.4)	111	51.3 (16.3)	-11.5 (11.2)	NR, 0.14
NSAID	lbuprofen	Pasqualetti, 2009 ²⁴⁴ Fair		ADL (Katz Index, 0-6, ↑)	IG1	12	NR	66	ŇR	-0.5 (0.2) [∥]	NR	66	NR		MDC (95% CI)=-0.1 (- 0.6, 0.4), 0.756
NSAID	lbuprofen	Pasqualetti, 2009 ²⁴⁴ Fair		IADL (Lawton and Brody IADL, 0-8, ↑)	IG1	12	NR	66	NR	-0.5 (0.2)"	NR	66	NR		MDC (95% CI)=0.2 (- 0.3, 0.6), 0.483
Gonadal steroid	Estrogen	Henderson, 2000 ²⁴⁷ Fair		IADL (Lawton and Brody IADL, 0-54, ↑)	IG1	4	14.7 (2.0) [∥]	18	17.6 (2.6) [∥]	2.9 (1.1) [∎]	13.2 (2.0) [∥]	18	16.1 (2.3) [∥]		MDC=0.0, >0.1
Gonadal steroid	Estrogen	Henderson, 2015 ^{*246} Good		ADL/IADL (ADCS- ADL, 0-78, ↑)	IG1	6	63.5 (12.4)	21	NR	-6.9 (NR)	58.3 (14.8)	21	NR		ES (95% CI)=-0.48 (- 0.82, -0.15), 0.006
Gonadal steroid	Estrogen			ADL/IADL (ADCS- ADL, 0-78, ↑)		12	(12.4)	21	NR	-9.1 (NR)	58.3 (14.8)	21	NR	()	ES (95% CI)=-0.34 (- 0.84, 0.18), NR
Gonadal steroid	Estrogen	Mulnard, 2000 ²⁴⁹		ADL (Dependency Scale, 0-5, ↓)	IG1	12	NR	42	NR	0.4 (0.8)	NR	39	NR	0.4 (1.1)	NR, 0.59
Gonadal steroid	Estrogen	Fair		ADL (Dependency Scale, 0-5, ↓)	IG2	12	NR	39	NR	0.5 (1.0)	NR	39	NR	0.4 (1.1)	NR, 0.21
Gonadal steroid	Estrogen plus progestin	Valen- Sendstad, 2010 ²⁵⁰ Fair		ADL (Barthel Index, 0-20, ↑)	IG1	12	19.4 (1.2)	29	18.5 (3.1)	NR	19.2 (1.2)	26	19.1 (1.3)	NR	MDC (SD)=-0.5 (1.8), 0.36
supplement	B vitamins (including folic acid)	Aisen, 2008 ²⁵² Good		ADL/IADL (ADCS- ADL, 0-78, ↑)	IG1	6	61.31 (11.6)	231	NR	-3.28 (7.99)	59.66 (12.9)	160	NR	-2.86 (7.8)	NR

											CG		CG		Between
			_	ADL or ADL,	_				IG FU	IG mean	BL	CG		CG mean	group
Medication	Medication	Author, year	Pop				mean	at FU						change (SD)	
type Dietary	B vitamins	Quality		range, direction) ADL/IADL (ADCS-	arm	mo. 12	(SD) 61.31			from BL -7.38 (9.97)	(SD) 59.66	FU 147	(SD)	from BL -7.82 (10.0)	p-value NR
supplement	(including folic			ADL, 0-78, ↑)	101		(11.6)	220		-7.38 (9.97)	(12.9)	147		-7.02 (10.0)	
	acid)						. ,				· ,				
Dietary	B vitamins			ADL/IADL (ADCS-	IG1	18	61.31	206	NR		59.66	140	NR	-10.0 (11.09)	NR
supplement	(including folic acid)			ADL, 0-78, ↑)			(11.6)			(12.36)	(12.9)				
Dietary	B vitamins	Connelly,			IG1	6		23	NR	0.61 (3.6)	18.22	18	NR	-2.06 (4.17)	NR, 0.03
supplement	(including folic	2008 ²⁵³		IADL subscale, 5-			(4.61)				(4.28)				
	acid)	Fair		25, ↓)		_									
Dietary supplement	Vitamin E	Dysken, 2014* ²²⁴		ADL/IADL (ADCS- ADL, 0-78)	IG2	6	(14.9)	134		-1.73 [§] (-3.61, 0.15) [‡]	(13.7)	135		-4.54 [§] (-6.42, -2.68) [‡]	NR
Dietary	Vitamin E	Good	Dem	ADL/IADL (ADCS-	IG2	12	56.6	122	NR	-4.30 [§] (-6.69,		112	NR	-8.14 [§] (-10.5,	NR
supplement				ADL, 0-78)			(14.9)			-1.94) [‡]	(13.7)			-5.73)‡	
Dietary	Vitamin E			ADL/IADL (ADCS-	IG2	18	56.6	103	NR	-8.03 [§] (-10.7,		96	NR	-10.2 [§] (-13.0,	NR
supplement		_		ADL, 0-78, ↑)			(14.9)			-5.25) [‡]	(13.7)			-7.40)‡	
Dietary	Vitamin E			ADL/IADL (ADCS-	IG2	24		88	NR	-11.9 [§] (-15.2,		77	NR	-16.2 [§] (-19.6,	NR
supplement Dietary	Vitamin E	-		ADL, 0-78, ↑) ADL/IADL (ADCS-	100	30	(14.9) 56.6	66	NR	-8.64) [‡] -15.9 [§] (-19.7,	(13.7)	54	NR	-12.8) [‡] -19.7 [§] (-23.7,	
supplement	Vitamin E			ADL, 0-78, ↑)	IG2	30	56.6 (14.9)	00	INK	-15.9° (-19.7, -12.0)‡	(13.7)	54	INK	-19.7° (-23.7, -15.6)‡	INK
Dietary	Vitamin E	-		ADL/IADL (ADCS-	IG2	36		51	NR	-19.7 [§] (-24.3,		41	NR	-24.8 [§] (-29.7,	NR
supplement	Vitariiir E			ADL, 0-78, ↑)	102	00	(14.9)	Ŭ'		-15.1) [‡]	(13.7)			-19.9) [‡]	
Dietary	Vitamin E	1		ADL/IADL (ADCS-	IG2	42		39	NR			33	NR	-28.1 [§] (-33.5,	NR
supplement				ADL, 0-78, ↑)			(14.9)			-20.3)‡	(13.7)			-22.7)‡	
Dietary	Vitamin E			ADL/IADL (ADCS-	IG2	48		140			56.8	140	NR		MDC (95%
supplement				ADL, 0-78, ↑)			(14.9)			(1.11)"	(13.7)				CI)=3.15
															(0.92, 5.39),
Distant	Omega-3 fatty	Freund-Levi,	Dam	ADL/IADL (DAD,	IG1	6	33.5	89	31.8	NR	33.1	85	30.5		0.03 NR, 0.34
Dietary supplement	omega-3 ratty acids	2006 ²⁵⁵		ADL/IADL (DAD, 0-46, ↑)	IGT	0	33.5 (NR)	89	(NR)	NK	33.1 (NR)	85	30.5 (NR)	NK	NR, 0.34
Supplement	acius	Fair		0-40,)			$(\mathbf{N}\mathbf{X})$		(\mathbf{N},\mathbf{X})		(INIX)		$(\mathbf{N}(\mathbf{X}))$		
Dietary	Vitamin E	Petersen,	MCI	IADL (ADCS-MCI-	IG2	6	45.82	NR	NR	-0.34 (4.29)	45.87	NR	NR	-1.06 (4.54)	NR
supplement		2005 ¹⁹⁶		ADL, 0-53, ↑)		-	(4.6)				(5.2)			(
Dietary	Vitamin E	Fair		IADL (ADCS-MCI-	IG2	12	45.82	NR	NR	-1.08 (4.90)		NR	NR	-1.44 (5.00)	NR
supplement				ADL, 0-53, ↑)			(4.6)				(5.2)				
Dietary	Vitamin E	Petersen,		IADL (ADCS-MCI-	IG2	18	45.82	NR	NR	-2.13 (5.76)		NR	NR	-2.34 (6.02)	NR
supplement		2005 ¹⁹⁶		ADL, 0-53, ↑)	10-		(4.6)				(5.2)				
Dietary	Vitamin E	Fair		IADL (ADCS-MCI-	IG2	24	45.82	NR	NR	-2.84 (6.16)		NR	NR	-3.43 (6.73)	NR
supplement		4		ADL, 0-53, ↑)	100	00	(4.6)			4 40 (7 40)	(5.2)				
Dietary	Vitamin E				IG2	30	45.82 (4.6)	NK	NR	-4.16 (7.46)	45.87 (5.2)	NR	NK	-5.00 (8.05)	NR
supplement				ADL, 0-53, ↑)			(4.0)	1			(S.Z)	1			

											CG		CG		Between
Medication		Author yoor	Den	ADL or ADL,	Int	Time			IG FU		BL	CG		CG mean	group
	Medication	Author, year Quality	Pop cat	(Instrument, range, direction)	Int arm				(SD)	change (SD) from BL	(SD)	FU		from BL	b-value
type Dietary	Vitamin E	Quality		IADL (ADCS-MCI-		36		185			```	193	1-1	-6.39 (8.99)	NR
				ADL, 0-53, ↑)	IGZ	30	(4.6)	100	INK	-5.65 (6.75)	45.87 (5.2)	193	INK	-0.39 (0.99)	INK
supplement	Omera 2 fettu	Dhilling	MCI		104	4	· /	37	3.35	NR		39	5.38	NR	
Dietary	Omega-3 fatty	Phillips, 2015* ²⁵⁷		ADL/IADL (Bristol	IG1	4	2.62 (5.28)	37	3.35 (7.10)	NR		39	5.38 (8.07)	INR	NR, 0.595
supplement	acids	Fair	+ Dem	ADL, 0-60, ↓)			(5.28)		(7.10)		(7.34)		(8.07)		
Distant	Omera 2 fattu			ADL (ADCS-ADL,	IG1	6	NR	219		45/50	NR	147		-3.2 (-4.6, -	NR
Dietary	Omega-3 fatty				IG1	6	INR	219	NR		NR	147	INR		INR
supplement	acids	Fair		0-27, ↓)	104	4.0		400		3.4) [‡]				2.0) [‡]	
Dietary	Omega-3 fatty			ADL (ADCS-ADL,	IG1	12	NR	192	NR		NR	141		-6.7 (-8.3, -	NR
supplement	acids	_		0-27, ↓)	104	4.0		470		5.2) [‡]		400		5.1) [‡]	
Dietary	Omega-3 fatty			ADL (ADCS-ADL,	IG1	18	NR	178	NR	-11.51 (-	NR	130		-10.43 (-	NR, 0.38
supplement	acids			0-27, ↓)						13.45, -				12.45, -	
D : <i>i</i>		0 4007250			101			<u> </u>		9.57) [‡]		. .		8.41) [‡]	
Dietary	Vitamin E	Sano, 1997 ²⁵⁹		ADL (Dependency	IG1	24	NA	85	65 (70 F)	NR	NA	84	72	NR	NR, 0.039
supplement		Good		Scale, D)					(76.5)				(85.7)		
D : <i>i</i>	0 0 0 0				101	4.0							"		
Dietary	Omega-3 fatty	Shinto,	Dem	ADL (ADCS-ADL,	IG1	12	2.2	11	NR	2.5 (1.0) [∥]		11	NR	2.9 (0.7) [∥]	NR, 0.82
supplement	acids	2014* ²⁶⁰		0-27, ↓)			(0.3) [∥]				(1.0) [∥]				
Dietary	Omega-3 and	Fair	Dem	ADL (ADCS-ADL,	IG2	12	1.5	12	NR	1.3 (0.8) [∥]		11	NR	2.9 (0.7) [∥]	NR, 0.15
supplement	LA	_		0-27, ↓)		-	(0.6)∥				(1.0) [∥]				
Dietary	Omega-3 fatty			IADL (ADCS-ADL,	IG1	6		11	NR	1.29 (0.75)"		11	NR	1.53 (0.75) [∥]	NR
supplement	acids	_		0-14, ↓)			(1.1) [∥]				(1.8)∥				
Dietary	Omega-3 fatty			IADL (ADCS-ADL,	IG1	12		12	NR	0.7 (1.0)"		11	NR	4.2 (0.9) [∎]	NR, <0.01
supplement	acids	_		0-14, ↓)		_	(1.1) [∥]				(1.8)∥				
Dietary	Omega-3 and			IADL (ADCS-ADL,	IG2	6	6.8	12	NR	1.51 (0.6) [∥]		11	NR	1.53 (0.6) [∥]	NR, NR
supplement	LA	_		0-14, ↓)			(1.9) [∥]				(1.8)∥				
Dietary	Omega-3 and			IADL (ADCS-ADL,	IG2	12	6.8	12	NR	0.9 (1.1) [∥]		11	NR	4.2 (1.1) [∥]	NR, 0.01
supplement	LA			0-14, ↓)			(1.9) [∥]				(1.8) [∥]				
Dietary	Multivitamin	Sun, 2007 ²⁶²	Dem	ADL (Barthel	IG1	24	NR	45	NR		NR	44		-0.19 (-0.57,	NR, 0.70
supplement		Fair		Index, 0-6, ↑)						0.36)‡				0.20)‡	
Dietary	Multivitamin		Dem	IADL (Lawton and	IG1	6	NR	45	NR		NR	44	NR		NR, 0.89
supplement				Brody IADL, 0-8,			1			1.08) [‡]				0.33)‡	
				↑)											
Dietary	Omega-3 fatty	Yurko-Mauro,		ADL (ADCS-ADL,	IG1	6	NR	241	NR	-2.0 (0.3)"	NR	242	NR	-1.7 (0.3)	NR, <0.59
supplement	acids	2010 ²⁶³		0-27, ↓)			1								
		Good	1												

* New study

† Median

‡ 95% CI

§ Least squares mean changeI Standard error

¶ Number (%) of patients receiving a higher score on Dependence Scale at followup

Abbreviations: ADL = Activities of Daily Living; ADCS-ADL = Alzheimer's Disease Cooperative Study Activities of Daily Living 23 items; ADFACS = Alzheimer's Disease Functional Assessment and Change Scale; BL = baseline; CG = control group; CI = confidence interval; D = dichotomized; DAD = Disability Assessment for Dementia; Dem = dementia; ES = effect size; FU = followup; GARS = Groningen Activity Restriction Scale; HMG-CoA = β -Hydroxy β -methylglutaryl-CoA; IADL = Instrumental Activities of Daily Living; IG = intervention group; Int arm = intervention arm; Katz Index = Katz Index of Independence in Activities of Daily Living; LSM = least squares mean; MCI = mild cognitive impairment; MDC = mean difference in change; mo. = months; n = number of participants analyzed; NOSGER = Nurses' Observation Scale for Geriatric Patients scale; NA = not applicable; NR = not reported; NS = Not statistically significant; NSAID = Nonsteroidal Anti-inflammatory Drug; Pop cat = population category; SD = standard deviation; SE = standard error

				_						IG mean	_			CG mean	Between
Medication		Author, vear	Рор	Symptom (Instrument,	Int	Time,		IG n at	IG FU mean	change (SD) from	CG BL mean	CG n at	CG FU mean	change	group difference, p-
type	Medication	Quality	cat	range [†])	arm	mo.	(SD)	FU	(SD)	BL	(SD)	FU	(SD)	BL	value
Antihypertensive	Discontinuation	Moonen, 2015* ²³⁷		Dep (GDS-15, 0-15)	IG1	4	1‡ (NR)		NR	-0.05 (- 0.29, 0.19)§	1 [‡] (NR)	176	NR	-0.19 (- 0.43, 0.05) [§]	NR, 0.41
HMG-CoA reductase inhibitor		Feldman, 2010 ²³⁸ Fair		NPS (NPI-12, 0- 144)			(11.5)	285		(0.52)¶	(10.3)	309		0.42 ⁱⁱ (0.50)¶	LSM change (SE)=0.59 (0.72), 0.41
HMG-CoA reductase inhibitor	Atorvastatin			NPS (NPI-12, 0- 144)			(11.5)	231			(10.3)			1.89 (0.61)¶	LSM change (SE)=-0.86 (0.90), 0.34
HMG-CoA reductase inhibitor	Atorvastatin			NPS (NPI-12, 0- 144)			(11.5)	215		(0.88)¶	(10.3)			3.25 [॥] (0.81) [¶]	LSM change (SE)=-1.1 (1.20), 0.36
HMG-CoA reductase inhibitor		Sano, 2011 ²⁵⁹ Fair		NPS (NPI-12, 0- 144)			(10.5)	204		-0.64 (8.61)				0.21 (8.02)	
HMG-CoA reductase inhibitor	Simvastatin		Dem	NPS (NPI-12, 0- 144)	IG1	6	9.2 (10.5)	204	NR	-0.09 (9.61)	7.8 (8.3)	202	NR	1.26 (9.16)	
HMG-CoA reductase inhibitor	Simvastatin		Dem	NPS (NPI-12, 0- 144)	IG1	12	9.2 (10.5)	204	NR	1.95 (10.64)	7.8 (8.3)	202	NR	3.60 (10.38)	NS
HMG-CoA reductase inhibitor	Simvastatin		Dem	NPS (NPI-12, 0- 144)	IG1	18	9.2 (10.5)	204	NR	3.21 (12.71)	7.8 (8.3)	202		3.78 (10.73)	NS
HMG-CoA reductase inhibitor	Atorvastatin	Sparks, 2005 ²⁴¹ Fair		Dep (GDS-15, 0-15)		12	(0.69)¶		3.75 (1.91)¶		(0.88)¶		(1.76)¶	NR	NR, 0.04
NSAID	Naproxen	Aisen, 2003 ²⁴² Good	Dem	NPS (NPI-12, 0- 144)	IG1		9.4 (9.6)		13.1 (14.4)		8.7 (10.6)	111	12.2 (12.8)		NR, 0.76
NSAID	Indomethacin	de Jong, 2008 ²⁴³ Fair	Dem	NPS (NPI-10, 0- 120)	IG1	6	11.2 (12.0)		NR	1.7 (14.0)	7.1 (6.7)		NR	-0.3 (4.9)	MDC (95% CI)=3.6 (-2.9, 10.1), NR
NSAID	Indomethacin			NPS (NPI-10, 0- 120)	IG1	12	11.2 (12.0)	19	NR	3.2 (18.1)	7.1 (6.7)	19	NR	9.4 (14.0)	MDĆ (95% CI)=-4.6 (- 15.8, 6.6), NR
NSAID		Pasqualetti, 2009 ²⁴⁴ Fair		Dep (GDS, 0- 30)	IG1	12	NR	66	NR	0.2 (0.5)¶	NR	66	NR	-0.1 (0.5)¶	MDC (95% CI)=0.4 (-0.8, 1.5), 0.545

										IG mean				CG mean	Between
		Author,		Symptom	1	T :			IG FU	change			CG FU		group
Medication type	Medication	year Quality	Pop cat	(Instrument, range [†])	Int arm	Time, mo.	mean (SD)	at FU	mean (SD)	(SD) from BL	mean (SD)	at FU	mean (SD)	(SD) from BL	difference, p- value
NSAID	Ibuprofen	Quanty		NPS (NPI-12, 0-		12			NR	-2.2 (2.0)¶	NR	66	NR		MDC (95%
_				144)						()					CI)=-0.9 (-5.3,
															3.4), 0.669
NSAID	Celecoxib	Soininen, 2007 ²⁴⁵		NPS (BEHAVE- AD1, 0-75)	IG1	3	4.6 (4.8)	266	NR	. ,	5.0 (5.5)		NR	0.30 (NR)	NR, 0.897
NSAID	Celecoxib	Fair		NPS (BEHAVE- AD1, 0-75)	IG1	6	4.6 (4.8)	275	NR	1.01 " (NR)	5.0 (5.5)	135	NR	0.28 ^{II} (NR)	NR, 0.122
NSAID	Celecoxib		Dem	NPS (BEHAVE- AD1, 0-75)	IG1	12		276	NR	1.46 [∎] (NR)	5.0 (5.5)	135	NR	1.18 [⊪] (NR)	NR, 0.655
Gonadal steroid	Estrogen	Henderson, 2000 ²⁴⁷		Dep (MADRS, 0-60)	IG1	4	(1.0) 9.7 (2.0)¶	18	9.8 (1.8)¶	0.2 (1.6)¶	10.9 (2.1)¶	18	12.0 (2.1)¶	1.1 (1.4)¶	MDC=-0.9, >0.1
Gonadal steroid	Estrogen	Fair	Dem	Dep (GDS, 0- 30)	IG1	4	(<u>1.</u> 8) (1.4)¶	18	(1.9)¶ (1.9)¶	-1.4 (1.4)¶	16.5 (1.8)¶	18	15.8 (1.9)¶	-0.7 (1.2)¶	MDC=-0.7,
Gonadal steroid	Estrogen	Henderson, 2015 ^{*246} Good	Dem	30) NPS (NPI-10, 0- 120)	IG1	6		21	(1.9)* NR	0.7 (NR)	(1.8)* 5.8 (7.8)	21		3.1 (NR)	ES (95% CI): -0.35 (-1.04, 0.35), NR
Gonadal steroid	Estrogen		Dem	NPS (NPI-10, 0- 120)	IG1	12	5.2 (6.6)	21	NR	2.3 (NR)	5.8 (7.8)	21	NR	2.5 (NR)	ES (95% CI): -0.02 (-0.70, 0.65), NR
Gonadal steroid	Testosterone	Lu, 2006 ²⁴⁸ Fair	Dem	Dep (BDI, 0-63)	IG1	6	6.8 (4.3)	4	6.5 (2.5)	-0.3 (3.6)	8.6 (4.9)	7	9.1 (3.8)	0.6 (6.0)	NR, 0.32
Gonadal steroid	Testosterone		Dem	NPS (NPI-10, 0- 120)	IG1	6		5	5.4 (7.6)	1.2 (5.4)	7.8 (7.3)	8		3.4 (16.4)	NR, 0.74
Gonadal steroid	Testosterone		Dem	NPS (NPI-10, D)	IG1	6	· /	9	4 (44.4) [#]	NR	NA	9	7 (77.8) [#]	NR	NR, >0.16
Gonadal steroid	Estrogen	Mulnard, 2000 ²⁴⁹	Dem	Dep (HDRS, 0- 52)	IG1	12	3.4 (4.0)	42		0.5 (3.7)	3.8 (4.0)	39		0.03 (3.9)	NR, 0.69
Gonadal steroid	Estrogen	Fair		Dep (HDRS, 0- 52)	IG2	12		39	NR	-0.1 (4.3)	3.8 (4.0)	39	NR	0.03 (3.9)	NR, 0.69
Gonadal steroid	Estrogen plus progestin	Valen- Sendstad,	Dem	Dep (CERAD Depression, 0-9)	IG1	12		29	1.2 (1.8)	NR	1.6 (1.6)	26	1.2 (1.3)	NR	MDC (SD)=- 0.6 (1.3), 0.13
Gonadal steroid	5	2010 ²⁵⁰ Fair	Dem	Dep (CERAD Depression, 0- 9)**		12		29	2.4 (1.9)	NR	3.0 (2.2)	26		NR	MDC (SD)=- 0.4 (2.8), 0.62
Gonadal steroid	Estrogen	Wang, 2000 ²⁵¹	Dem	, Anx (HARS, 0- 56)	IG1	3	6.4 (4.7)	25	NR	-0.8 (4.7)	7.2 (4.3)	25	NR	0.4 (2.6)	NR, 0.277
Gonadal steroid	Estrogen	Fair		Dep (HDRS, 0- 52)	IG1	3		25	NR	-1.2 (5.8)	7.5 (4.9)	25	NR	0.4 (4.8)	NR, 0.335
Gonadal steroid	Estrogen		Dem	NPS (BEHAVE- AD1, 0-75)	IG1	3	4.9 (5.7)	25	NR	-0.4 (3.8)	4.7 (5.5)	25	NR	-0.8 (5.0)	NR

Medication type	Medication	Author, year Quality	Pop cat	Symptom (Instrument, range [†])	arm	mo.	mean (SD)	at FU	IG FU mean (SD)	IG mean change (SD) from BL	mean (SD)	CG n at FU	(SD)	(SD) from BL	Between group difference, p- value
Dietary supplement	B vitamins (including folic acid)	Aisen, 2008 ²⁵² Good	Dem	NPS (NPI-12, 0- 144)	IG1	3	6.0 [‡] (NR)	234	NR	0.71 (6.31)	5.0 [‡] (NR)	164	NR	0.64 (4.83)	NR
Dietary supplement	B vitamins (including folic acid)			NPS (NPI-12, 0- 144)		6	6.0 [‡] (NR)	231		0.97 (10.82)	(NR)		NR	1.03 (8.82)	NR
Dietary supplement	B vitamins (including folic acid)		Dem	NPS (NPI-12, 0- 144)	IG1	12	6.0 [‡] (NR)	215	NR	1.03 (10.53)	5.0 [‡] (NR)	145	NR	1.19 (9.31)	NR
Dietary supplement	B vitamins (including folic acid)		Dem	NPS (NPI-12, 0- 144)	IG1	18	6.0 [‡] (NR)	198	NR	3.31 (12.84)	5.0 [‡] (NR)	136	NR	2.2 (11.12)	NR
Dietary supplement	B vitamins (including folic acid)	de Jager, 2012 ²⁵⁴ Fair		Dep (GDS, 0- 30)	IG1	24	NR	133	NR	-0.073 (3.4)	NR	133	NR	0.018 (3.6)	NS
Dietary supplement	Vitamin E	Dysken, 2014 ^{*224} Good	Dem	NPS (NPI-12, 0- 144)	IG2	6	7.5 [‡] (NR)	133		-1.24 [∥] (- 3.35, 0.87)§	8.0 [‡] (NR)	135		0.47 [∥] (- 1.62, 2.57) [§]	NR
Dietary supplement	Vitamin E		Dem	NPS (NPI-12, 0- 144)	IG2	12	7.5 [‡] (NR)	122		-1.04 [∥] (- 3.40, 1.34)§	8.0 [‡] (NR)	112	NR	1.08 [∥] (- 1.36, 3.53) [§]	NR
Dietary supplement	Vitamin E		Dem	NPS (NPI-12, 0- 144)	IG2	18	7.5 [‡] (NR)	103		0.93 [∎] (-1.81, 3.68) [§]	8.0 [‡] (NR)	96	NR	4.05 [∥] (1.26, 6.87) [§]	NR
Dietary supplement	Vitamin E		Dem	NPS (NPI-12, 0- 144)	IG2	24	7.5 [‡] (NR)	87		2.16 [∥] (-1.25, 5.58) [§]	8.0 [‡] (NR)	75	NR	3.59 [∥] (0.004, 7.19) [§]	NR
Dietary supplement	Vitamin E		Dem	NPS (NPI-12, 0- 144)	IG2	30	7.5 [‡] (NR)	64		3.20 [∥] (-0.13, 6.55) [§]	8.0 [‡] (NR)	55	NR	1.68 ^{íi} (- 1.88, 5.21) [§]	NR
Dietary supplement	Vitamin E	Dysken, 2014* ²²⁴ Good	Dem	NPS (NPI-12, 0- 144)	IG2	36	7.5 [‡] (NR)	51		2.14 [∥] (-1.73, 6.01) [§]	8.0 [‡] (NR)	41	NR	0.60 ^í (- 3.63, 4.83) [§]	NR
Dietary supplement	Vitamin E		Dem	NPS (NPI-12, 0- 144)	IG2	42	7.5 [‡] (NR)	39		0.82 [∥] (-4.35, 6.01) [§]	8.0 [‡] (NR)	33	NR	3.63 [#] (- 2.01, - 9.31) [§]	NR
Dietary supplement	Vitamin E		Dem	NPS (NPI-12, 0- 144)	IG2	48	7.5 [‡] (NR)	140	NR	0.79" (1.00)¶	8.0 [‡] (NR)	140	NR	2.26 ^{íi}	MDC (95% Cl)=-1.46 (- 3.55, 0.63), 0.94

		Author,		Symptom			IG BI	lG n	IG FU	IG mean change	CG BL	CG n	CG FU	CG mean change	Between group
Medication		year	Рор		Int	Time,		at	mean	(SD) from	mean	at	mean		difference, p-
type	Medication	Quality	cat	range [†])	arm	mo.	(SD)	FU	(SD)	BL	(SD)	FU	(SD)	BL	value
Dietary supplement	Omega-3 fatty acids	Freund- Levi,		0-30)	_	6	(NR)		(NR)	NR	1.9 (NR)		1.6 (NR)	NR	NR, 0.49
Dietary supplement	Omega-3 fatty acids	2006 ²⁵⁵ Fair		NPS (NPI-12, 0- 144)		6	(NR)	89	(NR)	NR	(NR)		16.0 (NR)		NR, 0.45
Dietary supplement	B vitamins (including folic acid)	Kwok, 2011 ²⁵⁶ Fair		38)		24	1.9 (2.5)	59	NR	0 ^{††} (-2, 0)	1.8 (2.5)				NR, 0.436
Dietary supplement	B vitamins (including folic acid)		Dem	NPS (NPI-12, 0- 144)	IG1		(11.4)		NR		9.0 (11.0)	53	NR	7)	NR, 0.606
Dietary supplement	Omega-3 fatty acids	Phillips, 2015* ²⁵⁷ Fair		Dep (BASDEC, 0-21)	IG1	4	2.7 (2.4)	37	2.3 (2.9)	NR	2.3 (2.0)		2.1 (2.5)	NR	NR, 0.548
Dietary supplement	Omega-3 fatty acids	Quinn, 2010 ²⁵⁸		NPS (NPI-12, 0- 144)		6	NR	219		1.8 (0.4, 3.3) [§]	NR	146	NR	1.0 (-0.8, 2.6) [§]	NR
Dietary supplement	Omega-3 fatty acids	Fair		NPS (NPI-12, 0- 144)			NR	192		2.1) [§]	NR	141	NR	4.9) [§]	NR
Dietary supplement	Omega-3 fatty acids		Dem	NPS (NPI-12, 0- 144)	IG1	18	NR	176		2.93 (0.92, 4.94) [§]	NR	129	NR	5.09 (2.49, 7.69) [§]	MDC (95% CI)=NR (NR, NR), 0.11
Dietary supplement	Omega-3 fatty acids - DHA	Sinn, 2012 ²⁶¹ Fair		0-15)	IG1	6	3.19 (3.17)	18	-0.68 (0.30)		3.15 (2.08)		0.69 (0.61)	NR	ES (SE) (95% CI): -1.40 (0.53)(-2.47, - 0.32), 0.01
Dietary supplement	Omega-3 fatty acids - EPA	Sinn, 2012 ²⁶¹ Fair		Dep (GDS-15, 0-15)	IG2	6	4.40 (2.92)	17	-0.52 (0.30)	NR	3.15 (2.08)		0.69 (0.61)	NR	ES (SE) (95% CI): -1.23 (0.56)(-2.37, - 0.09), 0.04
Dietary supplement	Omega-3 fatty acids	Yurko- Mauro, 2010 ²⁶³ Good		Dep (GDS, 0- 30)	IG1	6	1.3 (1.2)	241	1.4 (1.6)	0.1 (0.10)¶	1.3 (1.3)		1.3 (1.5)	0.0 (0.08)¶	MDĆ (SE)=0.1 (0.12), 0.230

* New study

[†] Lower scores indicate better outcomes for all instruments

‡ Median

. § 95% CI

Least squares mean change

¶ Standard error

Number (%) of participants displaying at least 1 neuropsychiatric symptom of mild severity based on NPI

** Caregiver-reported

†† Median change (IQR)

Abbreviations: Anx = anxiety; BASDEC = Brief Assessment Schedule Depression Cards; BDI = Beck Depression Inventory; BEHAVE-AD1 = Behavioral Pathology in Alzheimer's Disease – Part 1; BL = baseline; CERAD = Consortium to Establish a Registry for Alzheimer's Disease; CG = control group; CI = confidence interval; CSDD = Cornell Scale for Depression in Dementia; Dem = dementia; Dep = depression; ES = effect size; FU = followup; GDS = Geriatric Depression Scale; GDS-15 = Geriatric Depression Scale-15 Item; HARS = Hamilton Anxiety Rating Scale; HDRS = Hamilton Depression Rating Scale; HMG-CoA = β -Hydroxy β -methylglutaryl-CoA; IG = intervention group; Int arm = intervention arm; LSM = least squares mean; MADRS = Montgomery-Åsberg Depression Rating Scale; MCI = mild cognitive impairment; MDC = mean difference in change; mo. = months; NPI-10 = Neuropsychiatric Inventory-10 item; NPI-12 = Neuropsychiatric Inventory-12 item; NPS = Composite neuropsychiatric symptoms; NR = not reported; NS = not statistically significant; NSAID = Nonsteroidal Anti-inflammatory Drug; Pop cat = population category; SD = standard deviation; SE = standard error

		Author, year			Time,	IG n at	IG FU N (%)	CG n at	CG FU N (%)	Between group
Medication type	Intervention	Quality	Outcome	Int arm	mo.	FU	with event	FU	with event	difference, p-value
Antihypertensive	Discontinuation of antihypertensive	Moonen, 2015 ^{*237} Fair	Serious adverse events	IG1	4	199	13 [†]	186	13 [†]	NR
HMG-CoA reductase inhibitor	Atorvastatin	Feldman, 2010 ²³⁸ Fair	Adverse events	IG1	18	314	272 (86.6)	325	277 (85.2)	NR
HMG-CoA reductase inhibitor	Atorvastatin		Serious adverse events	IG1	18	314	50 (15.9)	325	51 (15.7)	NR
HMG-CoA reductase inhibitor	Atorvastatin		Withdrawals due to adverse events	IG1	18	314	56 (17.8)	325	31 (9.5)	NR
HMG-CoA reductase inhibitor	Simvastatin	Sano, 2011 ²³⁹ Fair	Adverse events	IG1	18	204	189 (92.6)	202	181 (89.6)	NR, 0.91
HMG-CoA reductase inhibitor	Simvastatin		Serious adverse events	IG1	18	204	56 (27.5)	202	54 (26.7)	NR, 0.91
HMG-CoA reductase inhibitor	Simvastatin		Withdrawals due to adverse events	IG1	18	204	13 (6.4)	202	16 (7.9)	NR
HMG-CoA reductase inhibitor	Simvastatin	Simons, 2002 ²⁴⁰ Fair	Withdrawals due to adverse events	IG1	6	24	2 (8.3)	20	0 (0.0)	NR
NSAID	Naproxen	Aisen, 2003 ²⁴² Good	Withdrawals due to adverse events	IG1	12	118	10 (8.5)	111	11 (9.9)	NR
NSAID	Indomethacin	de Jong, 2008 ²⁴³ Fair	Serious adverse events	IG1	12	26		25	1 (4.0)	NR
NSAID	Indomethacin		Withdrawals due to adverse events	IG1	6	26	5 (19.2)	25	0 (0.0)	NR
NSAID	Indomethacin	de Jong, 2008 ²⁴³ Fair	Withdrawals due to adverse events	IG1	12	20	1 (5.0)	23	0 (0.0)	NR

		Author, year			Time,	IG n at	IG FU N (%)	CG n at	CG FU N (%)	Between group
Medication type	Intervention	Quality	Outcome	Int arm	mo.	FU	with event	FU	with event	difference, p-value
NSAID	Ibuprofen	2009 ²⁴⁴ Fair	Withdrawals due to adverse events	IG1	12	66	7 (10.6)	66	10 (15.2)	NR
NSAID	Celecoxib	Soininen, 2007 ²⁴⁵	Adverse events	IG1	12	285	229 (80.4)	140	105 (75.0)	NR
NSAID	Celecoxib		Serious adverse events	lG1	12	285	73 (25.6)	140	32 (22.9)	NR
NSAID	Celecoxib		Withdrawals due to adverse events	IG1	12	285	34 (11.9)	140	15 (10.7)	NR
Gonadal steroid	Estrogen	Henderson, 2015 ^{*246}	Adverse events	IG1	12	21	54 [†]	21	44†	NR
Gonadal steroid	Estrogen		Serious adverse events	lG1	12	21	2 (9.5)	21	1 (4.8)	NR
Gonadal steroid	Testosterone	Lu, 2006 ²⁴⁸ Fair	Withdrawals due to adverse events	IG1	6	9	2 (22.2)	9	0 (0.0)	NR
Gonadal steroid	Estrogen	Mulnard, 2000 ²⁴⁹ Fair	Withdrawals due to adverse events	IG1	12	42	7 (16.7)	39	2 (5.1)	NR
Gonadal steroid	Estrogen		Withdrawals due to adverse events	IG2	12	39	4 (10.3)	39	2 (5.1)	NR
	Estrogen plus progestin	Valen-Sendstad, 2010 ²⁵⁰	Adverse events	IG1	12	33	25 (75.8)	32	18 (56.3)	NR
	Estrogen plus progestin		Serious adverse events	IG1	12	33	0 (0)	32	3 (9.4)	NR
supplement	B vitamins (including folic acid)	Aisen, 2008 ²⁵²	Adverse events	lG1	18	240	224 (93.3)	169	161 (95.3)	NR, 0.52
Dietary supplement	B vitamins (including folic acid)	Good	Serious adverse events	IG1	18	240	123 (51.3)	169	95 (56.2)	NR, 0.37

		Author, year			Time,	IG n at	IG FU N (%)	CG n at	CG FU N (%)	Between group
Medication type	Intervention	Quality	Outcome	Int arm		FU	with event	FU	with event	difference, p-value
Dietary supplement	B vitamins (including folic acid)	de Jager, 2012 ²⁵⁴ Fair	Adverse events		24	133	242†	133	271 [†]	NR
Dietary supplement	Vitamin E	Dysken, 2014* ²²⁴	Adverse events	IG2	48	152	198 [†]	152	202†	NR
Dietary supplement	Vitamin E		Serious adverse events	_	48	152	180†	152	170†	NR
Dietary supplement	Vitamin E	Petersen, 2005 ¹⁹⁶ Fair	Adverse events	IG2	36	257	82†	259	64†	NR
Dietary supplement	Omega-3 fatty acids	Quinn, 2010 ²⁵⁸ Fair	Adverse events	IG1	18	238	214 [†]	164	144†	NR, 0.52
Dietary supplement	Omega-3 fatty acids		Serious adverse events	IG1	18	238	76†	164	50 [†]	NR, 0.83
Dietary supplement	Omega-3 fatty acids		Withdrawals due to adverse events	IG1	18	238	14 (5.9)	164	10 (6.1)	NR
Dietary supplement	Omega-3 fatty acids	Shinto, 2014* ²⁶⁰ Fair	Adverse events	IG1	12	13	4†	13	7†	NR
Dietary supplement	Omega-3 and LA		Adverse events	IG2	12	13	7†	13	7 †	NR
Dietary supplement	Omega-3 fatty acids - DHA	Sinn, 2012 ²⁶¹ Fair	Withdrawals due to adverse events	IG1	6	18	1 (5.6)	15	0 (0.0)	NR
Dietary supplement	Omega-3 fatty acids - EPA		Withdrawals due to adverse events	IG2	6	17	0 (0.0)	15	0 (0.0)	NR
Dietary supplement	Multivitamin	Sun, 2007 ²⁶² Fair	Adverse events	IG1	6	45	21 (46.7)	44	14 (31.8)	NR
Dietary supplement	Multivitamin		Serious adverse events	IG1	6	45	2 (4.4)	44	1 (2.3)	NR
Dietary supplement	Multivitamin	Sun, 2007 ²⁶² Fair	Withdrawals due to adverse events	IG1	6	45	5 (11.1)	44	4 (9.1)	NR

		Author, year			Time,	IG n at	IG FU N (%)	CG n at	CG FU N (%)	Between group
Medication type	Intervention	Quality	Outcome	Int arm	mo.	FU	with event	FU	with event	difference, p-value
Dietary	Omega-3 fatty	Yurko-Mauro,	Adverse	IG1	6	242	109 [†]	243	109 [†]	NR
supplement	acids	2010 ²⁶³	events							
Dietary	Omega-3 fatty	Good	Serious	IG1	6	242	7 (2.9)	243	7 (2.9)	NR
supplement	acids		adverse							
			events							
Dietary	Omega-3 fatty		Withdrawals	IG1	6	242	8 (3.3)	243	6 (2.5)	NR
supplement	acids		due to							
			adverse							
			events							

* New study

† Number of events reported

Abbreviations: $CG = control group; DHA = docosahexaenoic acid; EPA = eicosapentaenoic acid; FU = followup; HMG-CoA = <math>\beta$ -Hydroxy β -methylglutaryl-CoA; IG = intervention group; Int arm = intervention arm; LA = linoleic acid; mo. = months; n (%) = number (percentage) of participants reporting events; NR = not reported; NSAID = Nonsteroidal Anti-inflammatory Drug

Appendix G Table 1. Patient-Level Nonpharmacologic Interventions: Detailed Results for Global Cognitive Function Outcomes, by Intervention Type

					IG BL		IG FU	IG mean	CG BL		CG FU	CG mean	Between group
Author, year Quality	Pop cat	Instrument (range) [†]	Int arm	Time, mo.	mean (SD)	IG n at FU	mean (SD)	change (SD) from BL) mean (SD)	CG n at FU		change (SD) from BL	difference, p- value
	tion, T	raining, and Rehat	oilitatio	'n									
Amieva, 2016*277	Dem	ADAS-Cog 11 (0-	IG1	3	NR	151	21.26	NR	NR	141	19.84	NR	NR, 0.5041
Good		70)					(12.9)				(11.5)		
	Dem	ADAS-Cog 11 (0-	IG1	24	NR		39.96	NR	NR	109		NR	NR, 0.7060
	Davis	70)	100	0			(24.8)			4.4.4	(24.5)		
	Dem	ADAS-Cog 11 (0- 70)	IG2	3	NR	144	19.92 (12.0)	NR	NR	141	19.84 (11.5)	NR	NR, 0.8876
	Dem	ADAS-Cog 11 (0-	IG2	24	NR	121	34.57	NR	NR	109	38.25	NR	NR, 0.1012
		70)					(23.7)				(24.5)		
Bergamaschi,	Dem	MMSE (0-30)	IG1	12	20.25		23.0	NR	21.94	16		NR	NR, <0.001
2013* ²⁸²					(2.95)		(2.0)		(2.01)		(2.96)		
Fair													
Buschert, 2011 ²⁷¹ Fair	Dem	ADAS-Cog 11 (0- 70)	IG1	6	12.1 (5.3)		11.4 (6.0)	NR	16.4 (4.8)	7	16.4 (4.9)	NR	NS
	MCI	ADAS-Cog 11 (0-	IG1	6	8.7 (2.9)		(0.0) 7.3 (3.1)	NR	9.8 (4.3)	12	11.7 (5.6)	NR	NR, 0.02
		70)	. • .	Č	0.1 (1.0)				0.0 (. –	(0.0)		
	Dem	MMSE (0-30)	IG1	6	24.5 (1.6)	8	25.0	NR	25.3 (1.5)	7	24.4 (2.4)	NR	NS
	-	- ()	-	_	- (-)	-	(2.7)		(-)		()		
	MCI	MMSE (0-30)	IG1	6	28.1 (1.5)	10	26.8	NR	28.2 (1.2)	12	26.0 (1.3)	NR	NR, 0.07
	_	- ()	-		- (- /		(1.5)		- ()				,
Cavallo, 2016*286	Dem	MMSE (0-30)	IG1	6	22.65		22.32	NR	23.05	38	22.64	NR	NS
Good		, , , , , , , , , , , , , , , , , , ,			(1.74)		(0.97)		(2.44)		(0.96)		
Chapman, 2004 ²⁶⁸	Dem	ADAS-Cog 11 (0-	IG1	4	NR		21.5	NR	NR	28	20.2 (NR)	NR	NR
Fair		70)					(NR)				. ,		
	Dem	ADAS-Cog 11 (0-	IG1	7	NR	26	23.5	NR	NR	28	23.0 (NR)	NR	NR
		70)					(NR)						
	Dem	ADAS-Cog 11 (0-	IG1	12	NR		24.6	4.89 (2.67,		28	26.5	5.62 (3.39,	ES=0.00, NS
		70)						7.11)				7.85)	
Chapman, 2004 ²⁶⁸	Dem	MMSE (0-30)	IG1	4	NR	26	21.0	NR	NR	28	21.9 (NR)	NR	NR
Fair							(NR)						
	Dem	MMSE (0-30)	IG1	7	NR	26	19.7	NR	NR	28	20.1 (NR)	NR	NR
							(NR)						
	Dem	MMSE (0-30)	IG1	12	NR	26	19.4	-1.25 (-2.78,	NR	28	19.0 (NR)	-2.14 (-4.18,	ES=0.06, NS
							(NR)	0.28)				-0.10)	
Cove, 2014* ²⁷⁹	Dem	ADAS-Cog 11 (0-	IG1	3	18.35		20.10	NR	17.68	23	20.09 (7.2)	NR	NS
Fair		70)			(7.1)		(7.6)		(6.51)				
	Dem	ADAS-Cog 11 (0-	IG2	3	18.13	24	19.04	NR	17.68	23	20.09 (7.2)	NR	NS
		70)			(8.24)		(8.13)		(6.51)				
	Dem	MMSE (0-30)	IG1	3	22.33		22.19	NR	22.91	23		NR	ES=0.003, 0.92
					(3.54)		(4.48)		(3.01)		(3.40)		

Appendix G Table 1. Patient-Level Nonpharmacologic Interventions: Detailed Results for Global Cognitive Function Outcomes, by Intervention Type

					IG BL		IG FU	IG mean	CG BL		CG FU	CG mean	Between group
Author, year Quality	Pop cat	Instrument (range) [†]	Int arm	Time, mo.	mean (SD)	IG n at FU	mean (SD)	change (SD) from BL	mean (SD)	CG n at FU	mean (SD)	change (SD) from BL	
	Dem	MMSE (0-30)	IG2	3	22.71 (3.76)	24	22.38 (4.75)	NR	22.91 (3.01)	23	22.13 (3.40)	NR	NS
Fiatarone Singh, 2014* ²⁸⁰	MCI	ADAS-Cog 11 (0- 70)	IG2	6	8.79 (NR)	24	7.31 (NR)	NR	8.09 (NR)	27	7.14 (NR)	NR	NR
Fair	MCI	ADAS-Cog 11 (0- 70)	IG2	18	8.79 (NR)	24	6.49 (NR)	NR	8.09 (NR)	27	5.75 (NR)	NR	NR
Greenaway, 2012 ²⁷³ Fair	MCI	MŃSE (0-30)	IG1	6	26.4 (2.2)	18	26.1 (2.2)	-0.2 (1.4)	27.2 (2.4)	17	27.3 (1.8)	-0.4 (2.2)	Cohen's d=0.1, NS
Jelcic, 2012 ^{*284} Fair	Dem	MMSE (0-30)	IG1	3	24.4 (2.8)	20	26.4 (2.3)	NR	25.0 (2.6)	20	24.0 (3.3)	NR	NR, <0.001
Jeong, 2016* ²⁷⁶ Fair	MCI	ADAS-Cog 13 (0- 89)	IG1	3	25.9 (6.6)	71	NR	-2.3 (4.6)	26.5 (6.6)	76	NR	-0.8 (4.8)	NR, 0.01
	MCI	ADAS-Cog 13 (0- 89)		9	25.9 (6.6)	67	NR	-2.3 (5.2)	26.5 (6.6)	62	NR	-0.5 (5.2)	NR, 0.03
Jeong, 2016* ²⁷⁶ Fair	MCI	ADAS-Cog 13 (0- 89)	IG2	3	24.9 (6.8)	71	NR	-2.5 (4.5)	26.5 (6.6)	76	NR	-0.8 (4.8)	NR, 0.02
	MCI	ADAS-Cog 13 (0- 89)	IG2	9	24.9 (6.8)	68	NR	-2.3 (6.1)	26.5 (6.6)	62	NR	-0.5 (5.2)	NR, 0.047
	MCI	MMSE (0-30)	IG1	3		71	NR	0.3 (1.8)	25.3 (2.5)		NR	0.3 (1.8)	NR, 0.23
	MCI	MMSE (0-30)	IG1	9	25.9 (2.5)	67	NR	-0.1 (2.3)	25.3 (2.5)	62	NR	0.3 (2.4)	NR, 0.39
	MCI	MMSE (0-30)	IG2	3	25.9 (2.4)	77	NR	0.7 (2.0)	25.3 (2.5)	76	NR	0.3 (1.8)	NR, 0.16
	MCI	MMSE (0-30)	IG2	9	25.9 (2.4)	68	NR	0.2 (2.3)	25.3 (2.5)	62	NR	0.3 (2.4)	NR, 0.6
Kallio, 2018 ^{*290} Fair	Dem	ADAS-Cog 11 (0- 70)	IG1	9		76	NR		21.8 (8.3)		NR	1.7 (0.6, 2.7)	NR, 0.23
	Dem	ADAS-Cog 11 (0- 70)	IG1	9	21.1 (8.1)	76	NR	2.0 (0.9, 3.1)	21.8 (8.3)	71	NR	2.3 (1.1, 3.5)	NR, 0.43
Kurz, 2012 ²⁷⁴ Fair	Dem	MMSE (0-30)	IG1	9	25.01 (2.16)	83	NR	-1.48 (3.77)	25.11 (2.20)	88	NR	-2.22 (3.24)	NR, 0.175
Olazaran, 2004 ²⁶⁷ Fair	MCI + Dem	ADAS-Cog 11 (0- 70)	IG1	3	24.7 (1.5) [‡]		NR	0 (NR)	25.8 (1.6) [‡]	40	NR	0.5 (NR)	NS
	MCI + Dem	ADAS-Cog 11 (0- 70)			24.7 (1.5) [‡]		NR		25.8 (1.6)‡		NR	2 (NR)	NS
Olazaran, 2004 ²⁶⁷ Fair	MCI + Dem	ADAS-Cog 11 (0- 70)	IG1		24.7 (1.5) [‡]		NR		25.8 (1.6)‡		NR	6.5 (NR)	NS
	MCI + Dem	MMSE (0-30)	IG1	3	NR	40	NR	0 (NR)	NR	40	NR	-0.51 (NR)	NS
	MCI + Dem	MMSE (0-30)	IG1	6	NR	40	NR	-0.5 (NR)		40	NR	-1.5 (NR)	NS
	MCI + Dem	MMSE (0-30)	IG1	12	NR	40	NR	-1.5 (NR)	NR	40	NR	-2.1 (NR)	NS

					IG BL		IG FU	IG mean	CG BL		CG FU	CG mean	Between group
Author, year	Рор	Instrument	Int	Time,	mean	IG n	mean	change (SD)		CG n		change (SD)	difference, p-
	cat	(range) [†]	arm	mo.	(SD)	at FU		from BL	(SD)	at FU	(SD)	from BL	value
Orrell, 2014* ²⁸¹ Good	Dem	ADAS-Cog 11 (0- 70)	IG1	3	31.1 (14.6)	123	35.32 (2.56)‡	NR	33.2 (13.0)	113	34.47 (2.59)‡	NR	Adj MD (95% CI)=- 0.85 (-3.40, 1.70), 0.27
	Dem	ADAS-Cog 11 (0- 70)	IG1	6	31.1 (14.6)	123	35.94 (2.79) [‡]	NR	33.2 (13.0)	113	35.29 (2.85) [‡]		Adj MD (95% CI)=- 0.65 (-3.71, 2.42), 0.67
	Dem	MMSE (0-30)	IG1	3	17.8 (5.6)		16.09 (0.88)‡	NR	17.8 (5.4)		(0.91) [‡]	NR	Adj MD (95% CI)=- 0.30 (-0.72, 1.31), 0.56
	Dem	MMSE (0-30)		6	17.8 (5.6)	123	16.34 (1.21) [‡]	NR	17.8 (5.4)	113	15.49 (1.25) [‡]	NR	Adj MD (95% CI)=0.85 (-0.29, 1.99), 0.15
Orrell, 2017* ²⁷⁵ Good	Dem	ADAS-Cog 11 (0- 70)	IG1	3	21.47 (9.22)	142	20.86 (9.73)	-0.29 (5.87)	19.79 (8.03)	146	19.50 (8.97)	0.03 (6.16)	Adj MD (95% Cl)=0.29 (-1.10, 1.68), 0.68
	Dem	ADAS-Cog 11 (0- 70)	IG1	6	21.47 (9.22)	134	20.69 (9.39)	0.33 (5.65)	19.79 (8.03)	139	20.39 (9.91)	1.24 (5.94)	Adj MD (95% CI)=- 0.55 (-2.00, 0.90), 0.45
	Dem	MMSE (0-30)	IG1	3	21.12 (4.48)	142	20.59 (5.02)	-0.46 (3.18)	21.33 (4.11)	146	20.89 (4.83)	-0.87 (3.5)	Adj MD (95% CI)=0.16 (-0.60, 0.92), 0.69
Orrell, 2017* ²⁷⁵ Good	Dem	MMSE (0-30)	IG1	6	21.12 (4.48)	134	20.68 (4.76)	-0.96 (2.99)	21.33 (4.11)	139	21.19 (5.21)		Adj MD (95% CI)=- 0.47 (-1.26, 0.30), 0.23
Pantoni, 2017*289	MCI	MMSE (0-30)	IG1	6	27.1 (2.6)	21	NR	-0.3 (1.9)	25.7 (3.2)	22	NR	-0.8 (1.9)	NR, 0.458
Fair	MCI	MMSE (0-30)	IG1	12	27.1 (2.6)	21	NR	-0.7 (2.8)		22	NR	-0.3 (1.8)	NR, 0.601
	MCI	MMSE (0-30)	IG1	6	NA	21	20 (95.2) [§]	NA	NA	22	22 (100.0) [§]	NA	NR, 0.300
	MCI	MMSE (0-30) [∥]	IG1	12		21	20 (95.2) [§]	NA	NA		, ,	NA	NR, 0.973
Quayhagen, 1995 ²⁷²	Dem	MDRS (0-144)	IG1	3	(12.0)	25	113.1 (11.7)	NR	109.2 (11.7)	25	(13.9)	NR	NR
Fair	Dem	MDRS (0-144)	IG1	9	109.8 (12.0)	25	107.6 (15.1)	NR	109.2 (11.7)		96.6 (20.2)		NR
Tsantali, 2017* ²⁸⁵ Fair	Dem	MMSE (0-30)	IG1		· · · ·	17	27.0 (1.0)	NR	23.1 (1.4)		~ /	NR	NR, <0.05
	Dem	MMSE (0-30)	IG2	12	22.5 (0.9)		20.9 (1.0)	NR	, ,	21	21.6 (1.6)		NS
Tsolaki, 2011 ²⁶⁵ Fair	MCI	MMSE (0-30)	IG1	6	28.09 (1.59)	104	29.00 (6.18)	NR	27.59 (1.88)	72	27.06 (2.34)	NR	NR, 0.000

Author, year	Рор	Instrument	Int	Time.	IG BL mean	IG n	IG FU mean	IG mean change (SD)	CG BL mean	CG n	CG FU mean	CG mean change (SD)	Between group difference, p-
Quality	cat	(range) [†]	arm	mo.	(SD)	at FU		from BL	(SD)	at FU		from BL	value
Vidovich, 2015* ²⁷⁸ Good	MCI	CAMCOG-R (0- 105)	IG1	12	89.5 (6.9)	77	NR	1.0 (0.3, 1.8)	90.6 (6.4)	77	NR	1.1 (0.4, 1.9)	NR
	MCI	CAMCOG-R (0- 105)	IG1		· · · ·	67	NR	-0.6 (-2.3, 1.0)	90.6 (6.4)	60	NR	0.8 (-0.8, 2.5)	NR, 0.276
	MCI	MMSE (0-30)	IG1	24	NR	67	9 (13.4) [§]	NR	NR	60	2 (3.3)§	NR	OR (95% CI)=3.48 (0.92, 13.18), NS [¶]
Exercise Interven		-											
Doi, 2017* ³⁰⁶ Good	MCI	MMSE (0-30)	IG1	9	26.0 (2.6)	55	NR	0.29 (2.6)	25.8 (2.4)	63	NR	-0.36 (2.3)	NR, 0.026
2016* ³⁰⁴ Good	Dem	MMSE (0-30)	IG1		23.8 (3.4)		23.9 (3.4)	NR	24.1 (3.8)	88	23.9 (3.9)	NR	MDC (95% Cl)=0.5 (0.3, 1.2) 0.244
Holthoff, 2015* ³⁰⁵ Fair	Dem	MMSE (0-30)	IG1		22.05 (0.54)‡		21.99 (0.54)‡	NR	21.95 (0.54)‡		21.28 (0.54)‡		Adj MD (95% CI)=0.70 (-0.83, 2.23) NR
	Dem	MMSE (0-30)	IG1	6	22.05 (0.54)‡		22.11 (0.57)‡	NR	21.95 (0.54)‡	14	20.72 (0.55)‡		Adj MD (95% CI)=1.39 (-0.21, 2.98) NS
Hong, 2017* ³⁰² Fair	MCI	MoCA (0-30)	IG1	3	20.70 (3.46)	10	21.70 (3.05)	NR	20.08 (4.44)	12	20.50 (5.05)	NR	NR, p=0.506
Lamb, 2018* ³⁰⁸ Good	Dem	ADAS-Cog 11 (0- 70)	IG1	6	21.4 (9.6)	298	22.9 (11.6)	NR	21.8 (7.7)	145	22.4 (9.4)	NR	Adj MD (95% CI)= -0.6 (-1.58, 0.39), 0.237
	Dem	ADAS-Cog 11 (0- 70)	IG1	12	21.4 (9.6)	278	25.2 (12.3)	NR	21.8 (7.7)	137	23.8 (10.4)	NR	Adj MD (95% CI)= -1.4 (-2.6, -0.2), 0.03
Lam, 2011 ²⁹⁵ Fair	MCI	ADAS-Cog 11 (0- 70)	IG1	5	12.6 (5.1)	135	10.7 (5.5)	2.0 (3.9)	14.1 (5.7)	194	12.8 (6.1)	1.3 (3.8)	NR
	MCI	MMSE (0-30)	IG1	5	24.8 (3.1)	135	25.8 (3.1)	0.9 (2.3)	24.2 (2.9)	194	25.1 (3.6)	0.8 (2.7)	NR
Lautenschlager, 2008 ²⁹⁴	MCI	ADAS-Cog 11 (0- 70)	IG1	6	NR	85	NR	-0.26 (-0.89, 0.54)	NR	85	NR	1.04 (0.32, 1.82)	NR
Good	MCI	ADAS-Cog 11 (0- 70)	IG1	12	NR	85	NR	-0.55 (-1.15, 0.20)	NR	85	NR	0.04 (-0.66, 0.64)	NR
	MCI	ADAS-Cog 11 (0- 70)	IG1	17	NR	85	NR	-0.73 (-1.27, 0.03)	NR	85	NR	-0.04 (-0.46, 0.88)	NR, 0.04
Lazarou, 2017* ³⁰¹ Fair	MCI	MMSE (0-30)	IG1	10	27.60 (2.19)	66	28.00 (2.39)	NR	26.88 (2.1)	63	25.65 (3.27)	NR	NR, 0.000

					IG BL		IG FU	IG mean	CG BL		CG FU	CG mean	Between group
Author, year Quality	Pop cat	Instrument (range) [†]	Int arm	Time, mo.	mean (SD)	IG n at FU	mean (SD)	change (SD) from BL		CG n at FU		change (SD) from BL	
Liu-Ambrose, 2016 ^{*293} Fair	Dem	ADAS-Cog 11 (0- 70)			11.7 (5.5)	35	NR	-1.61 (0.50)‡		35	NR	0.10 (0.53) [‡]	MDC (95% CI)=- 1.71 (-3.15, -0.26), 0.02
	Dem	ADAS-Cog 11 (0- 70)	IG1	12	11.7 (5.5)	35	NR	-1.14 (0.57)‡	10.2 (5.4)	35	NR	-0.51 (0.64)‡	MDC (95% CI)=- 0.63 (-2.34, 1.07), 0.46
Pitkälä, 2013* ²⁹² Good	Dem	MMSE (0-30)	IG1	12	18.5 (6.3)	51	NR	-1.23 (-2.33, -0.14)	17.7 (6.2)	51	NR	-1.08 (-2.17, 0.02)	NR, 0.74
	Dem	MMSE (0-30)	IG2	12	17.8 (6.6)	68	NR	-1.63 (-2.64, -0.61)	17.7 (6.2)	65		-1.08 (-2.17, 0.02)	NR, 0.74
Siu, 2018 ^{*311} Fair	MCI	MMSE (0-30)	IG1	4	25.46 (1.89)	80	26.74 (2.42)	1.38 (2.22)	24.61 (2.75)	80	24.70 (2.90)	0.11 (2.78)	Beta (95% Cl)=1.33 (0.53, 2.13), 0.001
Suzuki, 2012 ²⁹⁹ Fair	MCI	ADAS-Cog 11 (0- 70)	IG1	6	6.3 (2.2)	24	NR	-1.2 (-2.1, - 0.3)	6.8 (2.2)	23	NR	-0.1 (-1.0, 0.8)	NS
	MCI	MMSE (0-30)		6	26.8 (1.8)	25	NR	1.60)	. ,	25	NR	-1.37 (-2.66, -0.07)	NR, <0.05
	MCI	MMSE (0-30)	IG1		· · · ·	25	NR	-0.47 (-1.75, 0.81)		25	NR	-0.44 (-1.74, 0.86)	F statistic=3.4, 0.04
Venturelli, 2010 ²⁹⁷ Fair	MCI + Dem	MMSE (0-30)	IG1	3	22.3 (2.1)	12	23.0 (1.4)	NR	22.1 (1.7)	11	17.5 (2.1)	NR	NR, <0.05
Vreugdenhil, 2012 ³⁰⁰	Dem	ADAS-Cog 11 (0- 70)	IG1	4	22.7 (9.7)	20	18.5 (9.8)	-4.9 (1.1) [‡]	26.6 (16.6)	20	30.6 (17.9)	2.1 (1.4) [‡]	NR, 0.001
Fair	Dem	MMSE (0-30)	IG1	4	22.9 (5.0)	20	23.9 (5.0)	1.0 (1.4) [‡]	21.0 (6.3)	20	19.0 (7.7)	-1.6 (0.5) [‡]	NR, 0.001
Multicomponent a	and Oth	er			•			-			•		
Fair	MCI	MMSE (0-30)		6	27.1 (2.1)	41	NR	0.51 (-1.35, 0.34)	()	42		0.35 (-0.44, 1.15)	NR, 0.143
Burgener, 2008 ³¹⁴ Fair	Dem	MMSE (0-30)		5	24.8 (3.5)	19	25.2 (3.1)	0.4 (NR)	22.9 (5.2)	14	22.4 (7.6)	-0.5 (NR)	NR, 0.05
2014* ²⁸⁰	MCI	ADAS-Cog 11 (0- 70)		6	8.02 (NR)	27	6.26 (NR)	NR	8.09 (NR)	27	7.14 (NR)	NR	NR
	MCI	ADAS-Cog 11 (0- 70)	IG1	18	8.02 (NR)	27	5.76 (NR)	NR	8.09 (NR)	27	5.75 (NR)	NR	NR
	MCI + Dem	MMSE (0-30)	IG1	6	21 (6)	17	21 (6)	-0.06 (NR)	23 (5)	17	22 (6)	0.7 (NR)	NR, 0.44
Marshall, 2015 ^{*317} Fair	Dem	MMSE (0-30)	IG1	3	23.6 (4.3)	28	22.4 (4.0)	NR	22.4 (3.7)	27	22.9 (3.1)	NR	MDC (95% CI): - 1.34 (-2.88, 0.20), NS

					IG BL		IG FU	IG mean	CG BL		CG FU	CG mean	Between group
Author, year	Pop cat		Int arm	Time,	mean (SD)	IG n at FU	mean (SD)	change (SD) from BL	mean (SD)	CG n at FU		change (SD) from BL	difference, p- value
Quality		(range) [†]		mo.				-					
	Dem	MMSE (0-30)	IG1	5	23.6 (4.3)	28	22.5 (4.4)	INR	22.4 (3.7)	24	22.4 (2.9)	NR	MDC (95% CI): -
							(4.4)						0.45 (-2.07, 1.16), NS
Richard, 2009 ³¹⁹	Dem	MMSE (0-30)	IG1	12	22.3 (3.3)	57	19.7	NR	22.2 (3.6)	48	19.5 (5.2)	NR	NS
Fair							(5.1)		. ,				
	Dem	MMSE (0-30)	IG1	24	22.3 (3.3)	50	16.8	-5.78 (6.4)	22.2 (3.6)	44	17.0 (6.4)	-5.23 (6.0)	MDC (95% CI): -
							(8.1)						0.55 (-3.12, 2.02),
						-							0.65
,	MCI	MMSE (0-30)	IG1	6	25.8 (2.3)	111	NR		25.6 (2.5)	110	NR	-0.22 (-0.59,	ES (95% CI)=0.23
Good				_				0.41)				0.15)	(-0.32, 0.77), 0.41
Shimada, 2017* ³²³	MCI	MMSE (0-30)	IG1	9	26.6 (1.8)	154	NR		26.8 (1.8)	154	NR	-0.8 (-1.2, -	MDC (95%
Fair								0.4)				0.4)	CI)=0.8 (0.2, 1.4), 0.012
Straubmeier,	MCI +	MMSE (0-30)	IG1	6	19.8 (4.8)	255	19.9	NR	19.3 (4.8)	178	18.3 (6.2)	NR	ES=0.21, 0.033
2017* ³²⁴	Dem				. ,		(6.0)		. ,		. ,		
Fair													
Train the Brain	MCI	ADAS-Cog 11 (0-	IG1	7	NR	55	NR	-1.40 (0.32)‡	NR	58	NR	1.1526.	MDC (95% CI)=-
Consortium,		70)						. ,				(0.25) [‡]	2.17 (-2.99, -1.34),
2017*321												, ,	<0.0001
	MCI	ADAS-Cog 11 (0-	IG1	7	NA	55	25	NA	NA	58	7 (12.1)	NA	NR, <0.001
		70)#					(45.4)						
Wolfs, 2008 ³¹⁵	MCI +	MMSE (0-30)	IG1	6	20.5 (6.0)	116	18.8	NR	19.8 (6.6)	83	19.2 (7.5)	NR	MDC (95% CI): -
Fair	Dem						(7.8)						0.9 (-2.23, 0.34),
													NS
		MMSE (0-30)	IG1	12	20.5 (6.0)	113	18.0	NR	19.8 (6.6)	77	17.4 (8.8)	NR	MDC (95% CI):
							(7.7)			1			0.0 (-1.43, 1.48),
													NS

* New study

+ Higher scores indicate better outcomes for all instruments except for ADAS-Cog 11 and ADAS-Cog 13 where lower scores indicate better outcomes

‡ Standard error

§N(%)

| Participants with stable/better MMSE scores at followup

¶ Odds of attaining a MMSE score <24

Participants with decerase of 1.5 points on ADAS-Cog (improvement)

Abbreviations: ADAS-Cog 11 = Alzheimer's Disease Assessment Scale-cognitive subscale; 11-item; ADAS-Cog 13 = Alzheimer's Disease Assessment Scale-cognitive subscale; 13-item; Adj MD = adjusted mean difference; BL = baseline; CAMCOG-R = Cambridge Cognitive Examination Revised; CG = control group; CI = confidence interval; Dem = dementia; FU = followup; IG = intervention group; Int arm = intervention arm; MCI = mild cognitive impairment; MDC = mean difference in change; MDRS = Mattis Dementia Rating Scale; MMSE = Mini-Mental State Examination; mo. = months; MoCA = Montreal Cognitive Assessment Test; Pop cat = population category; NR = not reported; NS = Not statistically significant; SD = standard deviation

Author, year Quality	Pop cat	ADL or IADL (Instrument, range, direction)	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU	CG FU mean (SD)	CG mean change (SD) from BL	Between group difference, p- value
		ning, and Rehabilitat		mo.									Value
Amieva, 2016 ^{*277} Good	Dem			3	26.5 (8.1)	151	27.54 (9.2)	NR	26.6 (8.8)	141	26.94 (9.6)	NR	NR, 0.6201
	Dem	ADL/IADL (DAD, 0- 40, ↑)	IG1	24	26.5 (8.1)	124	24.74 (13.4)	NR	26.6 (8.8)	109	25.38 (13.4)	NR	NR, 0.6695
	Dem	40, ↑)	-	3	26.5 (8.1)		28.19 (9.4)		26.6 (8.8)		26.94 (9.6)	NR	NR,
	Dem	40, ↑)		24	26.5 (8.1)		27.04 (11.9)		26.6 (8.8)		25.38 (13.4)	NR	NR, 0.3882
Belleville, 2018* ²⁹¹ Fair	MCI	↓)	IG1	3	38.66 (4.95)		39.31 (4.39)		(5.11)		38.24 (6.07)	NR	NS
	MCI	↓)		6	38.66 (4.95)		39.28 (4.41)	NR	(5.11)		38.30 (5.67)	NR	NS
Bergamaschi, 2013* ²⁸²	Dem	ADL (Katz Index, 0- 6, ↑)		12	5.06 (1.12)	16	4.75 (1.34)	NR	5.18 (1.18)	16	3.75 (1.75)	NR	NR, <0.05
Fair	Dem	IADL (Lawton and Brody IADL, 0-8, ↑)	IG1	12	3.94 (2.51)		3.56 (2.34)	NR	3.94 (2.41)		2.62 (1.76)	NR	NS
Cahn-Weiner, 2003 ²⁶⁹ Fair	Dem	ADL/IADL (Lawton and Brody IADL + Physical Self Maintenance Scale, NR, ↑)	IG1	3	18.8 (5.0)	15	19.4 (4.8)	NR	20.7 (4.8)	14	20.2 (5.7)	NR	NS
Chapman, 2004 ²⁶⁸ Fair	Dem	ADL/IADL (TFLS, 0- 52, ↓)	IG1	4	NR	26	30.5 (NR)	NR	NR	28	29.7 (NR)	NR	NR
	Dem	ADL/IADL (TFLS, 0- 52, ↓)		7	NR		29.0 (NR)	NR			28.7 (NR)	NR	NR
	Dem	ADL/IADL (TFLS, 0- 52, ↓)	IG1	12	NR	26	28.5 (NR)	-2.89 (- 5.66, - 0.12)	NR	28	26.4 (NR)	-6.86 (NR) (-10.72, - 3.00)	ES=0.12, NS
Fiatarone Singh, 2014 ^{*280}	MCI	IADL (B-ADL,1-10 [†] , ↓)	IG2	6	0.3 (NR)	24	0.1 (NR)	NR	0.2 (NR)	27	0.1 (NR)	NR	NS
Fair	MCI	ÍÁDL (B-ADL,1-10 [†] , ↓)	IG2	18	0.3 (NR)	24	0.1 (NR)	NR	0.2 (NR)	27	0.1 (NR)	NR	NS
Hyer, 2016 ^{*287} Fair	MCI	IADL (FAQ, 0-30, ↓)	IG1	5	1.72 (3.59)	34	1.33 (3.18)	NR	2.06 (2.49)	34	3.12 (4.53)	NR	NR, 0.04
Jelcic, 2012 ^{*284} Fair	Dem	Brody IADL, 0-8, ↑)		3	7.3 (1.7)	20	7.4 (1.6)	NR	6.6 (2.1)		6.6 (2.2)	NR	NS
Jeong, 2016* ²⁷⁶ Fair	MCI	IADL (B-ADL,1-10, ↓)	IG1	3	2.7 (1.3)	71	NR	-0.1 (1.2)	2.7 (1.3)	76	NR	-0.1 (0.8)	NR, 0.81

Author, year Quality	Pop cat	ADL or IADL (Instrument, range, direction)	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU	CG FU mean (SD)	BL	Between group difference, p- value
	MCI	IADL (B-ADL,1-10,	IG1	9	2.7 (1.3)	67	NR	0.0 (1.1)	2.7 (1.3)	62	NR	0.2 (1.2)	NR, 0.22
	MCI	IADL (B-ADL,1-10, ↓)	IG2	3	2.5 (1.3)	77	NR	0.0 (1.0)	2.7 (1.3)	76	NR	-0.1 (0.8)	NR, 0.93
	MCI	IADL (B-ADL,1-10,	IG2	9	2.5 (1.3)	68	NR	0.2 (1.3)	2.7 (1.3)	62	NR	0.2 (1.2)	NR, 0.71
Kurz, 2012 ²⁷⁴ Fair	Dem	IADL (B-ADL,1-10, ↓)	IG1	3	3.54 (1.88)	92	NR	0.13 (1.25)	3.67 (1.93)	97	NR	0.28 (1.53)	NR, 0.44
	Dem	IADL (B-ADL,1-10, ↓)	IG1	9	3.54 (1.88)	83	NR	0.73 (1.82)		88	NR	0.86 (1.59)	NR, 0.64
Olazaran, 2004 ²⁶⁷ Fair	MCI + Dem	ÍÁDL (FAQ, 0-30, ↓)	IG1	3	15.3 (1.1) [‡]	40	NR	1.5 (NR)	14.1 (1.1) [‡]	40	NR	2 (NR)	NS
	MCI + Dem	IADL (FAQ, 0-30, ↓)	IG1	6	15.3 (1.1) [‡]	40	NR	2.1 (NR)	14.1 (1.1) [‡]	40	NR	4.6 (NR)	NS
	MCI + Dem	IADL (FAQ, 0-30, ↓)	IG1	12	15.3 (1.1) [‡]	40	NR	4.2 (NR)	14.1 (1.1) [‡]	40	NR	6 (NR)	NS
Orrell, 2014 ^{*281} Good	Dem	ADL/IADL (ADCS- ADL, 0-78, ↑)	IG1	3	42.7 (17.2)		43.58 (2.32)‡	NR	41.5 (18.1)		40.94 (2.32)‡		Adj MD (95% CI)=2.64 (0.08, 5.20), 0.04
	Dem	ADL/IADL (ADCS- ADL, 0-78, ↑)	IG1	6	42.7 (17.2)	123	43.29 (2.88) [‡]	NR	41.5 (18.1)		42.35 (2.87) [‡]	NR	Adj MD (95% Cl)=0.94 (- 2.04, 3.92), 0.54
Orrell, 2017* ²⁷⁵ Good	Dem	ADL/IADL (Bristol ADL, 0-60, ↓)	IG1	3	5.16 (5.45)	142	14.53 (10.34)	9.51 (6.23)	4.49 (4.09)		13.55 (8.20)	9.35 (5.91)	Adj MD (95% Cl)=-0.20 (- 1.44, 1.04), 0.75
	Dem	ADL/IADL (Bristol ADL, 0-60, ↓)	IG1	6	5.16 (5.45)	134	15.39 (10.78)	10.52 (6.97)	4.49 (4.09)	139	14.56 (8.86)	10.55 (6.54)	Adj MD (95% Cl)=-0.66 (- 2.07, 0.75), 0.36
Pantoni, 2017* ²⁸⁹ Fair	MCI	ADL (Katz Index, 0- 6, ↑)	IG1	6	5.9 (0.3)	21	NR	0.1 (0.3)	5.9 (0.4)	22	NR	0 (0)	NR, 0.145
	MCI	ADL (Katz Index, 0- 6, ↑)	IG1	12	5.9 (0.3)	21	NR	0 (0.9)	5.9 (0.4)	22	NR	-0.2 (0.7)	NR, 0.262
	MCI	: 17	IG1	6	91.9 (11.9)	21	NR	-2.2 (10.3)	84.2 (17.8)	22	NR	-3.9 (11.3)	NR, 0.612
	MCI	ADL/IADL (DAD, 0- 100, ↑)	IG1	12	91.9 (11.9)	21	NR	-8.4 (21.1)	84.2 (17.8)	22	NR	-6.9 (17.2)	NR, 0.800

Author, year Quality	Pop cat	ADL or IADL (Instrument, range, direction)	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU	CG FU mean (SD)	CG mean change (SD) from BL	Between group difference, p- value
	MCI	1		6	1.9 (2.1)		NR				NR	0 (0.9)	NR, 0.240
		Brody IADL, 0-8, ↑)		12	1.9 (2.1)	21	NR		~ /		NR	-1 (1.7)	NR, 0.457
Tsolaki, 2011 ²⁶⁵ Fair	MCI	ADL (FRSSD, NR, ↓)	IG1	6	3.04 (1.61)	104	2.67 (1.7)	NR	3.11 (1.68)		3.91 (2.49)	NR	NR, 0.001
Exercise Interventie	ons												
Dawson, 2016* ³⁰⁷ Fair	Dem	ADL/IADL (ADL/IADL [unspecified], 0-48, ↓)	IG1	3	7.25 (5.13)		6.83 (5.13)	NR	4.20 (3.85)	10	5.40 (6.72)	NR	NR, 0.36
Ho, 2018 ^{*310} Fair	Dem	Brody IADL, 0-18, ↑)	-	3	12.8 (5.0)		13.2 (4.9)		14.0 (4.9)		12.6 (5.9)		Beta (SE)=1.92 (0.58), <0.01
		IADL (Lawton and Brody IADL, 0-18, ↑)		6	12.8 (5.0)	69	12.8 (5.0)	NR	14.0 (4.9)	68	11.7 (6.2)	NR	NS
		IADL (Lawton and Brody IADL, 0-18, ↑)	IG1	12	12.8 (5.0)	69	11.8 (6.0)	NR	14.0 (4.9)	68	11.4 (6.2)	NR	NS
	MCI +		IG2	3	12.8 (5.2)	67	11.8 (5.4)	NR	14.0 (4.9)	68	12.6 (5.9)	NR	Beta (SE)=0.74 (0.59), 0.21
		IADL (Lawton and Brody IADL, 0-18, ↑)	IG2	6	12.8 (5.2)	67	11.1 (6.1)	NR	14.0 (4.9)	68	11.7 (6.2)	NR	NS
	MCI +		IG2	12	12.8 (5.2)	67	10.4 (6.0)	NR	14.0 (4.9)	68	11.4 (6.2)	NR	NS
Hoffmann, 2016 ^{*304} Good	Dem	ADL, 0-78, `↑)		4	64.8 (8.8)		64.4 (9.4)		62.4 (10.8)		62.7 (10.4)	NR	MDC (95% CI)=-0.1 (-1.8, 1.5), 0.868
Holthoff, 2015 ^{*305} Fair	Dem	ADL/IADL (ADCS- ADL, 0-78, ↑)	IG1	3	60.55 (0.91)‡	15	62.35 (0.91) [‡]	NR	60.53 (0.91) [‡]		57.47 (0.91) [‡]	NR	Adj MD (95% CI)=4.89 (2.30, 7.48), NR
	Dem	ADL/IADL (ADCS- ADL, 0-78, ↑)	IG1	6	60.55 (0.91)‡		61.26 (1.00) [‡]	NR	60.53 (0.91) [‡]		53.50 (0.94)‡	NR	Adj MD (95% CI)=7.76 (5.01, 10.51), <0.05
Liu-Ambrose, 2016* ²⁹³ Fair	Dem	ADL/IADL (ADCS- ADL, 0-78, ↑)	IG1	6	46.1 (6.8)‡	35	NR	0.77 (0.65) [‡]	46.5 (5.1)‡	35	NR	0.49 (0.69) [‡]	
	Dem	ADL/IADL (ADCS- ADL, 0-78, ↑)	IG1	12	46.1 (6.8)	35	NR	0.22 (0.70) [‡]	46.5 (5.1)	35	NR	-1.13 (0.73) [‡]	MDC (95% CI)=1.34 (-

Author, year Quality	Pop cat	ADL or IADL (Instrument, range, direction)	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU	CG FU mean (SD)	CG mean change (SD) from BL	Between group difference, p- value
													0.68, 3.37), 0.19
Morris, 2017 ^{*303} Good	MCI + Dem	ADL/IADL (DAD, 0- 100, ↑)	IG1	3	(12.3)	36	89.8 (12.5)		91.2 (8.0)		89.5 (12.8)	NR	0.19 NR,
	MCI + Dem	ADL/IADL (DAD, 0- 100, ↑)	IG1	6	88.0 (12.3)	34	89.5 (13.7)	NR	91.2 (8.0)		86.7 (13.3)		ES (95% CI)=5.27 (1.7, 8.84), 0.02
Pitkälä, 2013 ^{*292} Good	Dem	ADL/IADL (FIM, 18- 126, ↑)	IG1	3	88.5 (19.0)	61	NR		86.8 (17.9)	65	NR	-6.17 (-7.93, -4.56)	
	Dem	ADL/IADL (FIM, 18- 126, ↑)	IG1	6	88.5 (19.0)	61	NR	-8.9 (-11.2, -6.7)	86.8 (17.9)	65	NR	-11.8 (-14.0, -9.7)	NR, 0.07
	Dem	ADL/IADL (FIM, 18- 126, ↑)		12	88.5 (19.0)	61	NR	· · ·	86.8 (17.9)	65	NR	-14.4 (-18.0, -10.9)	NR, 0.12
	Dem	ADL/IADL (FIM, 18- 126, ↑)		3	(19.1)	68	NR	-5.0 (-6.77, -3.44)	86.8 (17.9)		NR	-6.17 (-7.93, -4.56)	
	Dem	ADL/IADL (FIM, 18- 126, ↑)	IG2	6	(19.1)	68	NR	-6.5 (-8.6, - 4.4)	86.8 (17.9)	65	NR	-11.8 (-14.0, -9.7)	
	Dem	ADL/IADL (FIM, 18- 126, ↑)		12	(19.1)	68	NR	-7.1 (-10.5, -3.7)	(17.9)		NR	-14.4 (-18.0, -10.9)	
Venturelli, 2010 ²⁹⁷ Fair	Dem	ADL (Barthel Index, 0-100, ↑)	IG1	3	19.6 (12.8)	12	34.8 (14.9)	NR	19.6 (11.3)	11	19.3 (11.9)	NR	NR, <0.05
Vreugdenhil, 2012 ³⁰⁰ Fair	Dem	ADL (Barthel Index, 0-100, ↑)		4	10.6 (4.1)	20	11.0 (4.1)	. ,	. ,		7.6 (4.5)	-1.1 (0.4)‡	NR, 0.047
		IADL (Lawton and Brody IADL, 0-14, ↑)	· • ·	4	99.5 (1.5)	20	99.6 (1.2)	-0.4 (0.8)‡	98.4 (5.4)	20	94.2 (12.6)	-3.0 (0.9)‡	NR, 0.007
Multicomponent an													
Belleville, 2018 ^{*291} Fair	MCI	ADL (ADL-PI, 0-45, ↓)	IG2	3	(5.53)	40	40.24 (4.69)		37.70 (5.11)	38	38.24 (6.07)		NS
	MCI	ADL (ADL-PI, 0-45, ↓)	IG2	6	(5.53)	31	38.91 (6.66)		37.70 (5.11)		38.30 (5.67)	NR	NS
Fiatarone Singh, 2014 ^{*280}	MCI	IADL (B-ADL,1-10 [†] , ↓)		6	0.2 (NR)	27	0.2 (NR)	NR	0.2 (NR)	27	0.1 (NR)	NR	NS
Fair	MCI	ÍADL (B-ADL,1-10 [†] , ↓)		18	0.2 (NR)	27	0.2 (NR)	NR	0.2 (NR)	27	0.1 (NR)	NR	NS
Richard, 2009 ³¹⁹ Fair	Dem	ADL/IADL (IDDD - performance scale, 0-44, ↓)	IG1	12	9.5 (9.4)	57	10.9 (7.4)	NR	10.7 (9.3)		15.2 (10.9)	NR	NS

Author, year	_	ADL or IADL (Instrument, range, direction)		Time,		IG n at FU		IG mean change (SD) from BL	CG BL mean	CG n	CG FU mean	CG mean change (SD) from BL	
Quality		ADL/IADL (IDDD - performance scale, 0-44, ↓)	Int arm IG1		(SD) 9.5 (9.4)	_	(SD) 17.9 (13.5)	13.75 (10.3)	(SD) 10.7 (9.3)		(SD) 22.8 (13.4)	11.04 (13.1)	value MDC (95% Cl)=2.71 (- 3.14, 8.56), 0.26
Straubmeier, 2017* ³²⁴ Fair		ADL (Erlangen Test of ADL, 0-30, ↑)	IG1	6	17.9 (6.9)	255	18.2 (7.0)	NR	17.1 (7.5)	178	16.4 (8.4)		ES=0.20, 0.019
Wolfs, 2008 ³¹⁵ Fair		IADL (Lawton and Brody IADL, 0-14, ↑)	-	6	17.1 (5.7)	116	18.7 (6.2)	NR	16.5 (6.1)	83	18.1 (6.3)		MDC (95% CI) = -0.1 (-1.16, 1.06), NS
		IADL (Lawton and Brody IADL, 0-14, ↑)	-	12	17.1 (5.7)	113	20.2 (6.1)	NR	16.5 (6.1)	77	20.4 (6.5)		MDC (95% CI) = -0.7 (-1.85, 0.46), NS

* New study

† Scale was logged prior to analysis

‡ Standard error

Abbreviations: ADL = Activities of Daily Living; ADCS-ADL = Alzheimer's Disease Cooperative Study Activities of Daily Living 23 items; Adj MD = adjusted mean difference; B-ADL = Bayer Activities of Daily Living; Barthel Index = Barthel Index Activities of Daily Living; BL = baseline; Bristol ADL = Bristol Activities of Daily Living Scale; CG = control group; CI = confidence interval; DAD = Disability Assessment for Dementia; Dem = dementia; FAQ = Functional Activities of Daily Living; IDDD = Interview for Deterioration in Daily Living Activities in Dementia; IG = intervention group; Int arm = intervention arm; Katz Index = Katz Index of Independence in Activities of Daily Living; MCI = mild cognitive impairment; MDC = mean difference in change; mo. = months; Pop cat = population category; NR = not reported; NS = Not statistically significant; SD = standard deviation; TFLS = Texas Functional Living Scale

Author, year Quality	Pop	Instrument (range) [†]	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU		CG mean change (SD) from BL	Between group difference, p- value
		ng, and Rehabilitation	int ann	mo.	(00)				(00)				Value
Amieva, 2016* ²⁷⁷ Good	Dem	QOL-AD (13-52)	IG1	3	NR	151	31.99 (8.0)	NR	NR	141	33.28 (7.7)	NR	NR, 0.2161
	Dem	QOL-AD (13-52)	IG1	24	NR	124	27.39 (9.2)	NR	NR	109	28.83 (9.5)	NR	NR, 0.1304
	Dem	QOL-AD (13-52)		3	NR	144	32.97 (7.7)		NR	141	33.28 (7.7)	NR	NR, 0.7987
	Dem	QOL-AD (13-52)	IG2	24	NR	121	29.05 (9.2)	NR	NR	109	28.83 (9.5)	NR	NR, 0.9413
Buschert, 2011 ²⁷¹ Fair	Dem	QOL-AD (13-52)		6	39.1 (7.4)	8	38.7 (7.6)		33.5 (4.0)		32.6 (3.8)		NS
	MCI	QOL-AD (13-52)	. • .	6	35.3 (3.8)		35.7 (5.1)		36.6 (5.0)	12	34.7 (5.5)		NS
Chapman, 2004 ²⁶⁸	Dem	QOL-AD (0-52) [‡]	IG1	4	NR		35.2 (NR)		NR	28	36.2 (NR)		NR
Fair	Dem	QOL-AD (0-52) [‡]	IG1	7	NR		36.0 (NR)	NR	NR	28	35.0 (NR)	NR	NR
	Dem	QOL-AD (0-52)‡	IG1	12	NR	26	35.8 (NR)	1.05 (-1.32, 3.42)	NR	28	36.0 (NR)	1.33(-0.51) 3.17)	ES=0.02, NS
	Dem	QOL-AD (0-52)§	IG1	4	NR	26	37.6 (NR)	NR	NR	28	37.1 (NR)	NR	NR
	Dem	QOL-AD (0-52)§	IG1	7	NR		38.4 (NR)	NR	NR	28	36.9 (NR)	NR	NR
	Dem	QOL-AD (0-52)§	IG1	12	NR	26	38.5 (NR)	1.77 (-0.38, 3.92)	NR	28	37.2 (NR)	0.38 (-1.14 1.90)	ES=0.26, NS
	Dem	QOL-AD (13-52)	IG1	4	NR	26	38.7 (NR)	NR	NR	28	37.6 (NR)	NR	NR
Chapman, 2004 ²⁶⁸	Dem	QOL-AD (13-52)	IG1	7	NR		39.5 (NR)	NR	NR	28	37.9 (NR)		NR
Fair	Dem	QOL-AD (13-52)	IG1	12	NR	26	39.9 (NR)	2.05 (-0.25, 4.35)	NR	28	37.9 (NR)	-0.10(- 2.43, 2.23)	ES=0.33, NR, NS
Cove, 2014 ^{*279} Fair	Dem	QOL-AD (13-52)		3	36.43 (6.06)	21	36.45 (5.6)	NR	34.78 (5.43)	23	35.32 (5.51)	NR	NS
	Dem	QOL-AD (13-52)	IG2	3	36.42 (5.44)	24	35.65 (5.83)	NR	34.78 (5.43)	23	35.32 (5.51)	NR	NS
Greenaway, 2012 ²⁷³ Fair	MCI	QOL-AD (13-52)	IG1	6	43.4 (6.0)	18	43.8 (6.2)	. ,	43.0 (5.1)		43.5 (4.0)	-0.6 (3.1)	Cohen's d=0.41, NS
Jeong, 2016* ²⁷⁶	MCI	QOL-AD (0-52)	IG1	3	NR	71	NR	1.1 (4.2)	NR	76	NR	-0.3 (4.1)	NR, 0.05
Fair	MCI	QOL-AD (0-52)		9	NR		NR		NR	62	NR	-0.1 (4.7)	NR, 0.13
	MCI	QOL-AD (13-52)	IG2	3	NR	77	NR	0.9 (2.9)	NR	76	NR	-0.3 (4.1)	NR, 0.01
	MCI	QOL-AD (13-52)		9	NR	68	NR		NR	62	NR	-0.1 (4.7)	NR, 0.04
Kallio, 2018 ^{*290} Fair	Dem	15D Index value (0-1)	IG1	3	0.740 (0.086)	76	NR	-0.040 (- 0.058, - 0.021)	0.741 (0.083)	71	NR	-0.037 (- 0.056, - 0.018)	NR, 0.82

Author, year Quality	Pop cat	Instrument (range) [†]	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU	CG FU mean (SD)	CG mean change (SD) from BL	Between group difference, p- value
	Dem	15D Index value (0-1)	IG1	9	0.740 (0.086)		NR	0.065, - 0.031)	(0.083)	71	NR	-0.058 (- 0.077, - 0.038)	NR, 0.61
Kurz, 2012 ²⁷⁴ Fair	Dem	DEMQOL (28-112) [‡]		3	94.3 (14.6)	_	NR	(10.40)	(15.4)	97	NR	-2.06 (13.08)	NR, 0.58
	Dem	DEMQOL (28-112) [‡]		9	94.3 (14.6)	83	NR	(11.47)	(15.4)	88	NR	-4.89 (13.65)	NR, 0.28
	Dem	DEMQOL (28-112)		3	91.3 (12.4)	92	NR	, , ,	(13.8)	97	NR	-0.03 (12.02)	NR, 0.73
	Dem	DEMQOL (28-112)		9	91.3 (12.4)		NR	, , , , , , , , , , , , , , , , , , ,	(13.8)		NR	-2.32 (13.05)	NR, 0.09
Orrell, 2014 ^{*281} Good	Dem	DEMQOL (28-112) [‡]		3	102.2 (13.5)	123	101.36 (2.67) [∥]	NR	102.2 (11.2)		98.12 (2.67) [∎]	NR	Adj MD (95% CI)=3.24 (0.29, 6.19), 0.03
Orrell, 2014 ^{*281} Good	Dem	DEMQOL (28-112) [‡]	IG1	6	102.2 (13.5)		97.75 (3.23) [∥]	NR	102.2 (11.2)	113	96.61 (3.21) [∎]	NR	Adj MD (95% Cl)=1.13 (- 2.24, 4.51), 0.50
	Dem	DEMQOL (28-112)	IG1	3	94.8 (10.9)	123	89.85 (2.34) [∥]	NR	95.1 (11.7)	113	90.71 (2.38) [∎]	NR	Adj MD (95% Cl)=-0.86 (- 3.45, 1.73), 0.54
	Dem	DEMQOL (28-112)	IG1	6	94.8 (10.9)	123	89.13 (3.55) [∥]	NR	95.1 (11.7)		88.83 (3.56) [∥]	NR	Adj MD (95% CI)=0.30 (- 2.70, 3.31), 0.87
	Dem	QOL-AD (13-52)‡	IG1	3	33.7 (5.9)	123	33.93 (1.05) [∥]	NR	33.3 (4.9)	113	32.40 (1.07) [∥]	NR	Adj MD (95% CI)=1.53 (0.37, 2.69), 0.01
	Dem	QOL-AD (13-52)‡	IG1	6	33.7 (5.9)	123	34.12 (1.41) [∥]	NR	33.3 (4.9)	113	34.05 (1.41) [∥]	NR	Adj MD (95% CI)=0.07 (- 1.39, 1.53), 0.95
	Dem	QOL-AD (13-52)	IG1	3	36.1 (4.8)	123	34.29 (1.03) [∥]	NR	36.5 (5.7)		33.97 (1.04) [∥]	NR	Adj MD (95% CI)=0.32 (- 0.88, 1.52), 0.54

Author, year	Рор			Time,	IG BL mean	lG n	IG FU mean	IG mean change (SD) from		CG n		CG mean change (SD) from	Between group difference, p-
Quality	cat		Int arm	mo.	(SD)	at FU		BL	(SD)	at FU	(SD)	BL	value
	Dem	QOL-AD (13-52)	IG1	6	36.1 (4.8)	123	35.62 (1.43) [∎]	NR	36.5 (5.7)	113	33.84 (1.53) [∎]	NR	Adj MD (95% CI)=1.78 (- 0.01, 3.57),
													0.03
Orrell, 2017* ²⁷⁵ Good	Dem	DEMQOL single item (1-4) [‡]	IG1	3	93.85 (11.76)		94.08 (10.92)	-0.47 (7.59)	92.18 (13.55)	146	94.05 (11.80)	0.32 (10.85)	Adj MD (95% Cl)=-0.33 (- 2.31, 1.65), 0.74
Orrell, 2017 ^{*275} Good	Dem	DEMQOL single item (1-4) [‡]	IG1	6	93.85 (11.76)		95.46 (11.17)	1.09 (7.2)	92.18 (13.55)	139	95.12 (11.11)	1.56 (10.39)	Adj MD (95% CI)=0.31 (- 1.62, 2.22), 0.79
	Dem	QOL-AD (13-52) [‡]	IG1	3	38.01 (5.44)		37.90 (5.52)	-0.36 (5.01)	37.96 (6.04)	146	38.09 (5.63)	-0.13 (4.6)	Adj MD (95% Cl)=-0.14 (- 1.12, 0.84), 0.78
	Dem	QOL-AD (13-52) [‡]	IG1	6	38.01 (5.44)		37.86 (5.13)	-0.70 (4.07)	37.96 (6.04)	139	37.71 (5.91)	-0.43 (5.13)	Adj MD (95% CI)=-0.02 (- 1.04, 1.00), 0.97
Pantoni, 2017 ^{*289} Fair	MCI	EQ-5D index value (-1, 1)	IG1	6	0.7 (0.3)	21	NR	0.1 (0.2)	0.7 (0.3)	22	NR	0.1 (0.2)	NR, 0.698
	MCI	EQ-5D index value (-1,	IG1	12	0.7 (0.3)	21	NR	0 (0.3)	0.7 (0.3)	22	NR	0.1 (0.3)	NR, 0.647
	MCI	EQ-VAS (0-100)	IG1	6	63.1 (18.3)	21	NR	5.2 (15.3)	67.3 (17.5)	22	NR	-2.3 (9.2)	NR, 0.057
	MCI	EQ-VAS (0-100)	IG1	12		21	NR	5.0 (14.2)	67.3 (17.5)	22	NR	-4.3 (16.6)	NR, 0.056
	MCI	SF-36 MCS (0-100)	IG1	6	NR	21	NR	1.4 (5.3)	ŇR	22	NR	3.0 (11.4)	NR, 0.567
	MCI	SF-36 MCS (0-100)	IG1	12	NR	21	NR	1.3 (7.0)	NR	22	NR	0.2 (9.6)	NR, 0.668
	MCI	SF-36 PCS (0-100)	IG1	6	NR	21	NR	-1.1 (6.5)	NR	22	NR	-1.9 (8.2)	NR, 0.709
	MCI		IG1	12		21	NR	-2.0 (8.1)	NR	22	NR		NR, 0.867
Vidovich, 2015 ^{*278} Good	MCI	QOL-AD (13-52)		12			NR	0.0 (-0.7, 0.8)	NR		NR	-0.9 (-1.6, - 0.1)	
	MCI	QOL-AD (13-52)	IG1	24	NR	67	NR	-0.1 (-0.9, 0.7)	NR	60	NR	-1.0 (-1.8, - 0.2)	NR, 0.018
Exercise Interventior	าร	·	<u> </u>		•		•			•			
Hoffmann, 2016* ³⁰⁴ Good	Dem	EQ-5D index value (- 0.624-1) [‡]	IG1	4	0.88 (0.12)		0.87 (0.12)	NR	0.86 (0.11)	88	0.85 (0.13)	NR	MDC (95% CI)=0.02 (-

Author, year Quality	Pop cat	Instrument (range) [†]	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU		CG mean change (SD) from BL	Between group difference, p- value
													0.02, 0.06),
	Dem	EQ-5D index value (- 0.624-1)	IG1	4	0.93 (0.10)		0.92 (0.11)	NR	0.93 (0.09)	88	0.92 (0.09)	NR	0.300 MDC (95% CI)=0.01 (- 0.02, 0.04),
	Dem	EQ-VAS (0-100) [‡]	IG1	4	72.9 (18.0)	102	71.1 (19.0)	NR	73.8 (17.1)	88	70.2 (17.2)	NR	0.402 MDC (95% CI)=2.0 (-2.7, 6.7), 0.406
	Dem	EQ-VAS (0-100)	IG1	4	83.2 (13.7)	102	82.5 (15.5)	NR	83.3 (15.5)	88	80.7 (16.6)	NR	MDC (95% CI)=2.7 (-2.2, 7.7), 0.283
Lamb, 2018* ³⁰⁸ Good	Dem	EQ-5D-3L (0-1)	IG1	6	0.82 (0.20)		0.80 (0.21)	NR	0.85 (0.18)	139	0.83 (0.21)	NR	Adj MD (95% CI)=0.02 (- 0.01, 0.06), 0.240
	Dem	EQ-5D-3L (0-1)	IG1	12	0.82 (0.20)	-	0.81 (0.22)	NR	0.85 (0.18)	131	0.82 (0.25)	NR	Adj MD (95% CI)=-0.002 (- 0.04, 0.04), 0.928
	Dem	EQ-5D-3L (0-1) [‡]	IG1	6	0.68 (0.24)		0.64 (0.27)	NR	0.70 (0.24)	134	0.65 (0.29)	NR	Adj MD (95% CI)=-0.01 (- 0.06, 0.03), 0.53
	Dem	EQ-5D-3L (0-1) [‡]	IG1	12	0.68 (0.24)		0.60 (0.28)	NR	0.70 (0.24)	128	0.60 (0.32)	NR	Adj MD (95% CI)=-0.02 (- 0.07, 0.03), 0.43
	Dem	EQ-VAS (0-100)	IG1	6	NR		75.4 (20.6)	NR	NR	138	78.7 (18.8)	NR	Adj MD (95% CI)=-0.1 (- 3.62, 3.36), 0.942
	Dem	EQ-VAS (0-100)	IG1	12	NR		75.5 (19.3)	NR	NR	124	78.3 (19.4)	NR	Adj MD (95% Cl)=1.4 (-2.58, 5.23), 0.464
	Dem	EQ-VAS (0-100)‡	IG1	6	NR		66.1 (20.1)	NR	NR	135	65.4 (20.5)	NR	Adj MD (95% Cl)=-0.6 (-4.3, 3.1), 0.74

Author, year Quality	Pop cat	Instrument (range) [†]			IG BL mean (SD)	IG n at FU		IG mean change (SD) from BL	(SD)	CG n at FU	(SD)	BL	Between group difference, p- value
	Dem	EQ-VAS (0-100)‡		12	NR		65.0 (20.0)	NR	NR		65.6 (19.9)	NR	Adj MD (95% Cl)=1.2 (-2.4, 4.8), 0.52
	Dem	QOL-AD (13-52)	IG1	6	38.7 (5.6)	263	38.9 (6.1)	NR	39.3 (5.2)	124	39.0 (5.9)	NR	Adj MD (95% CI)=-0.1 (- 0.98, 0.84), 0.879
	Dem	QOL-AD (13-52)	IG1	12	38.7 (5.6)	237	38.4 (5.8)	NR	39.3 (5.2)	119	39.1 (5.7)	NR	Adj MD (95% CI)=0.7 (-0.21, 1.65), 0.127
	Dem	QOL-AD (13-52) [‡]	IG1	6	NR	239	31.6 (6.2)	NR	NR	114	31.3 (6.2)	NR	Adj MD (95% CI)=0.1 (-0.9, 1.0), 0.89
	Dem	QOL-AD (13-52) [‡]	IG1	12	NR	234	30.6 (6.1)	NR	NR	118	30.6 (6.0)	NR	Adj MD (95% CI)=0.02 (-1.0, 1.0), 0.96
Lautenschlager, 2008 ²⁹⁴	MCI	SF-36 MCS (0-100)	IG1	6	NR	85	NR	5.13 (3.40, 6.86)	NR	85		4.37 (2.73, 6.01)	NR
Good	MCI	SF-36 MCS (0-100)	IG1	12	NR	85	NR	6.31 (4.80, 7.82)	NR	85		3.38 (1.63, 5.14)	NR
	MCI	SF-36 MCS (0-100)	IG1	17	NR	85	NR	4.58 (2.38, 6.78)	NR	85	NR	2.74 (0.77, 4.72)	NR, 0.67
	MCI	SF-36 PCS (0-100)	IG1	6	NR	85	NR	-4.04 (- 5.71, -2.37)	NR	85	NR	-4.40(- 6.10, -2.70)	NR
	MCI	SF-36 PCS (0-100)	IG1	12	NR	85	NR	-4.49 (- 6.03, -2.96)	NR	85	NR	-3.73 (- 5.67, -1.79)	NR
	MCI	SF-36 PCS (0-100)	IG1	17	NR	85	NR	-4.85 (- 6.78, -2.92)	NR	85	NR	-4.69 (- 6.52, -2.87)	NR, 0.95
Multicomponent and	l Other In												
Jha, 2013 ^{∗318} Fair	MCI + Dem	EQ-5D (0-100)		6	NR			3.82 (NR)			66 (10)	-2.1 (NR)	NR, 0.66
	MCI + Dem	WHO-5 (0-100)		6	NR		61 (10)	18.3 (NR)				9.46 (NR)	NR, 0.03
Marshall, 2015 ^{*317} Fair	Dem	QOL-AD (13-52)‡	IG1	3	31.5 (6.6)	28	30.3 (7.0)	NR	33.6 (5.7)	27	32.5 (6.6)	NR	MDC (95% CI)=-0.50 (- 2.90, 1.88), NS
	Dem	QOL-AD (13-52)‡	IG1	5	31.5 (6.6)	28	30.8 (6.7)	NR	33.6 (5.7)	24	32.9 (5.2)	NR	MDC (95% CI)=-0.31 (-

Author, year Quality	Pop cat	Instrument (range) [†]	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU	CG FU mean (SD)	CG mean change (SD) from BL	Between group difference, p- value
													3.09, 2.47), NS
	Dem	QOL-AD (13-52)	IG1	3	34.4 (5.8)	28	35.4 (7.2)	NR	37.5 (4.6)	27	36.3 (6.5)	NR	MDC (95% CI)=2.12 (- 0.17, 4.42), NS
	Dem	QOL-AD (13-52)	IG1	5	34.4 (5.8)	28	35.9 (6.3)	NR	37.5 (4.6)	24	38.7 (5.8)	NR	MDC (95% CI)=0.30 (- 2.09, 2.69), NS
Quinn, 2016 ^{*316} Good	Dem	EQ-5D-3L (0-1)	IG1	3	NR	13	NR	NR	NR	11	NR	NR	Adj MD (95% CI)=0.05 (- 0.05, 0.14), NS
	Dem	EQ-5D-3L (0-1)	IG1	6	NR	13	NR	NR	NR	11	NR	NR	Adj MD (95% CI)=-0.04 (- 0.15, 0.07), NS
Wolfs, 2008 ³¹⁵ Fair	MCI + Dem	EQ-5D index value (0- 1) [‡]	IG1	6	0.54 (0.33)		(0.33)	NR	(0.30)	83	(0.33)	NR	MDC (95% CI)=0.1 (-0.04, 0.12), NS
	Dem	EQ-5D index value (0- 1) [‡]		12	0.54 (0.33)		(0.35)	NR	(0.30)	77	(0.34)	NR	MDC (95% CI)=0.1 (-0.04, 0.14), NS
	MCI + Dem	EQ-VAS (0-100) [‡]		6	58.7 (20.7)		(18.3)	NR	(19.3)		(18.8)	NR	MDC (95% CI)=5.4 (0.29, 10.45), 0.04
	MCI + Dem	EQ-VAS (0-100) [‡]	IG1	12	58.7 (20.7)		58.3 (20.5)	NR	60.0 (19.3)	77	54.4 (21.8)	NR	MDC (95% CI)=5.2 (-0.58, 10.94), NS

* New study

† Higher values indicate better outcomes for all instruments

‡ Caregiver-reported

§ Combined patient- and caregiver-reported

Standard error

Abbreviations: Adj MD = adjusted mean difference; BL = baseline; CG = control group; CI = confidence interval; Dem = dementia; DEMQOL = Dementia Quality of Life; EQ-5D-3L = EuroQol 5-Dimensions 3 Level; EQ-5D Index = EuroQol 5-Dimensions; EQ-VAS = EuroQol Visual Analog Scale; ES = effect size; FU = followup; IG = intervention group; Int arm = intervention arm; MCI = mild cognitive impairment; MDC = mean difference in change; mo. = months; Pop cat = population category; QOL-AD = Quality of

Life in Alzheimer's Disease; NR = not reported; NS = Not statistically significant; SD = standard deviation; SF-36 MCS = Short Form 36-item, Mental Component Summary; SF-36 PCS = Short Form 36-item, Physical Component Summary; WHO-5 = World Health Organization Well-Being Index

Author, year Quality	Pop cat	Symptom (Instrument, range ⁺)	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU	CG FU mean (SD)	CG mean change (SD) from BL	Between group difference, p- value
		ning, and Rehabilitation	pint anni	mo.						atio			Value
Amieva, 2016 ^{*277} Good	Dem	Dep (MADRS, 0-60)	IG1	3	NR	151	10.65 (9.9)	NR	NR	141	8.82 (9.1)	NR	NR, 0.0590
	Dem	Dep (MADRS, 0-60)	IG1	24	NR	124	20.21 (17.2)	NR	NR		18.51 (17.1)	NR	NR, 0.3127
	Dem	Dep (MADRS, 0-60)		3	NR	144	10.00 (9.9)	NR	NR	141	8.82 (9.1)		NR, 0.3221
	Dem	Dep (MADRS, 0-60)	IG2	24	NR	121	16.82 (16.4)	NR	NR	109	18.51 (17.1)	NR	NR, 0.4953
	Dem	NPS (NPI-12, 0-144)		3	NR	151	25.34 (28.8)	NR	NR	141	23.29 (28.4)	NR	NR, 0.2224
	Dem	NPS (NPI-12, 0-144)	IG1	24	NR	124	41.52 (32.1)	NR	NR	109	39.31 (32.3)	NR	NR, 0.5313
	Dem	NPS (NPI-12, 0-144)	IG2	3	NR	144	24.64 (29.2)	NR	NR	141	23.29 (28.4)	NR	NR, 0.6847
	Dem	NPS (NPI-12, 0-144)	IG2	24	NR	121	34.44 (32.8)	NR	NR	109	39.31 (32.3)	NR	NR, 0.0808
Belleville, 2018* ²⁹¹ Fair	MCI	Anx (GAI, 0-20)		3	4.92 (5.04)	36	5.42 (5.06)	NR	(5.06)		4.32 (4.83)	NR	NS
	MCI	Anx (GAI, 0-20)		6	4.92 (5.04)	36	4.56 (5.14)	NR	5.38 (5.06)	38	4.73 (5.18)	NR	NS
	MCI	Dep (GDS-15, 0-15)		3	3.00 (3.11)	36	3.39 (3.47)	NR	(2.82)		3.47 (2.45)	NR	NS
	MCI	Dep (GDS-15, 0-15)		6	3.00 (3.11)	36	2.67 (3.29)	NR	3.23 (2.82)		3.27 (2.24)	NR	NS
Bergamaschi, 2013* ²⁸² Fair	Dem	Dep (CSDD, 0-38)	IG1	12	NR	16	30.44 (4.87)	NR	NR		26.75 (7.73)	NR	NS
Buschert, 2011 ²⁷¹	MCI			6	3.6 (2.6)		0.7 (1.3)	NR	3.7 (5.9)		3.8 (6.1)	NR	NR, <0.01
Fair	Dem	Dep (MADRS, 0-60)		6	3.1 (4.1)		1.6 (3.4)	NR	4.3 (4.0)		4.7 (4.0)	NR	NR, 0.09
Cavallo, 2016* ²⁸⁶ Good	Dem	Dep (HADS-D, 0-21)		3	(2.41)	38	6.42 (2.21)	NR	6.05 (2.31)		6.35 (2.21)	NR	NS
	Dem	Dep (HADS-D, 0-21)	IG1	6	(2.41)	38	NR	NR	6.05 (2.31)	38	NR	NR	NS
	Dem			3	8.60 (2.77)	38	7.65 (2.41)	NR	(1.29)	38	7.57 (1.33)	NR	NS
Cavallo, 2016* ²⁸⁶ Good	Dem	Anx (HADS-A, 0-21)	IG1	6	8.60 (2.77)	38	NR	NR	7.97 (1.29)	38	NR	NR	NS

Author, year Quality	Pop cat	· 3 · /	Int arm	-	IG BL mean (SD)	IG n at FU		IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU	CG FU mean (SD)	BL	Between group difference, p- value
Chapman, 2004 ²⁶⁸	Dem			4	NR	26	11.4 (NR)				12.4 (NR)		NR
Fair	Dem		IG1	7	NR	26	10.4 (NR)			28	13.4 (NR)	NR	NR
	Dem	NPS (NPI-12, 0-144)	IG1	12	NR	26	10.2 (NR)	-2.25 (- 7.76, 3.26)	NR	28	17.7 (NR)	2.19 (-3.49 7.87)	,ES=0.36, NS
Greenaway, 2012 ²⁷³ Fair	MCI	Dep (CES-D, 0-60)	IG1	6	NR	18	8.7 (10.0)	-0.3 (5.8)	NR	17	8.1 (6.1)	-0.5 (3.7)	Cohen's d=0.03, NS
Jeong, 2016* ²⁷⁶	MCI			3	NR	71	NR	-0.4 (2.7)	NR		NR	-0.2 (2.9)	NR, 0.11
Fair	MCI			9	NR	67	NR	-0.1 (2.6)	NR	62	NR	-0.5 (3.3)	NR, 0.24
	MCI	Dep (GDS-15, 0-15)	IG2	3	NR	77	NR	-0.8 (2.5)	NR	76	NR	-0.2 (2.9)	NR, 0.20
	MCI			9	NR	68	NR	-0.7 (2.5)	NR		NR	-0.5 (3.3)	NR, 0.33
	MCI	NPS (NPI-12, 0-144)	IG1	3	4.7 (8.4)	71	NR	-1.8 (7.1)	4.1 (5.3)	76	NR	1.3 (9.1)	NR, 0.07
	MCI	NPS (NPI-12, 0-144)	IG1	9	4.7 (8.4)	67	NR	-1.6 (8.8)	4.1 (5.3)	62	NR	1.5 (8.9)	NR, 0.03
	MCI	NPS (NPI-12, 0-144)	IG2	3	3.4 (4.9)	77	NR	0.9 (5.6)	4.1 (5.3)	76	NR	1.3 (9.1)	NR, 0.45
	MCI			9	3.4 (4.9)		NR	-0.6 (5.0)	4.1 (5.3)		NR	1.5 (8.9)	NR, 0.16
Kurz, 2012 ²⁷⁴ Fair	Dem	Dep (GDS-15, 0-15)	IG1	3	8.54 (4.83)	92	NR	-1.58 (3.83)	9.25 (5.47)	97	NR	-0.75 (4.13)	NR, 0.16
	Dem	Dep (GDS-15, 0-15)	IG1	9	8.54 (4.83)	83	NR	-1.23 (4.48)	9.25 (5.47)	88	NR	-0.41 (3.86)	NR, 0.20
	Dem	NPS (NPI-12, 0-12)	IG1	3	6.77 (6.798)	92	NR	0.11 (6.429)	7.94 (7.802)	97	NR	-1.38 (6.087)	NR, 0.103
	Dem	NPS (NPI-12, 0-12)	IG1	9	6.77 (6.798)	83	NR	1.16 (8.658)	7.94 (7.802)	88	NR	0.42 (6.874)	NR, 0.539
Olazaran, 2004 ²⁶⁷ Fair	MCI + Dem	Dep (GDS-15, 0-15)	IG1	3	3.0 (0.3) [‡]	40	NR	0 (NR)		40	NR	-0.5 (NR)	NS
	MCI + Dem	Dep (GDS-15, 0-15)	IG1	6		40	NR	0 (NR)		40	NR	-0.5 (NR)	NS
	MCI + Dem	Dep (GDS-15, 0-15)	IG1	12	3.0 (0.3) [‡]	40	NR	-0.5 (NR)		40	NR	0.25 (NR)	NR, 0.05
Orrell, 2014 ^{*281} Good	Dem	NPS (NPI-10, 0-120)	IG1	3	NR	123	14.71 (2.84)‡	NR	ŇŔ		16.18 (2.76)‡	NR	Adj MD=1.47 (-1.59, 4.53), 0.34
	Dem	NPS (NPI-10, 0-120)	IG1	6	NR	123	18.76 (3.78) [‡]	NR	NR		20.35 (3.94)‡	NR	Adj MD=1.58 (-2.67, 5.84), 0.53
Orrell, 2017 ^{*275} Good	Dem	Dep (GDS-15, 0-15)	IG1	3	NR	142	2.98 (2.56)	-0.14 (1.98)	NR		3.03 (2.86)	0.11 (2.24)	Adj MD=-0.09 (-0.56, 0.38), 0.71
	Dem	Dep (GDS-15, 0-15)	IG1	6	NR	134	2.90 (2.55)	-0.11 (1.94)	NR		2.85 (2.67)	-0.09 (2.7)	Adj MD= 0.02(-0.51, 0.47), 0.94

Author, year Quality	Pop cat	Symptom (Instrument, range [†])	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU		IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU	(SD)	BL	Between group difference, p- value
	Dem	NPS (NPI-12, 0-144)	. • .	3	11.21 (13.96)	142	10.67 (13.30)	0.21 (11.05)	(11.98)	146	12.07 (12.61)		Adj MD=1.45 (-3.68, 0.76), 0.20
	Dem	NPS (NPI-12, 0-144)	IG1	6	11.21 (13.96)	134	11.57 (13.72)	1.14 (11.72)	(11.98)	139	11.59 (12.80)		Adj MD=0.32 (-2.78, 2.12), 0.79
Pantoni, 2017* ²⁸⁹	MCI	Dep (GDS-15, 0-15)		6	4.6 (4.0)		NR		4.9 (3.8)		NR		NR, 0.393
Fair	MCI	Dep (GDS-15, 0-15)		12	4.6 (4.0)		NR		4.9 (3.8)	22	NR		NR, 0.448
Vidovich, 2015* ²⁷⁸ Good	MCI	Dep (PHQ-9, 0-27)		12	NR	77	NR	1.1)	NR	77	NR	0.4)	NR
	MCI	Dep (PHQ-9, 0-27)	IG1	24	NR	67	NR	-0.4 (-1.2, 0.5)	NR	60	NR	-0.2 (-1.0, 0.6)	NR, 0.953
Exercise Intervention		1					T		T		r	-	
Ho, 2018 ^{*310} Fair	MCI + Dem	Dep (GDS-4, 0-4)	IG1	3	0.8 (1.1)	69	0.6 (0.9)	NR	0.9 (1.1)	68	1.2 (1.2)		Beta (SE)=- 0.51 (0.19), <0.01
	MCI + Dem	Dep (GDS-4, 0-4)	IG1	6	0.8 (1.1)	69	0.7 (1.0)	NR	0.9 (1.1)	68	1.1 (1.1)	NR	NS
	MCI + Dem	Dep (GDS-4, 0-4)	IG1	12	0.8 (1.1)	69	0.7 (1.0)	NR	0.9 (1.1)	68	1.0 (1.0)	NR	NS
	MCI + Dem	Dep (GDS-4, 0-4)	IG2	3	1.1 (1.2)	67	1.0 (1.2)	NR	0.9 (1.1)	68	1.2 (1.2)		Beta (SE)=- 0.30 (0.20), 0.13
	MCI + Dem	Dep (GDS-4, 0-4)	IG2	6	1.1 (1.2)	67	1.3 (1.3)	NR	0.9 (1.1)	68	1.1 (1.1)	NR	NS
	MCI + Dem	Dep (GDS-4, 0-4)	IG2	12	1.1 (1.2)	67	1.2 (1.4)	NR	0.9 (1.1)	68	1.0 (1.0)	NR	NS
	MCI + Dem	NPS (NPI-Q-12, 0-36)	IG1	3	3.1 (3.7)	69	2.5 (4.4)	NR	2.8 (4.6)	68	2.2 (3.0)		Beta (SE)=0.01 (0.65), 0.98
	MCI + Dem	NPS (NPI-Q-12, 0-36)	IG1	6	3.1 (3.7)	69	2.7 (3.9)	NR	2.8 (4.6)	68	1.5 (2.5)	NR	NS
	MCI + Dem	NPS (NPI-Q-12, 0-36)	IG1	12	3.1 (3.7)	69	2.8 (4.5)	NR	2.8 (4.6)	68	1.7 (2.7)	NR	NS
	MCI + Dem	NPS (NPI-Q-12, 0-36)	IG2	3	2.6 (4.1)	67	2.8 (4.7)	NR	2.8 (4.6)	68	2.2 (3.0)		Beta (SE)=1.04 (0.63), 0.10
	MCI + Dem	NPS (NPI-Q-12, 0-36)	IG2	6	2.6 (4.1)	67	2.8 (3.7)	NR	2.8 (4.6)	68	1.5 (2.5)	NR	NS

Author, year Quality	Pop cat	Symptom (Instrument, range ⁺)	Int arm		IG BL mean (SD)	IG n at FU		IG mean change (SD) from BL	(SD)	CG n at FU	(SD)	BL	Between group difference, p- value
	MCI + Dem		IG2	12	2.6 (4.1)		2.5 (4.5)		2.8 (4.6)		1.7 (2.7)	NR	NS
Hoffmann, 2016* ³⁰⁴ Good	Dem	Dep (HDRS, 0-52)	IG1	4	1.9 (2.6)	102	1.7 (2.5)	NR	2.0 (2.5)	88	1.8 (2.3)	NR	MDC=-0.1 (- 0.7, 0.5), 0.791
	Dem	NPS (NPI-12, 0-144)	IG1	4	10.0 (10.8)	102	8.8 (8.5)	NR	9.4 (9.7)		11.4 (11.0)	NR	MDC=-3.5 (- 5.8, -1.3), 0.002
Holthoff, 2015 ^{*305} Fair	Dem	NPS (NPI-12, 0-144)	IG1	3	NR	15	10.05 (1.26)‡	NR	NR	15	15.71 (1.26) [‡]	NR	Adj MD (95% CI)=5.66 (- 9.28, -2.03), NR
	Dem	NPS (NPI-12, 0-144)	IG1	6	NR	13	10.40 (1.38) [‡]	NR	NR		16.09 (1.29)‡	NR	Adj MD (95% CI)=5.69 (- 9.55, -1.83), <0.05
Lam, 2011 ²⁹⁵	MCI	Dep (CSDD, 0-38)		5	0.9 (1.8)	135			0.8 (1.8)	194	0.6 (0.9)	NR	NS
Fair	MCI	NPS (NPI-12, 0-12)		5	0.6 (0.9)	135	0.5 (0.9)	NR	0.6 (0.9)	194	0.7 (1.0)	NR	NS
Lamb, 2018 ^{*308} Good	Dem	NPS (NPI-12, 0-144)	IG1	6	12.8 (15.0)	234	15.2 (16.1)	NR	13.3 (13.2)	110	14.8 (15.6)	NR	Adj MD (95% Cl)=-0.5 (- 3.08, 2.05), 0.695
	Dem	NPS (NPI-12, 0-144)	IG1	12	12.8 (15.0)	215	16.2 (15.9)	NR	13.3 (13.2)		13.5 (13.1)	NR	Adj MD (95% Cl)=-2.1 (- 4.83, 0.65), 0.135
Lautenschlager, 2008 ²⁹⁴	MCI	Dep (BDI, 0-63)	IG1	6	NR	85	NR	-0.94 (- 1.77, -0.12)	NR	85	NR	-0.75 (- 1.62, 0.13)	NR
Good	MCI	Dep (BDI, 0-63)	IG1	12	NR	85	NR	-0.75 (- 1.62, 0.12)	NR	85	NR	-0.44 (- 1.29, 0.40)	NR
	MCI	Dep (BDI, 0-63)	IG1	17	NR	85	NR	-0.46 (- 1.47, 0.55)	NR	85	NR	-0.51 (- 1.44, 0.42)	NR, 0.44
Lazarou, 2017* ³⁰¹ Fair	MCI	NPS (NPI-12, 0-144)		10	(4.91)	66	1.78 (2.28)	NR	(4.04)		3.76 (4.84)	NR	NR, 0.02
Marshall, 2015* ³¹⁷ Fair	Dem	Dep (CSDD, 0-38)	IG1	3	11 (39.3) [§]	28	12 (42.8) [§]	NR	7 (25.9)§	27	6 (22.2)§	NR	NR
	Dem	Dep (CSDD, 0-38)		5	11 (39.3) [§]	28	7 (25.0)§	NR	7 (25.9) [§]		6 (25.0)§	NR	NR
Morris, 2017* ³⁰³ Good	MCI + Dem	Dep (CSDD, 0-38)	IG1	3	8.6 (5.1)	36	8.4 (4.6)	NR	7.4 (3.8)	37	8.1 (4.4)	NR	NR

Author, year Quality	Pop cat	Symptom (Instrument, range⁺)	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU	(SD)	BL	Between group difference, p- value
	MCI + Dem	Dep (CSDD, 0-38)	IG1	6	8.6 (5.1)	34	7.8 (5.2)	NR	7.4 (3.8)	34	7.8 (4.4)	NR	ES=0.98 (- 2.65, 0.69), 0.51
Pitkälä, 2013 ^{*292} Good	Dem	Dep (CSDD, 0-38)	IG1	12	NR	57	NR	1.35 (0.14, 2.66)	NR	59	NR	0.04 (-1.56	,NR, 0.81
	Dem	Dep (CSDD, 0-38)	IG2	12	NR	63	NR	0.5 (-0.67, 1.54)	NR	59	NR	0.04 (-1.56	,NR, 0.81
	Dem	NPS (NPI-12, 0-144)	IG2	6	NR	63	NR	2.73 (1.08, 5.05)	NR	59	NR	0.64 (-2.23) 3.46)	,NR, 0.41
	Dem	NPS (NPI-12, 0-144)	IG1	6	NR	61	NR	0.88 (-1.30, 2.84)	NR	65	NR	0.64 (-2.23) 3.46)	,NR, 0.41
Vreugdenhil, 2012 ³⁰⁰ Fair	Dem	Dep (GDS-15, 0-15)	IG1	4	2.6 (1.7)	20	2.0 (1.5)	-0.5 (0.2)‡	2.3 (1.4)	20	2.3 (1.4)	0.2 (0.3)‡	NR, 0.071
Multicomponent and	Other I	Interventions											
Bae, 2019 ^{*322} Fair	MCI	Dep (GDS-15, 0-15)	IG1	6	2.9 (2.2)	41	NR	-0.11 (- 0.84, 0.61)	2.9 (2.7)	42	NR	0.36 (-0.32, 1.04)	NR, 0.35
Belleville, 2018* ²⁹¹ Fair	MCI	Anx (GAI, 0-20)	IG1	3	5.42 (4.75)	40	5.75 (4.74)	NR	5.38 (5.06)	38	4.32 (4.83)	NR	NS
	MCI	Anx (GAI, 0-20)	IG1	6	5.42 (4.75)	31	5.52 (5.55)	NR			4.73 (5.18)	NR	NS
	MCI	Dep (GDS-15, 0-15)	IG1	3	3.56 (3.17)	40	3.38 (3.19)	NR	3.23 (2.82)	38	3.47 (2.45)	NR	NS
	MCI	Dep (GDS-15, 0-15)	IG1	6	3.56 (3.17)	31	3.36 (2.92)	NR	3.23 (2.82)	38	3.27 (2.24)	NR	NS
Burgener, 2008 ³¹⁴ Fair	Dem	Dep (GDS-15, 0-15)	IG1	5	NR	19	3.3 (2.9)	0.4 (NR)	NR	14	4.3 (3.4)	0.9 (NR)	NR, 0.37
Jha, 2013* ³¹⁸ Fair	MCI + Dem	Dep (CSDD, 0-38)	IG1	6	NR	16	4.0 (1.7)	-2.56 (NR)	NR	17	4.5 (1.8)	-2.53 (NR)	NR, 0.38
Marshall, 2015 ^{*317} Fair	Dem	Dep (CSDD, 0-38)	IG1	3	NR	28	6.7 (4.2)	NR	NR	27	5.0 (4.5)	NR	MDC=0.11 (- 2.02, 2.25),
	Dem	Dep (CSDD, 0-38)	IG1	5	NR	28	7.0 (4.6)	NR	NR	24	5.4 (4.0)	NR	MDC=0.29 (- 2.08, 2.67),
Quinn, 2016 ^{*316} Good	Dem	Dep (HDRS, 0-21)	IG1	6	NR	13	NR	NR	NR	11	NR	NR	Adj MD:0.96 (- 1.58, 3.49), NS
	Dem	Anx (HADS-A, 0-21)	IG1	3	NR	13	NR	NR	NR	11	NR	NR	Adj MD (95% CI)=0.8 (-3.07, 1.47), NS
Quinn, 2016 ^{*316} Good	Dem	Anx (HADS-A, 0-21)	IG1	6	NR	13	NR	NR	NR	11	NR	NR	Adj MD (95% CI)=1.14 (-

Author, year Quality	Pop cat	Symptom (Instrument, range [†])	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU		CG mean change (SD) from BL	Between group difference, p- value
													3.41, 1.13), NS
Richard, 2009 ³¹⁹ Fair	Dem	NPS (RMBPC, Total freq, 0-100)	IG1	12	25.5 (10.3)	57	30.3 (13.6)	NR	26.1 (9.9)	48	31.9 (12.5)	NR	NS
		NPS (RMBPC, Total freq, 0-100)	IG1	24	25.5 (10.3)	50	31.1 (14.7)	11.17 (13.1)	26.1 (9.9)	44	37.3 (15.4)	6.63 (12.8)	MDC=4.54 (- 1.39, 10.49), 0.35
Rovner, 2018* ³²⁰ Good	MCI	Dep (GDS-15, 0-15)	IG1	24	3.7 (3.1)	111	NR	-0.07 (- 0.33, 0.18)	3.2 (3.0)	110	NR	-0.14 (- 0.38, 0.10)	Beta (95% Cl)=0.07 (- 0.28, 0.41), 0.709
Straubmeier, 2017* ³²⁴ Fair	MCI + Dem	NPS (NPI-Q-12, 0-36)	IG1	6	5.2 (2.7)	208	NR	0.16 (1.8)	5.3 (2.7)	154	NR	-0.27 (1.9)	ES=0.23, 0.055
	MCI + Dem	Dep (CSDD, 0-38)	IG1	6	7.9 (4.3)	116	7.2 (4.7)	NR	7.4 (3.8)	83	7.9 (5.0)	NR	MDC=-1.3 (- 2.62, 0.07), NS
	MCI + Dem	Dep (CSDD, 0-38)	IG1	12	7.9 (4.3)	113	7.5 (5.0)	NR	7.4 (3.8)	77	7.8 (4.9)	NR	MDC=-0.8 (- 2.24, 0.69), NS
	MCI + Dem	NPS (NPI-12, 0-144)	IG1	6	23.4 (15.6)	116	24.3 (18.5)	NR	22.6 (16.5)	83	27.3 (20.8)	NR	MDC=-4.0 (- 8.46, 0.54), NS
	MCI + Dem	NPS (NPI-12, 0-144)	IG1	12	23.4 (15.6)	113	28.4 (20.8)	NR	22.6 (16.5)	77	29.0 (21.0)	NR	MDC=-1.2 (- 6.06, 3.63), NS

* New study

† Lower values indicate better outcomes for all instruments

‡ Standard error

N(%) participants with CSDD score ≥ 7 (indicator for clinically significant levels of depression)

Abbreviations: Anx = Anxiety; BDI = Beck Dep Inventory; BL = baseline; CG = control group; CI = confidence interval; CSDD = Cornell Scale for Depression in Dementia; Dem = dementia; freq. = frequency; Dep = depression; FU = followup; GDS-15 = Geriatric Depression Scale-15 item; HADS-A = Hospital Anxiety and Depression Scale – Anxiety subscale; HADS-A = Hospital Anxiety and Depression Scale – Depression subscale; HDRS = Hamilton Depression Rating Scale; IG = intervention group; Int arm = intervention arm; MADRS = Montgomery-Åsberg Depression Rating Scale; MCI = mild cognitive impairment; MDC = mean difference in change; mo. = months; NPI-10 = Neuropsychiatric Inventory-10 item; NPI-12 = Neuropsychiatric Inventory-12 item; NPS = Composite neuropsychiatric symptoms; NR = not reported; PHQ-9 = Patient Health Quesionnaire-9 item; Pop cat = population category; RMBPC = Revised Memory and Behavior Problems Checklist; SD = standard deviation

Author, year Quality	Audience		Int arm	Time, mo.	IG BL mean (SD)	IG n at FU		IG mean change (SD) from BL	CG BL mean (SD)		CG FU mean (SD)	CG mean change (SD) from BL	Between group difference, p- value
Psychoeducation													
Berwig, 2017* ³²⁹ Fair	5	RMBPC Disruptive behaviors (total burden) (0-96)			21.1 (9.1)		NR	-5.461 (7.257)	(9.6)	40	NR		ES=1.144, 0.000
	Ū	RMBPC Disruptive behaviors (total burden) (0-96)	IG1		21.1 (9.1)	31	NR	-6.173 (7.865)	16.6 (9.6)	31	NR		ES=1.267, 0.000
	Caregiver	Zarit-22 (0-88)	IG1		32.5 (12.8)	41	NR	-0.425 (8.409)	28.16 (12.5)	40	NR		ES=0.906, 0.000
	Caregiver	Zarit-22 (0-88)	IG1		32.5 (12.8)		NR	(8.858)	(12.5)	31	NR		ES=0.623, 0.017
Brennan, 1995 ³³⁰ Fair	Caregiver	Impact of Caregiving Scale (Emotional Impact) (NR)	IG1	12	11.4 (3.2)	47	11.0 (3.4)	NR	11.6 (2.0)	49	10.9 (2.5)	NR	NR, 0.65
	Caregiver	Impact of Caregiving Scale (Physical Impact) (NR)	IG1	12	10.8 (3.3)	47	11.4 (4.0)	NR	10.5 (3.5)	49	11.6 (3.9)	NR	NR, 0.47
	Caregiver	Impact of Caregiving Scale (Relational Impact) (NR)	IG1	12	12.2 (3.5)	47	12.1 (3.9)	NR	12.0 (3.4)	49	11.5 (3.3)	NR	NR, 0.63
	Caregiver	Impact of Caregiving Scale (Social Impact) (NR)	IG1	12	13.7 (2.1)	47	12.8 (3.2)	NR	14.0 (2.3)	49	12.9 (2.7)	NR	NR, 0.56
Burgio, 2003 ³³² Fair	Ű	RMBPC (average burden) (0-4)	IG1 (Black)	6	1.35 (1.10)		0.91 (0.88)	NR	(1.18)	20	1.77 (1.14)		NR
		RMBPC (average burden) (0-4)	IG1 (White)	6	1.62 (1.06)	27	1.54 (1.02)	NR	1.50 (0.88)	29	1.15 (0.83)		NR
	Ũ	RMBPC (total burden) (0-96)	IG1	6	19.0 (15.9)	47	13.6 (1.7)	NR	(15.9)	52	15.0 (1.7)		NR, 0.52
Chu, 2011 ³³⁴ Fair	Ű	CBI (0-96)	IG1		79.79 (NR)		75.03 (NR)	NR	(NR)	30	75.00 (NR)		NR, 0.16
	Caregiver	· · · ·	IG1	4	79.79 (NR)	30	77.29 (NR)	NR	(NR)	30	76.22 (NR)		NR, 0.36
		RMBPC (average burden) (0-4)	IG1	3	2.2 (0.4)	25	2.2 (0.6)	0.0 (0.4)	2.2 (0.6)	24	2.1 (0.6)	-0.1 (0.5)	NR, 0.66

Author, year	Audience	Instrument	Interm	Time,		IG n		IG mean change (SD) from BL				CG mean change (SD) from BL	group difference, p-
Quality Cristancho-		(range) [†] RMBPC (average	Int arm	mo. 6	(SD) 2.2	at FU 25	(SD) 2.3	NR	(SD) 2.2	at FU 24	(SD) 2.1 (0.6)		value NS
Lacroix, 2015* ³³⁶	U	burden) (0-4)	101	0	(0.4)	20	(0.5)		(0.6)	24	2.1 (0.0)		110
Fair		Zarit-22 (0-88)	IG1	3	38.0	25	38.3	0.3 (6.6)	35.0	24	33.5	-1.5 (6.1)	NR, 0.74
	Caregiver	Zant 22 (0 00)	101	Š	(14.5)	20	(14.9)	0.0 (0.0)	(15.0)	~ ~	(15.3)	1.0 (0.1)	NIX, 0.7 4
	Caregiver	Zarit-22 (0-88)	IG1	6	38.0	25	39.6	NR		24	34.8	NR	NS
	Calogivor	Zuni 22 (0 00)	101	č	(14.5)	20	(15.7)		(15.0)	<u> </u>	(15.9)		
De Rotrou, 2011 ³³⁷	Caregiver	Zarit-22 (0-88)	IG1	3	23.0	62	22.2	NR	24.3	64	23.6	NR	MD=0.55, NR
Fair	o al ogitor	(0 00)		•	(14.2)		(12.5)		(16.9)	· ·	(17.0)		
	Caregiver	Zarit-22 (0-88)	IG1	6	23.0	55	23.0	NR	24.3	56	26.5	NR	MD=0.25, NR
	-		_	_	(14.2)		(14.6)		(16.9)		(17.0)		,
Finkel, 2007 ³⁴⁰	Caregiver	RMBPC (total	IG1	6	15.7	13	10.4	NR	15.7	12	16.9	NR	Cohen's D:
Fair		burden) (0-96)			(NR)		(NR)		(NR)		(NR)		0.77, 0.089
Fung, 2002* ³⁴¹		NPI-12 (0-60)	IG1	4	47.20	26	36.80	NR	47.87	26	42.49	NR	F
Fair					(10.11)		(9.38)		(12.68)		(13.56)		statistic=5.099, 0.003
Gallagher-	Caregiver	RMBPC (average	IG1	6	18.24	32	13.69	NR	16.02	14	16.35	NR	NR
Thompson,		burden) (0-4)	(Hispanic)		(14.39)		(1.85)		(9.24)		(2.81)		
2003 ³⁴²	Caregiver	RMBPC (average	IG1	6	19.27	41	14.69	NR	19.22	18	15.50	NR	NR
Fair		burden) (0-4)	(White)		(10.68)		(1.29)		(14.08)		(1.94)		
Gallagher-	Caregiver	RMBPC (average	IG1	6	1.30	47	1.24	NR		42	1.15	NR	NR
Thompson,		burden) (0-4)	(Hispanic)		(1.05)		(0.85)		(0.93)		(0.84)		
		RMBPC (average	IG1	6	1.58	50	1.24	NR	1.61	45	1.57	NR	NR
Fair		burden) (0-4)	(White)		(0.95)		(0.84)		(0.64)		(0.65)		
		RMBPC (average	IG1	4	1.60	36	1.23	NR	1.56	34	1.54	NR	Beta=-0.286,
Thompson,		burden) (0-4)			(0.62)		(0.41)		(0.65)		(0.61)		0.012
2010* ³⁴⁴													
Good			10.1		07.05	- 1							
Gaugler, 2013* ³⁴⁶		RMBPC (total	IG1	8		54	NR	NR		53	NR	NR	Beta (SE)=-
Fair		burden) (0-96) RMBPC (total	IG1	12	(14.38) 27.25		NR	NR	(14.00) 25.07	53	NR	NR	3.26 (2.21), NS Beta (SE)=-
			IG1				NR	NR		53	NR		· · · ·
		burden) (0-96)			(14.38)				(14.00)				2.16 (0.67), <0.01
	Family	RMBPC (total	IG1	18	27.25	54	NR	NR	25.07	53	NR	NR	8eta (SE)=-
	,	burden) (0-96)	101		(14.38)	54			(14.00)	55			1.82 (1.19), NS
Gaugler, 2013* ³⁴⁶		RMBPC	IG1			54	NR	NR		53	NR	NR	Beta (SE)=-
Fair		Depressive			(7.97)	~			(8.31)	55			0.62 (1.33), NS
		behaviors (total			(1.51)				(0.01)				0.02 (1.00), NO
		burden) (0-36)											
		RMBPC	IG1	12	11.68	54	NR	NR	10.43	53	NR	NR	Beta (SE)=-
	,	Depressive			(7.97)	~			(8.31)				1.58 (0.98), NS

Author, year Quality	Audience		Int arm	Time, mo.	IG BL mean (SD)	IG n at FU		IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU	CG FU mean (SD)	CG mean change (SD) from BL	Between group difference, p- value
		behaviors (total burden) (0-36)											
	Family	RMBPC Depressive behaviors (total burden) (0-36)	IG1	18	11.68 (7.97)	54	NR	NR	10.43 (8.31)	53	NR	NR	Beta (SE)=- 0.44 (0.66), NS
	Family	RMBPC Disruptive behaviors (total burden) (0-32)	IG1	8	7.90 (6.07)	54	NR	NR	6.08 (5.00)	53	NR		Beta (SE)=- 3.23 (1.00), <0.01
	Family	RMBPC Disruptive behaviors (total burden) (0-32)			(6.07)	54	NR		(5.00)	53	NR		Beta (SE)=- 2.27 (0.71), <0.01
	Family	RMBPC Disruptive behaviors (total burden) (0-32)	IG1	18	7.90 (6.07)	54	NR		(5.00)	53	NR	NR	Beta (SE)=- 1.34 (0.43), <0.01
		RMBPC Memory problems (total burden) (0-28)	IG1	8	8.04 (5.15)	54	NR	NR	8.56 (5.43)	53	NR		Beta (SE)=- 0.48 (0.76), NS
	Family	RMBPC Memory problems (total burden) (0-28)	IG1	12	8.04 (5.15)	54	NR	NR	8.56 (5.43)	53	NR		Beta (SE)=- 0.48 (0.56), NS
	Family	RMBPC Memory problems (total burden) (0-28)	IG1		8.04 (5.15)	54	NR	NR	8.56 (5.43)	53	NR		Beta (SE)=- 0.20 (0.42), NS
Gitlin, 2001 ³⁴⁷ Fair	Caregiver	MBPC (average) (0-1)	IG1	3	0.48 (0.27)	93	0.43 (0.31)	NR	0.47 (0.30)	78	0.45 (0.29)		Adj MD (95% CI)=-0.02 (- 0.09, 0.05), 0.50
Gitlin, 2003 ³⁴⁹ Fair	Caregiver	RMBPC (total burden) (0-96)	IG1	6	15.76 (13.84)	89	12.09 (1.00)	NR	13.90 (13.87)	102	14.16 (0.93)	NR	NR, 0.12
Gitlin, 2003 ³⁴⁹ Fair	0	RMBPC Disruptive behaviors (average burden) (0-4)	IG1	6	0.53 (0.53)	89	0.43 (0.50)	NR	0.56 (0.66)	101	0.50 (0.67)		Adj MD (95% Cl)=-0.05 (- 0.19, 0.09), 0.47
	Caregiver	RMBPC Memory problems (average burden) (0-4)	IG1		0.81 (0.86)	89	0.65 (0.75)	NR	0.72 (0.77)		0.78 (0.85)		Adj MD (95% Cl)=-0.17 (- 0.35, -0.02), 0.03
Gitlin, 2008 ³⁴⁸ Fair		RMBPC (average burden) (1-8)	IG1	4	4.5 (1.9)	27	4.5 (1.8)	NR	4.6 (3.0)	29	4.8 (2.5)	NR	Adj MD (95% Cl)=-0.01 (-

								IG mean				CG mean	
Author, year		Instrument		Time,	IG BL mean	IG n	IG FU mean	change (SD) from	CG BL mean	CG n	CG FU mean	change (SD)	group difference, p-
Quality	Audience	(range) [†]	Int arm	mo.	(SD)	at FU		BL	(SD)	at FU		from BL	value
													1.21, 1.18), 0.98
	Caregiver	Zarit-10 (0-40)	IG1	4	21.0	27	20.3	NR	21.3	29	20.6		Adj MD (95%
	+ patient				(9.0)		(8.8)		(9.2)		(10.4)		CI)=0.75 (- 3.36, 4.85), 0.72
Gitlin, 2010 ³⁵⁰ Fair	Caregiver	Zarit-12 (0-48)	IG1	4	21.2 (9.5)	117	19.0 (8.5)	NR	22.0 (9.6)	122	21.0 (9.3)	NR	MD (95% CI)=- 1.37 (-2.75, - 0.01), 0.05
	Caregiver	Zarit-12 (0-48)	IG1		21.2 (9.5)		19.1 (9.0)	NR	22.0 (9.6)	106	21.3 (9.8)	NR	MD (95% CI)=- 1.61 (-3.13, - 0.09), 0.04
Hebert, 2003 ³⁵² Fair	Caregiver	RMBPC (average burden) (0-4)	IG1	4	2.01 (0.75)	60	1.77 (0.74)	-0.28 (0.55)	2.18 (0.69)	56	2.07 (0.72)		NR, 0.04
	Caregiver	Zarit-22 (0-88)	IG1	4	42.47 (14.63)		40.07	-2.40 (14.96)	· /	56	41.25 (16.55)		NR, 0.39
Hepburn, 2005 ³⁵³ Fair	Caregiver	Zarit-22 (0-88)	IG1	6	34.8 (12.5)		36.2 (12.2)	1.2 (8.1)	32.0 (13.7)	46	34.9 (14.5)	3.5 (7.9)	NR, 0.25
	Caregiver	Zarit-22 (0-88)	IG1	12	34.8 (12.5)	91	37.0 (13.9)	1.9 (10.8)	32.0 (13.7)	40	37.0 (12.7)	5.0 (10.5)	NR, 0.21
Kwok, 2013* ³⁵⁸ Fair	Caregiver	Zarit-22 (0-88)	IG1	3	37.4 (8.66)		35.6 (7.52)	-1.83 (5.26)	34.1 (13.3)	20	36.4 (11.4)	2.25 (7.09)	NR, 0.002
Martin-Carrasco, 2009 ³⁶⁴	Caregiver	Zarit-22 (22-110)	IG1	4	62.0 (14.9)		56.6 (16.4)	NR	58.4 (15.9)	38	58.3 (16.7)		NR, 0.6
Fair	Caregiver	Zarit-22 (22-110)	IG1	10	62.0 (14.9)		54.0 (15.9)	-8.1 (17.3)	58.4 (15.9)	38	60.5 (16.6)	2.1 (16.5)	NR, 0.08
Martin-Carrasco, 2014 ^{*363} Fair	Caregiver	Zarit-22 (0-88)	IG1	4	33.9 (14.5)	115	NR	-1.17 (12.3)	34.0 (14.4)	123	NR	(12.0)	MDC (95% Cl)=-0.55 (- 3.64, 2.55), 0.73
Martin-Cook, 2005 ³⁶⁵ Fair	Caregiver + patient	NPI-10 (1-114)	IG1		13.29 (13.90)		10.63 (2.53)‡	NR	(11.33)	23	10.41 (2.64)‡	NR	NS
Martindale-Adams 2013* ³⁶⁶		RMBPC (total burden) (0-96)	IG1	3	21.0 (13.7)		17.7 (12.0)	NR	26.4 (18.0)	77	22.4 (16.2)	NR	NR
Fair	Caregiver	RMBPC (total burden) (0-96)	IG1	6	21.0 (13.7)	77	17.0 (12.4)	NR	26.4 (18.0)	77	22.6 (17.2)	NR	NR
	0	RMBPC (total burden) (0-96)	IG1		21.0 (13.7)	77	15.1 (10.7)	NR	26.4 (18.0)	77	19.0 (13.3)	NR	NR

					IG BL		IG FU	IG mean change	CG BL		CG FU	CG mean change	Between group
Author, year Quality	Audience	Instrument (range) [†]	Int arm	Time, mo.	mean (SD)	IG n at FU	mean	(SD) from BL			mean	(SD) from BL	difference, p- value
	Caregiver	RMBPC (total burden) (0-96)	IG1		21.0 (13.7)	77	18.6 (14.1)	NR	26.4 (18.0)	77	21.7 (16.5)	NR	Cohen's D: 0.07, 0.875
	Caregiver		IG1	6		77	15.6 (7.9)	NR		77	15.6 (9.3)	NR	NR
	Caregiver	Zarit-12 (0-48)	IG1	12		77	14.5 (6.6)	NR	17.7 (9.1)	77	15.3 (9.1)	NR	Cohen's D: 0.07, 0.708
Mittelman, 2004* ³⁶⁷ Fair	Family	MBPC (average) (NR)	IG1	48	22.3 (13.8)	203	NR	NR	24.8 (17.0)	203	NR	NR	logBeta (SE)=- 1.86 (0.89), 0.0368
Ostwald, 1999 ³⁶⁹ Fair	+ patient	RMBPC Disruptive behaviors (average burden) (0-32)			6.8 (6.3)		5.0 (5.4)		(5.1)	31	4.4 (4.2)		NR
		RMBPC Disruptive behaviors (average burden) (0-32)			6.8 (6.3)		4.148 (4.358)		5.2 (5.1)	34	5.790 (4.366)		F statistic=5.734, 0.019
	Caregiver + patient	Zarit-22 (0-88)	IG1		56.2 (13.3)	50	56.8 (11.8)	NR	56.5 (15.9)	30	55.4 (15.9)	NR	NR
	Caregiver + patient	Zarit-22 (0-88)	IG1		56.2 (13.3)	60	53.9 (12.4)	NR	56.5 (15.9)	34	59.4 (5.6)	NR	NR, 0.05
Roberts, 1999 ³⁷⁰ Fair	Caregiver	PAIS (NR)	IG1		42.2 (16.5)	29	42.9 (17.1)	NR	47.5 (21.7)	29	46.1 (23.5)	NR	NR, 0.55
Spaulding-Wilson, 2018* ³⁷² Fair	Caregiver	CBI (0-96)	IG1		34.9 (15.3)	54	ŇR	NR	34.3 (12.2)	41	ŇR		Beta (SE)=- 0.448 (0.53), 0.397
Steffen, 2016 ^{*373} Good	Caregiver	RMBPC (total burden) (0-96)	IG1	3	19.3 (0)	28	10.7 (1.4)	NR	19.3 (0)	38	14.5 (1.2)	NR	Cohen's D: 0.05, ≤0.05
	Caregiver		IG1	9	19.3 (0)	22	10.1 (1.8)	NR		30	13.3 (1.5)		NR, 0.18
Teri, 2005 ³⁷⁴ Fair	Caregiver		IG1			32	9.2 (4.6)	NR	10.5 (3.9)	34	9.1 (5.2)		Adj MD (95% CI)=-3.2 (-6.1, - 0.2),
Tremont, 2015* ³⁷⁵ Fair	Caregiver	RMBPC (total burden) (0-96)	IG1		22.98 (12.89)	133	20.04 (13.68)	NR	22.59 (13.94)		22.00 (12.82)		NR, 0.16
	Caregiver		IG1	6	8.87 (7.06)	133	6.53 (6.36)	NR	7.96 (7.85)	117	7.97 (6.74)	NR	NR, 0.009
	Caregiver	RMBPC Disruptive behaviors (total burden) (0-32)	IG1		5.92 (5.44)		5.81 (5.80)		5.91 (4.84)	117	5.73 (5.20)	NR	NR, 0.909

					IG BL		IG FU	IG mean change	CG BL		CG FU	CG mean change	Between group
Author, year Quality	Audience	Instrument (range) [†]	Int arm	Time, mo.		IG n at FU	mean	(SD) from BL		CG n at FU	mean	(SD)	difference, p- value
Quality		RMBPC Memory	IG1		8.25	133	7.72	NR	8.90	117	8.33	NR	NR, 0.955
		problems (total			(5.24)	155	(5.28)		(5.82)		(5.50)		NIX, 0.333
		burden) (0-28)			(0.27)		(0.20)		(0.02)		(0.00)		
		Zarit-22 (0-88)	IG1	6	38.61	133	35.95	NR	38.82	117	37.17	NR	NR, 0.485
	e al egitet			-	(13.98)		(14.34)		(14.63)		(13.93)		, 01.00
Wang, 2011* ³⁷⁹	Caregiver	FCBI (0-96)	IG1			40	55.2	NR		40	65.0	NR	NR, <0.001
Fair	+ patient	, , ,			(11.9)		(15.0)		(16.7)		(18.1)		
Wright, 2001 ³⁸³	Caregiver	Caregiving Hassle	IG1	3	27.5 [§]	68	23.4§	NR		25	24.3 [§]	NR	NS
Fair		Scale (0-123)			(NR)		(NR)		(NR)		(NR)		
	Caregiver		IG1	6		68	24.0 [§]	NR		25	24.2 [§]	NR	NS
		Scale (0-123)			(NR)		(NR)		(NR)		(NR)		
		Caregiving Hassle	IG1	12		68	21.9 [§]	NR		25	21.6 [§]	NR	NR, 0.98
		Scale (0-123)			(NR)		(NR)		(NR)		(NR)		
Care/Case Manag					1	1			1				
	0	NPI-12 (0-60)	IG1			84	4.4	NR		69	5.7 (7.2)		Adj MD (95%
Fair	+ patient				(5.6)		(6.4)		(10.4)				CI)=-0.1 (-2.0,
	<u> </u>		104	10	4.0	0.4	0.5		0.5	00			1.8), 0.92
		NPI-12 (0-60)	IG1			84	3.5	NR		69	7.7 (8.7)	NR	Adj MD (95%
	+ patient				(5.6)		(5.8)		(10.4)				CI)=-2.2 (-4.2, - 0.2), 0.03
	Caregiver	NPI-12 (0-60)	IG1	17	4.2	84	4.6	NR	6.5	69	7.4 (9.7)		0.2), 0.03 Adj MD (95%
	+ patient	NF1-12 (0-00)	101		4.2 (5.6)	04	(6.3)		(10.4)	09	1.4 (9.7)		Cl)=-1.0 (-3.0,
	+ patient				(0.0)		(0.5)		(10.4)				1.0), 0.33
Chien, 2008* ³⁸⁷	Family	FCBI (0-96)	IG1	6	68.1	44	56.7	NR	67.8	44	63.0	NR	NR
Fair					(14.9)	• •	(15.7)		(15.7)		(15.1)		
Chien, 2008* ³⁸⁷	Family	FCBI (0-96)	IG1		68.1	44	48.3	NR	67.8	44	65.9	NR	F statistic=7.1,
Fair	,	(, ,			(14.9)		(13.9)		(15.7)		(16.3)		<0.001
Chien, 2011* ³⁸⁶	Caregiver	FCBI (0-96)	IG1	12	68.0	46	48.1	NR	66.9	46	65.3	NR	MD (SE)=-17.2
Good	+ patient				(14.6)		(13.0)		(13.7)		(15.3)		(0.8), 0.01
	Caregiver	FCBI (0-96)	IG1	18	68.0	45	45.5	NR	66.9	45	64.1	NR	MD (SE)=-18.6
	+ patient				(14.6)		(10.0)		(13.7)		(11.4)		(1.0), 0.01
Chu, 2000 ³⁸⁸	0	RMBPC (total	IG1	3	15.6	32	17.8	NR		31	18.8	NR	NS
Fair		burden) (0-96)			(NR)		(NR)		(NR)		(NR)		
		RMBPC (total	IG1	6		22	10.7	NR	14.9	26	21.1	NR	NR, <0.05
		burden) (0-96)			(NR)		(NR)		(NR)		(NR)		
	U U	RMBPC (total	IG1	10		22	15.7	NR	14.9	26	20.2	NR	NS
		burden) (0-96)	101	10	(NR)	4.0	(NR)		(NR)	10	(NR)		10
	0	RMBPC (total	IG1	13	15.6	18	23.9	NR	14.9	19	21.4	NR	NS
		burden) (0-96)			(NR)		(NR)		(NR)		(NR)		

Ca	aregiver	Instrument (range) [†] RMBPC (total burden) (0-96) Zarit-22 (0-88)	Int arm IG1	Time, mo. 17		IG n at FU		(SD) from	mean	CG n	mean	(SD)	difference n-
Ca	aregiver	RMBPC (total burden) (0-96)	IG1	17		αι Γυ	(SD)	È ÉL		at FU		from BL	difference, p- value
	aregiver 2			17	15.6	27	18.6	NR		22		NR	NS
	-	Zarit-22 (0-88)			(NR)		(NR)		(NR)		(NR)		
Ca			IG1	3		32				31		NR	NS
Ca					(NR)		(NR)		(NR)		(NR)		
	aregiver	Zarit-22 (0-88)	IG1	6		22			26.2	26		NR	NR, <0.05
0-		7	101	10	(NR)	22	(NR)		(NR)	00	(NR)	NR	
Ca	aregiver	Zarit-22 (0-88)	IG1	10		22	25.3 (NR)			20		NR	NS
Chu, 2000 ³⁸⁸ Ca	rogivor	Zarit-22 (0-88)	IG1	13	(NR) 26.2	16			<u>(NR)</u> 26.2	19	(NR) 33.9	NR	NS
Fair	aregiver	Zani-22 (0-00)	IG I	13	20.2 (NR)	10	20.3 (NR)		20.2 (NR)	19	(NR)		113
	aregiver	Zarit-22 (0-88)	IG1	17		27		NR		21		NR	NS
- Cu	alogivoi a	Zant 22 (0 00)			(NR)	_ '	(NR)		(NR)	- 1	(NR)		
Fortinsky, 2009 ³⁹¹ Ca	aregiver	Zarit-22 (0-88)	IG1	12		44		NR		25		NR	MD=0.73, NR
	patient	()	-		(NR)		(NR)		(NR)	-	(NR)		,
Jansen, 2011 ³⁹² Ca	aregiver	SPPIC (0-9)	IG1			54		NR	3.3	45	2.7 (NR)	NR	NS
Fair	-				(NR)		(NR)		(NR)				
Ca	aregiver	SPPIC (0-9)	IG1							45	3.3 (NR)		F
					(NR)		(NR)		(NR)				statistic=0.72,
													0.49
		Zarit-22 (0-88)	IG1	4		57				42		1.5 [∥] (-7.0,	NS
	patient	7 : 00 (0 00)	101	10	(17.8)	50			(15.8)	<u> </u>		9.3)	
		Zarit-22 (0-88)	IG1	12	33.2 (17.8)	53		5.0 [∥] (-10.5, 12.0)		39		3.5 [∎] (-9.3, 12.3)	NS
	patient aregiver	NPI-10 (0-50)	IG1	6	10.04	25			<u>(15.8)</u> 9.17	31			Beta (SE)=-
	patient	NI I-10 (0-30)	101		(0.55) [‡]		(0.72) [‡]		(0.58) [‡]	51	(0.69) [‡]		0.68 (0.26),
Fair	patient				(0.00)		(0.72)		(0.00)		(0.00)		0.00 (0.20),
	aregiver	RMBPC (total	IG1	6	18.59	25	13.71	NR	18.21	31	18.03		Beta (SE)=-
		burden) (0-96)		-	(0.83) [‡]		(1.07)‡		(0.86)‡		(1.03)‡		0.80 (0.41),
		, ()			· ,		· ,		. ,		· ,		0.05
Ca	aregiver	Zarit-12 (0-48)	IG1	6	14.89	25	NR	NR	14.30	31	NR		Beta (SE)=-
+ p	patient				(10.04)				(9.17)				0.05 (0.22),
													0.82
	U	BSFC (0-72)	IG1	22		53		NR		83		NR	NS
	patient		100		(NR)	0.0	(NR)		<u>(NR)</u>		(NR)		
	U	BSFC (0-72)	IG2	22		60		NR		83		NR	NS
	patient	Zarit 12 (0 11)	IG1	18	(NR)	106	(NR) 13.90	NR	(NR)	183	(NR)	NR	MDC (95%
	aregiver 2 patient	Zarit-12 (0-44)		10	14.18 (0.89) [‡]	001	13.90 (0.99) [‡]		14.51 (0.67) [‡]	103	16.14 (0.79) [‡]	INK	MDC (95% CI)=-1.91 (-3.9,
ran +p	palleni				(0.09)*		(0.99)*		(0.07)*		(0.79)		0.5), 0.29

Author, year Quality	Audience	Instrument (range) [†]	Int arm	mo.	IG BL mean (SD)	IG n at FU	(SD)	IG mean change (SD) from BL	(SD)	CG n at FU	(SD)	CG mean change (SD) from BL	group difference, p- value
Thyrian, 2017* ³⁹⁸ Fair	+ patient	BIZA-D (NR)	IG1		-0.14 (2.62)	291	-0.13 (2.63)	NR	-0.07 (2.57)	116	0.40 (2.62)		Beta (95% CI)=-0.50 (- 1.09, 0.08), 0.045
Xiao, 2016* ⁴⁰⁰ Fair	U U	NPI-10 (0-50)	IG1		(9.4)		6.5 (6.7)	NR	(9.3)	30	11.9 (11.7)		NR
	Caregiver	NPI-10 (0-50)	IG1	12	10.8 (9.4)	31	6.3 (6.6)	NR	11.2 (9.3)	30	13.1 (11.9)		F statistic=4.97, 0.01
Other Intervention	ns	I											
Connell, 2009 ⁴⁰² Fair		RMBPC (total burden) (0-96)	IG1		14.7 (11.5)	74	12.9 (10.9)	NR	(9.1)	63	13.4 (10.0)		NR, <0.05
		RMBPC (total burden) (0-96)	IG1	12	14.7 (11.5)	69	13.2 (12.8)	NR	14.4 (9.1)	61	13.4 (11.9)	NR	NS
Hirano, 2011 ⁴⁰⁴ Fair	Caregiver	Zarit-22 (0-88)	IG1		32.9 (18.2)	17	NR	-5.2 (2.1)	38.5 (19.7)	14	NR	0.07 (0.5)	NR
King, 2002 ⁴⁰⁵ Fair		RMBPC (total burden) (0-77)	IG1	12	24.6 (15.4)	45	23.6 (15.4)	NR	25.5 (10.3)	40	23.0 (12.1)	NR	NS
	Caregiver	SCB objective (0- 25)	IG1	12	11.5 (3.7)	45	10.8 (3.6)	NR	12.6 (4.0)	40	11.8 (4.8)	NR	NR
	Caregiver	SCB subjective (25-100)	IG1		39.6 (9.4)	45	35.7 (7.5)	NR		40	40.9 (12.8)	NR	NR
Logiudice, 1999 ⁴⁰⁷ Fair		RMBPC (total burden) (0-96)	IG1	6	56.3 (58.0)	20		2.52 (NR)	67.8 (45.0)	14	NR	6.82 (NR)	MDC=0.30, NR
	Caregiver	RMBPC (total burden) (0-96)	IG1		56.3 (58.0)	15	NR	2.1 (NR)	67.8 (45.0)	12	NR	-6.29 (NR)	MDC=0.70, NR
		Zarit-22 (0-88)	IG1	6	39.0 (8.7)	23	NR	0.16 (NR)	42.7 (10.3)	16	NR	4.21 (NR)	NR, 0.02
	Caregiver + patient	Zarit-22 (0-88)	IG1		39.0 (8.7)	16	NR	0.77 (NR)	42.7 (10.3)	14	NR	3.11 (NR)	NR, 0.4
Prick, 2015 ^{*410} Fair		RMBPC (total burden) (0-100)	IG1	3	13.48 (9.21)	57	13.06 (10.38)	NR	13.76 (8.40)	54	12.13 (8.55)		Beta (95% CI)=0.00 (- 0.29, 0.30), 0.98
		RMBPC (total burden) (0-100)	IG1	6	13.48 (9.21)	57	15.98 (11.11)		13.76 (8.40)	54	11.71 (9.25)	NR	Beta (95% Cl)=0.08 (- 0.22, -0.37), 0.61
	Caregiver + patient	SPPIC (0-9)	IG1		5.53 (2.39)	57	5.67 (2.36)	NR	5.52 (2.37)	54	5.85 (2.13)		Beta (95% CI)=-0.19 (-

Author, year Quality	Audience	Instrument (range) [†]	Int arm	Time, mo.		IG n at FU	IG FU mean	IG mean change (SD) from BL	CG BL mean		CG FU mean	CG mean change (SD) from BL	Between group difference, p- value
	0		104	<u> </u>	0		- 00		5 50	F 4	5.00		0.72, 0.34), 0.49
	+ patient	SPPIC (0-9)	IG1	-	5.53 (2.39)	-	5.69 (2.38)		5.52 (2.37)	-	5.60 (2.13)		Beta (95% CI)=-0.21 (- 0.73, 0.31), 0.43
Winter, 2006 ⁴¹³ Fair	Caregiver	Zarit-22 (0-88)	IG1	-	33.7 (14.5)		31.66 (15.16)		35.0 (15.1)	49	31.74 (17.29)	NR	MD=0.490, NR

* New study

† Higher values indicate better outcomes for all instruments

‡ Standard error

§ Least squares mean

| Median change (IQR)

Abbreviations: Adj MD = adjusted mean difference; BIZA-D = Berlin Inventory of Caregivers' Burden with Dementia; BL = baseline; CBI = Caregiver Burden Inventory; CG = control group; CI = confidence interval; FCBI = Family Caregiving Burden Inventory; FU = followup; IG = intervention group; Int arm = intervention arm; IQR = interquartile range; MD = mean difference; MDC = mean difference in change; mo. = months; NPI-10 = Neuropsychiatric Inventory-10 item; NPI-12 = Neuropsychiatric Inventory-12 item; NR = not reported; NS = not statistically significant; PAIS = Psychosocial Adjustment to Illness scale; RMBPC = Revised Memory and Behavior Checklist; SD = standard deviation; SE = standard error; SPPIC = Self-Perceived Pressure by Informal Care; Zarit-10 = Zarit Burden Interview-10 item; Zarit-22 = Zarit Burden Interview-22 item

Author, year		Symptom (Instrument,		Time	IG BL mean	IG n at	IG FU mean	IG mean change (SD) from	CG BL mean	CG n at	CG FU mean	CG mean	Between group difference, p-
Quality	Audience		Int arm	. mo.		FU	(SD)	BL	(SD)	FU	(SD)	from BL	value
Psychoeducation				,	(02)		(02)		(02)		(02)		10.00
Barnes, 2018* ³²⁷			IG1	3	8.1 (NR)	27	7.8 (NR)	-0.3 (NR)	7.9 (NR)	25	8.4 (NR)	0.5 (NR)	NR, 0.100
Fair			IG1		5.8 (NR)				5.4 (NR)		6.2 (NR)		NR, 0.122
	Caregiver	Psych Health (HADS-T, 0-42, ↓)	IG1	3	13.9 (NR)	27	13.7 (NŔ)		13.3 (NR)	25	14.6 (NŔ)	1.3 (NR)	NR, 0.133
Belle, 2006 ³²⁸ Fair	Caregiver	Dep (CES-D, D)	IG1	6	ŇA	293	37 (12.6) [†]	NR	ŇA	286	65 (22.7)†	NR	NR, 0.0014
Berwig, 2017* ³²⁹ Fair	Caregiver	subscale, 0.6, ↓)	IG1	6	2.2 (1.6)	41		(1.995)	1.8 (1.9)	40	NR	-0.025 (1.981)	ES=0.159, 0.476
	Caregiver	subscale, 0.6, ↓)	IG1		2.2 (1.6)			(1.815)	1.8 (1.9)		NR	0.548 (2.743)	ES=0.326, 0.239
	Caregiver	Dep (PHQ-4-Dep subscale, 0.6,	IG1	6	2.0 (1.4)	41	NR	-0.317 (1.439)	1.4 (1.5)	40	NR	0.075 (1.403)	ES=0.276, 0.218
	Caregiver	Dep (PHQ-4-Dep subscale, 0.6,	IG1	9	2.0 (1.4)	31	NR	-0.097 (1.446)	1.4 (1.5)	31	NR	0.129 (1.432)	ES=0.157, 0.214
Brennan, 1995 ³³⁰ Fair	Caregiver		IG1	12	21.2 (8.1)	47	18.9 (11.0)	NR	15.6 (10.6)	49	15.7 (10.5)	NR	NR, 0.61
Bruvik, 2013* ³³¹ Good	Caregiver + patient	Dep (GDS, 0-30, ↓)	IG1	12	7.3 (6.5)	93		NR	5.6 (5.5)	102	5.6 (6.0)	NR	NR, 0.8236
Burgio, 2003 ³³² Fair	Caregiver	Anx (STPI-Anx subscale, 10-40, ↓)	IG1 (Black)	6	21.68 (7.92)	25	19.16 (8.01)	NR	19.91 (7.17)	23	19.04 (6.79)	NR	NR
	Caregiver		IG1 (White)	6	22.17 (5.93)	36	22.61 (7.64)		18.03 (6.24)	34	18.12 (7.36)	NR	NR
	Caregiver	Dep (CES-D, 0-60, ↓)	IG1	6	15.7 (9.4)	60	11.4 (1.2)		11.4 (9.9)	61	12.1 (9.9)	NR	NR, 0.35
Chang, 1999 ³³³ Fair	Caregiver	Anx (BSI-A, 0-24, ↓)	IG1	3	0.68 (0.55)	31	0.57 (0.58)		0.91 (0.63)	34	0.78 (0.74)	NR	NR
	Caregiver	Dep (BSI-D, 0-4, ↓)	IG1	3	0.73 (0.66)	31		NR	0.74 (0.74)	34	0.95 (0.85)	NR	NR
Chu, 2011 ³³⁴ Fair	Caregiver	Dep (BDI-II, 0-63, ↓)	IG1	3	9.3 (ŃR)	30	5.77 (NR)	NR		30	10.53 (NR)	NR	NR, 0.05
	Caregiver	Dep (BDI-II, 0-63, ↓)	IG1	4	9.3 (NR)	30	5.31 (NR)	NR		30	10.96 (NR)	NR	NR, <0.01
Coon, 2003 ³³⁵ Fair	Caregiver	Dep (MAACL Dep subscale, NR, ↓)	IG1	6	17.8 (1.4)	45	15.4 (1.3)	NR		44	16.5 (1.3)	NR	NR, NR
Coon, 2003 ³³⁵ Fair	Caregiver		IG2	6		41	15.0 (1.3)	NR		44	16.5 (1.3)	NR	NR, NR
Cristancho- Lacroix, 2015* ³³⁶ Fair	Caregiver		IG1	3		25	11.5 (9.2)		9.0 (7.4)	24	8.9 (6.5)	-0.1 (2.7)	MDC (95% CI)=NR (NR, NR), 0.56

Author, year Quality	Audience		Int arm	Time , mo.	(SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	(SD)	at FU	mean (SD)	from BL	Between group difference, p- value
	Caregiver	Dep (BDI-II, 0-63, ↓)	IG1		(10.1)		12.4 (11.6)	NR	9.0 (7.4)	24	8.8 (7.2)	NR	NS
	Caregiver	Perc Stress (Cohen PSS, 0-56, ↓)	IG1		24.2 (9.0)	25	23.7 (9.2)	-0.5 (8.0)	24.5 (6.7)	24	23.8 (6.2)	-0.7 (4.5)	MDC (95% CI)=NR (NR, NR), 0.98
	Caregiver	Perc Stress (Cohen PSS, 0-56, ↓)	IG1		24.2 (9.0)	25	25.0 (9.9)	NR	24.5 (6.7)	24	23.8 (6.9)	NR	NS
De Rotrou, 2011 ³³⁷ Fair	Caregiver		IG1		9.0 (7.5)	63	8.2 (7.5)	NR		64	10.1 (9.9)	NR	NR, 0.21
	Caregiver	Dep (MADRS, 0-60, ↓)	IG1	6	9.0 (7.5)	56	8.9 (7.8)	NR		57	11.4 (10.3)	NR	NR, 0.14
Finkel, 2007 ³⁴⁰ Fair	Caregiver	Dep (CES-D-10, 0-30,	IG1	6	7.2 (NR)	17	4.3 (NR)	NR	7.2 (NR)	19		NR	Cohen's d=0.42, 0.099
Gallagher- Thompson,	Caregiver	Dep (CES-D, 0-60, ↓)	IG1 (Hispanic)	6	16.74 (12.53)	38	15.27 (1.66)	NR	26.67 (14.75)	17	17.10 (2.55)	NR	NR
2003 ³⁴² Fair	Caregiver	Dep (CES-D, 0-60, ↓)	IG1 (White)	6		53	13.50 (1.08)	NR	17.13 (13.50)	24	15.44 (1.60)	NR	NR
Gallagher- Thompson,	Caregiver	Dep (CES-D, 0-60, ↓)	IG1 (Hispanic)	-		47	10.26 (9.98)	NR			12.83 (10.31)	NR	NR
2008 ³⁴³ Fair	Caregiver	Dep (CES-D, 0-60, ↓)	IG1 (White)			50	11.86 (9.90)	NR	· /		12.82 (9.59)	NR	NR
	Caregiver	Perc Stress (Cohen PSS, 0-40, ↓)	IG1 (Hispanic)	6		47	15.23 (7.24)	NR		42	16.14 (6.97)	NR	NR
Gallagher- Thompson, 2008 ³⁴³ Fair	Caregiver	Perc Stress (Cohen PSS, 0-40, ↓)	IG1 (White)	6			15.97 (6.49)	NR			17.04 (6.17)	NR	NR
Gallagher- Thompson, 2010* ³⁴⁴ Good	Caregiver	Dep (CES-D, 0-60, ↓)	IG1		13.03 (11.85)	36	10.78 (8.41)	NR	14.74 (12.51)	34	13.94 (10.31)	NR	Beta=-0.118, 0.164
Garand, 2014* ³⁴⁵ Fair	Caregiver	Anx (STAI-State, 20-80, ↓)	IG1 (AD patient)		31.3 (2.9)‡	13	27.1 (3.1) [‡]		32.3 (2.7)‡		39.5 (2.6)‡	NR	NR
	Caregiver	Anx (STAI-State, 20-80, ↓)	IG1 (AD patient)		31.3 (2.9)‡	13	27.1 (2.3) [‡]	NR	32.3 (2.7)‡		43.3 (2.6)‡	NR	NR
	Caregiver	↓)	IG1 (AD patient)		31.3 (2.9)‡	13	32.5 (3.0)‡	NR	32.3 (2.7)‡		40.5 (2.8) [‡]	NR	NR

								IG mean					Between
Author, year		Symptom (Instrument,		Time	IG BL mean	IG n at	IG FU mean	change (SD) from	CG BL mean	CG n at	CG FU mean	CG mean change (SD)	group difference, p-
Quality	Audience		Int arm	, mo.		FU	(SD)	BL	(SD)	FU	(SD)	from BL	value
	Caregiver		IG1	3	26.3	23	27.3		27.1	20	28.2	NR	NR
			(MCI		(2.2)‡		(2.2)‡		(2.7)‡		(2.1) [‡]		
			patient)										
	Caregiver		IG1 (MCI	6	26.3	23	26.0		27.1 (2.7) [‡]	20	27.3	NR	NR
		¥7	patient)		(2.2)‡		(2.0)‡		(∠.7)+		(2.4) [‡]		
	Caregiver		IG1	12	26.3	23	28.5	NR	27.1	20	29.9	NR	NR
	ourogivor		(MCI	12	(2.2) [‡]	20	(2.2) [‡]		(2.7) [‡]		(2.3) [‡]		
			, patient)		` ,		· /		· /		· ,		
	Caregiver		IG1		13.3	13	10.8		16.4		18.1	NR	NR
			(AD		(1.5) [‡]		(0.7) [‡]		(2.5)‡		(4.0)‡		
			patient)	-	10.0	10			10.1		10.1		
	Caregiver		IG1 (AD	6	13.3 (1.5) [‡]	13	7.4 (0.6)‡		16.4 (2.5) [‡]	17	19.4 (3.9) [‡]	NR	NR
			patient)		(1.5)+				(2.5)+		(3.9)+		
Garand, 2014* ³⁴⁵	Caregiver		IG1	12	13.3	13	7.9 (1.7) [‡]	NR	16.4	17	16.6	NR	NR
Fair	e al egitet		(AD		(1.5) [‡]		,		(2.5) [‡]		(2.0) [‡]		
			patient)		. ,								
	Caregiver	Dep (CES-D, 0-60, ↓)	IG1	3	6.1	23	6.6 (0.4) [‡]		7.1	20	8.0 (0.4)‡	NR	NR
			(MCI		(0.4)‡				(0.6)‡				
	0		patient)	0	0.4	00	0.0.(0.5)*		7.4	00	0.4.(0.0)+		
	Caregiver		IG1 (MCI	6	6.1 (0.4) [‡]	23	6.3 (0.5)‡		7.1 (0.6) [‡]	20	8.1 (2.9) [‡]	NR	NR
			patient)		(0.4)				(0.0)				
	Caregiver		IG1	12	6.1	23	4.9 (0.3) [‡]	NR	7.1	20	11.5	NR	NR
			(MCI		(0.4)‡		- (/		(0.6) [‡]		(1.8) [‡]		
			patient)										
Gaugler, 2013* ³⁴⁶	Whole	Dep (GDS, 0-30, ↓)	IG1	36	6.11	54	NR		5.48	53	NR	NR	Beta (SE)=
Fair Gitlin, 2003 ³⁴⁹	family		IG1	6	(5.39)	116	15.06		(4.59)	117	15.05	NR	0.07 (0.51), NS
Fair	Caregiver	Dep (CES-D, 0-60, ↓)	IGI	6	15.25 (12.17)	116	(0.66)		14.85 (10.73)	117	(0.66)	NR	NR, 0.99
Gitlin, 2008 ³⁴⁸	Caregiver	Dep (CES-D, 0-60, ↓)	IG1	4	14.6	27	13.1 (9.4)		13.2	29	14.3	NR	Adj MD (95%
Fair	+ patient	Dep(OEO D,O OO,p)		-	(11.0)		10.1 (0.4)		(9.6)	20	(10.2)		Cl)=-0.74 (-
					, ,				· /		```		4.31, 2.82),
													0.68
Gitlin, 2010 ³⁵⁰	Caregiver	Dep (CES-D, D)	IG1	4	NA	117	62 (53.0) [§]	NR	NA	122	83 (68.0) [§]	NR	NR, 0.02
Fair	0		104	0	447	07			44.4	05	40 4 (0 1)		
Graff, 2006 ³⁵¹	Caregiver	Dep (CES-D, 0-60, ↓)	IG1	3	11.7 (8.3)	67	5.4 (4.5)		11.4 (7.2)	65	13.1 (9.1)	NK	Adj MD (95% CI)=-8.4 (-
Fair	+ patient				(0.3)	1			(1.2)	1			<i>∪i)=</i> -0.4 (-

Author, year Quality	Audience	Symptom (Instrument, range, direction)	Int arm	Time , mo.		IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU	CG FU mean (SD)	CG mean change (SD) from BL	Between group difference, p- value
	<u> </u>			0	10.0	07	7.4.(0.5)		11.0	05	40.4 (5.0)		11.0, -5.8), <0.0001
		Psych Health (GHQ-12, 0-36, ↓)	IG1		12.0 (4.9)	67	7.1 (3.5)	NR	11.3 (4.0)	65	12.1 (5.0)	NK	Adj MD (95% CI)=-4.9 (-6.6, -3.3), <0.0001
Hebert, 2003 ³⁵² Fair	Caregiver	Anx (STAI-State, 20-80, ↓)	IG1		41.01 (12.96)	60	39.75 (13.24)	-1.27 (16.47)	45.46 (14.82)	56	43.17 (14.02)	-1.64 (14.49)	NR, 0.39
Hebert, 2003 ³⁵² Fair	Caregiver	Psych Health (PSI, 14- 56, ↓)	IG1		26.17 (6.94)	60	25.01 (6.92)	-1.16 (7.98)	26.45 (8.12)	56	26.89 (8.16)	0.65 (6.03)	NR, 0.13
Joling, 2012 ³⁵⁴ Fair	Whole family	Anx (HADS-A, 0-21, ↓)	IG1	6	5.6 (NR)	96	5.6 (NR)	ŇR	5.3 (NR)	96	5.7 (NR)	NR	NR
	Whole family	Anx (HADS-A, 0-21, ↓)	IG1	12	5.6 (NR)	96	5.5 (NR)	NR	5.3 (NR)	96	5.8 (NR)	NR	ES (95% CI)=- 0.6 (-1.6, 0.5), 0.3
	Whole family	Anx (HADS-A, D)	IG1	12	NA	96	28 (29.2) [∥]	NR	NA	96	27 (28.1) [∥]	NR	HR (95% CI)=0.89 (0.51, 1.56)
	Whole family	Dep (CES-D, 0-60, ↓)	IG1		11.4 (NR)	96	12.4 (NR)		11.9 (NR)	96	13.0 (NR)	NR	NR
	Whole family	Dep (CES-D, 0-60, ↓)	IG1	12	11.4 (NR)	96	12.9 (NR)		11.9 (NR)	96	14.8 (NR)	NR	ES (95% CI)=- 1.4 (-3.9, 1.1), 0.27
	Whole family	Dep (CES-D, D)	IG1	12	NA	96	28 (29.2) [¶]	NR	NA	96	19 (19.8) [¶]	NR	IRR (95% CI)=1.21 (0.80, 1.84), NR
Judge, 2013* ³⁵⁵ Fair	Caregiver + patient	Dep (CES-D, 0-20, ↓)	IG1	3	4.47 (3.60)	59	3.75 (3.09)	NR	4.58 (3.63)	59	4.64 (3.19)	NR	Beta=-0.17, 0.04
Kurz, 2010 ³⁵⁷ Fair	Caregiver	Dep (CES-D, D)	IG1	6	NA	55	NR	NR	NA	53	NR	NR	OR (95% CI)=0.15 (0.04, 0.65), <0.013 [#]
Livingston,	Caregiver	Anx (HADS-A, 0-21, ↓)	IG1	4	8.1 (4.4)	150	7.5 (4.2)	NR	9.3 (4.3)	75	8.6 (4.2)	NR	NR
2013 ^{*360} Good	Caregiver	Anx (HADS-A, 0-21, ↓)	IG1	8	8.1 (4.4)	133	7.6 (4.4)	NR	9.3 (4.3)	71	8.8 (4.4)	NR	Adj MD (95% Cl)=-0.91 (- 1.76, -0.07), NR
Livingston,			IG1	12	8.1 (4.4)	138			9.3 (4.3)	67		NR	NR
2013 ^{¥360} Good	Caregiver	Anx (HADS-A, 0-21, ↓)	IG1	24	8.1 (4.4)	132	8.1 (4.9)	NR	9.3 (4.3)	64	9.2 (5.3)	NR	Adj MD (95% CI)=-1.16 (- 2.15, -0.18), NR

Author, year Quality	Audience	0 ? /	Int arm	Time , mo.	mean (SD)	IG n at FU	mean (SD)	IG mean change (SD) from BL	(SD)	at FU	mean (SD)	from BL	Between group difference, p- value
	Caregiver	Anx (HADS-A, D)	IG1		85 (49.4) ^{**}	150	54 (36.0) ^{**}	NR	48 (55.2) ^{**}	75	36 (48.0) ^{**}	NR	NR
	Caregiver	Anx (HADS-A, D)	IG1	8	(49.4) 85 (49.4) ^{**}	133	(30.0) 53 (39.8) ^{**}	NR	(55.2) 48 (55.2) ^{**}		(48.0) 33 (46.5) ^{**}	NR	OR (95% CI)=0.30 (0.08, 1.05), NR
	Caregiver	Anx (HADS-A, D)	IG1	12	85 (49.4) ^{**}	138	54 (39.1) ^{**}	NR	48 (55.2) ^{**}	67	33 (49.3) ^{**}	NR	NR
	Caregiver	Anx (HADS-A, D)	IG1	24	85 (49.4) ^{**}	132	57 (43.2) ^{**}	NR	48 (55.2) ^{**}	64	32 (50.0) ^{**}	NR	OR (95% CI)=0.57 (0.26, 1.24), NR
	Caregiver	Dep (HADS-D, 0-21, ↓)	IG1		5.4 (3.8)	150	4.9 (3.9)	NR	5.5 (3.9)	75	5.7 (4.0)	NR	NR
	Caregiver	Dep (HADS-D, 0-21, ↓)	IG1	8	5.4 (3.8)	133	5.2 (4.0)	NR	5.5 (3.9)	71	6.1 (4.2)	NR	Adj MD (95% Cl)=-0.91 (- 1.71, -0.10), NR
	Caregiver	Dep (HADS-D, 0-21, ↓)	IG1		5.4 (3.8)	138	5.0 (4.2)	NR	5.5 (3.9)	67	5.9 (4.3)	NR	NR
			IG1	24	5.4 (3.8)				5.5 (3.9)				Adj MD (95% Cl)=-1.45 (- 2.32, -0.57), NR
	Caregiver	Dep (HADS-D, D)	IG1		36 (20.9) ^{††}	150	25 (16.7) ^{††}	NR	17 (19.5) ^{††}		18 (24.0) ^{††}	NR	NR
	Caregiver	Dep (HADS-D, D)	IG1	8	36 (20.9) ^{††}	133	28 (21.1) ^{††}	NR	17 (19.5) ^{††}	71	23 (32.4) ^{††}	NR	OR (95% CI)=0.24 (0.07, 0.76), NR
Livingston, 2013 ^{*360}	Caregiver	Dep (HADS-D, D)	IG1	12	36 (20.9) ^{††}	138	24 (17.4) ^{††}	NR	17 (19.5) ^{††}		18 (26.9) ^{††}	NR	NR
Good	Caregiver	Dep (HADS-D, D)	IG1	24	36 (20.9) ^{††}	132	30 (22.7) ^{††}	NR	17 (19.5) ^{††}	64	19 (29.7) ^{††}	NR	OR (95% CI)=0.14 (0.04, 0.53), NR
	Caregiver	Psych Health (HADS-T, 0-42, ↓)	IG1	4	13.5 (7.3)	150	12.4 (7.4)	NR	14.8 (7.4)	75	14.3 (7.4)	NR	NR
	Caregiver	Psych Health (HADS-T, 0-42, ↓)	IG1	8	13.5 (7.3)	133	12.9 (7.9)	NR	14.8 (7.4)	71	14.9 (8.0)	NR	Adj MD (95% Cl)=-1.80 (- 3.29, -0.31), 0.02
	U	Psych Health (HADS-T, 0-42, ↓)		12	13.5 (7.3)		12.5 (7.9)		14.8 (7.4)	64	14.6 (8.9)		NR
	Caregiver	Psych Health (HADS-T, 0-42, ↓)	IG1	24	13.5 (7.3)	132	13.6 (8.3)	NR	14.8 (7.4)	64	15.5 (9.5)	NR	Adj MD (95% Cl)=-2.58(-

Author, year Quality	Audience	Symptom (Instrument, range, direction)	Int arm	Time , mo.		IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU	CG FU mean (SD)	CG mean change (SD) from BL	Between group difference, p- value
													4.26, -0.90), NR
	Caregiver	Psych Health (HSQ-12, 0-100. ↑)	IG1	4	58.3 (22.4)	144	62.7 (20.8)		58.2 (21.7)	72	58.4 (18.0)	NR	NR
	Caregiver	Psych Health (HSQ-12, 0-100, ↑)	IG1	8	58.3 (22.4)	122		NR	58.2 (21.7)			NR	Adj MD (95% CI)=4.09 (0.34, 7.83), NR
	Caregiver	Psych Health (HSQ-12, 0-100, ↑)	IG1	12	58.3 (22.4)	121	61.9 (20.6)		58.2 (21.7)	61	56.2 (22.5)	NR	NR
	Caregiver	Psych Health (HSQ-12, 0-100, ↑)	IG1	24	58.3 (22.4)	113	60.2 (19.8)		58.2 (21.7)	55	55.0 (21.2)	NR	Adj MD (95% CI)=7.47 (2.87, 12.08),
Losada, 2010 ³⁶¹ Fair	Caregiver	Dep (CES-D, 0-60, ↓)	IG1	3	19.5 (12.7)	68	14.9 (9.7)		17.6 (12.7)	50	17.0 (12.0)	NR	Adj MD (SD)=- 3.2 (NR), 0.03
Mariott, 2000 ³⁶² Fair	Caregiver	Dep (BDI, 0-63, ↓)	IG1	8	11.5 (9.5)	13	7.2 (7.5)	NR	9.9 (5.5)	14	10.9 (5.6)		NR, <0.01
	Caregiver	Dep (BDI, 0-63, ↓)	IG1		11.5 (9.5)	13	6.3 (5.7)	NR	9.9 (5.5)	14	11.1 (6.4)	NR	NR, 0.001
	Caregiver	Psych Health (GHQ-28, 0-84, ↓)	IG1	8	9.5 (4.8)	13	5.1 (5.5)	NR	9.6 (3.8)	14	12.4 (6.4)	NR	NR, <0.05
	Ũ	Psych Health (GHQ-28, 0-84, ↓)		12	9.5 (4.8)	13	3.2 (4.2)	NR	9.6 (3.8)	14	10.7 (5.5)	NR	NR, <0.05
Martin-Carrasco, 2009 ³⁶⁴		Psych Health (GHQ-28, 0-84, ↓)		4	8.8 (7.5)	44	4.7 (7.2)	NR	6.8 (5.5)	38	6.3 (6.6)	NR	NR, 0.03
Fair	Caregiver	Psych Health (GHQ-28, 0-84, ↓)	IG1	10	8.8 (7.5)		. ,		6.8 (5.5)		. ,	NR	NR, 0.0004
Martin-Carrasco, 2014* ³⁶³ Fair	Caregiver	Psych Health (GHQ-28, 0-84, ↓)	IG1	4	28.2 (12.5)			(12.6)	27.7 (12.7)		NR		MDC (95% CI)=-2.34 (- 5.27, 0.59), NS
Martin-Cook, 2005 ³⁶⁵ Fair	Caregiver + patient	Dep (GDS-15, 0-15, ↓)	IG1	4	(1.56)	23	1.58 (0.46)		3.00 (3.26)	24	2.68 (0.48)	NR	NR
Martindale-Adams, 2013* ³⁶⁶	Caregiver	Dep (CES-D-10, 0-30, ↓)	IG1	6	(6.2)	77	10.0 (6.5)		10.4 (6.8)	77	10.2 (7.1)	NR	NR
Fair	Caregiver	Dep (CES-D-10, 0-30, ↓)	IG1	12	10.8 (6.2)	77	9.4 (5.7)		10.4 (6.8)	77	9.4 (6.6)	NR	Cohen's d=0.04, 0.802
Mittelman, 2004* ³⁶⁷ Fair	Whole family	Dep (GDS, 0-30, ↓)	IG1	12	8.9 (5.7)	203	NR	()	10.6 (7.2)	203	NR	0.3 (6.0)	logBeta (SE)= - 1.41 (0.409), 0.006

Author, year Quality	Audience	Symptom (Instrument, range, direction)	Int arm	Time	IG BL mean (SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL		CG n at FU	CG FU mean (SD)	CG mean change (SD) from BL	Between group difference, p- value
	Whole family	Dep (GDS, 0-30, ↓)	IG1		8.9 (5.7)		NR	NR			NR	NR	Beta (SE)= - 1.047 (0.473), 0.03
	Whole family	Dep (GDS, D)	IG1	12	81 (39.9) ^{‡‡}	203	60 (29.6) ^{‡‡}	NR	93 (45.8) ^{‡‡}		92 (45.3) ^{‡‡}	NR	NR
Mittelman, 2004* ³⁶⁷	Whole family	Dep (GDS, D)	IG1			203	53 (26.1)	NR			65 (32.0)	NR	NR
Fair	Whole family	Dep (GDS, D)	IG1	60	81 (39.9)	203	55 (27.1)	NR	93 (45.8)	203	61 (30.0)	NR	NR
Nunez-Naveira, 2016 ^{*368} Fair	Caregiver	Dep (CES-D, 0-60, ↓)	IG1			30	17.03 (7.07)				20.77 (9.02)	NR	NR
Ostwald, 1999 ³⁶⁹ Fair	Caregiver + patient	Dep (CES-D, 0-60, ↓)	IG1		13.1 (8.2)	51	17.2 (4.1)	NR	14.7 (7.6)	30	18.0 (4.8)	NR	NR, NR
	Caregiver + patient	Dep (CES-D, 0-60, ↓)	IG1	5	13.1 (8.2)	60	12.0 (7.7)	NR		34	16.1 (9.1)	NR	NR, 0.04
Spaulding-Wilson, 2018* ³⁷² Fair		Anx (BAI, 0-63,	IG1	6	8.1 (8.0)	54	NR	NR	7.7 (7.2)	41	NR	NR	Beta (SE)=- 0.154 (0.39), 0.693
	Caregiver	Dep (BDI-II, 0-63, ↓)	IG1		11.8 (7.7)	54	NR	NR	11.7 (7.1)	41	NR	NR	Beta (SE)=- 0.414 (0.37), 0.269
	Caregiver	Perc Stress (Cohen PSS, 0-48, ↓)	IG1		16.0 (6.5)	54	NR	NR	16.3 (5.6)	41	NR		Beta (SE)=- 0.716 (0.28), 0.010
Schoenmakers, 2010 ³⁷¹	Caregiver	Dep (BDI, D)	IG1	NR	NA	23	NR	NR	NR	23	NR	NR	OR (95% CI)=0.16 (0.03, 0.86), NR ^{§§}
Steffen, 2016* ³⁷³ Good	Caregiver	Anx (MAACL Anx, 0-21, ↓)	IG1	3	4.8 (2.3)	28	3.5 (2.2)	NR	4.6 (2.3)	38	5.0 (2.7)	NR	Cohen's d=0.63, ≤0.05
	Caregiver	Anx (MAACL Anx, 0-21,	IG1	9	4.8 (2.3)	22	4.4 (2.6)	NR	4.6 (2.3)	30	4.2 (2.6)	NR	NR
	Caregiver	Dep (BDI-II, 0-63, ↓)	IG1	3	15.4 (0)	28	9.8 (1.3)	NR	15.4 (0)	38	13.2 (1.1)	NR	Cohen's d=0.50, ≤0.05
	Caregiver	Dep (BDI-II, D)	IG1	3	NA	28	20 (71.4) ^{⊪⊪}	NR	NA	38	16 (42.1) ^Ⅲ	NR	NR, ≤0.05
	Caregiver	Dep (BDI-II, 0-63, ↓)	IG1	9	15.4 (0)	22	10.3 (1.3)	NR	15.4 (0)	30		NR	NR, 0.61
	Caregiver	Psych Health (NAS, 10- 50, ↓)	IG1		24.5 (6.9)	22	20.1 (7.3)	NR	24.1 (7.3)	30	21.7 (7.6)		NR, 0.89

Author, year Quality	Audience		Int arm	Time , mo.		IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	at FU	CG FU mean (SD)	from BL	Between group difference, p- value
	Caregiver	Psych Health (NAS, 10- 50, ↓)	IG1	3	24.5 (6.9)	28	17.6 (4.4)	NR	24.1 (7.3)	38	22.0 (7.0)		Cohen's d=0.66, ≤0.05
Teri, 2005 ³⁷⁴ Fair	Caregiver		IG1	6		32	12.5 (7.7)	NR		34	15.8 (10.5)	NR	Adj MD (95% CI)=-2.3 (-6.0, 0.0).
	Caregiver	Dep (HDRS, 0-52, ↓)	IG1	6	6.9 (4.1)				7.6 (5.0)		~ /		Adj MD (95% CI)=-1.2 (-2.4, -0.0),
Tremont, 2015* ³⁷⁵ Fair	Caregiver	Dep (CES-D, 0-60, ↓)	IG1		17.04 (10.22)		(10.00)	NR	(9.98)		15.62 (10.18)		NR, 0.003
Ulstein, 2007 ³⁷⁶ Fair	Caregiver	Perc Stress (RSS, 0-60, ↓)	IG1		(10.3)		NR	1.0) ^{¶¶}	(10.8)		NR	0.9) ^{¶¶}	MDC (95% CI)=-0.1 (-2.5, 2.3), 0.94
	Caregiver	Perc Stress (RSS, 0-60, ↓)			(10.3)		NR	-0.19) ^{¶¶}	(10.8)		NR	0.8) ^{¶¶}	MDC (95% CI)=-1.2 (-4.2, 1.8), 0.42
Voigt-Radloff, 2011 ³⁷⁷ Fair	Caregiver + patient	Dep (CES-D, 0-60, ↓)	IG1	6	(7.7)		10.0 (7.9)		11.3 (5.9)	46	10.0 (6.9)		MD (95% CI)=0.0 (-3.0, 3.0), NS
	Caregiver + patient	Dep (CES-D, 0-60, ↓)	IG1	12	12.1 (7.7)	52	14.3 (10.3)	NR	11.3 (5.9)	46	12.9 (7.7)		MD (95% CI)=- 1.4 (-5.1, 2.3), NS
Waldorff, 2012 ³⁷⁸ Good	Caregiver + patient	Dep (GDS, 0-30, ↓)	IG1	6	4.74 (5.16)	141	4.97 (5.06)	0.43 (3.51)	4.71 (5.02)	150	5.38 (5.77)		MDC (95% Cl)=-0.39 (- 0.72, -0.07), 0.02
	Caregiver + patient	Dep (GDS, 0-30, ↓)	IG1		4.74 (5.16)	128	5.64 (5.45)	1.16 (4.59)	4.71 (5.02)	143	4.82 (5.70)		MDC (95% Cl)=0.91 (- 0.21, 2.03), 0.11
	Caregiver + patient	Dep (GDS, 0-30, ↓)	IG1		4.74 (5.16)	163	5.83 (NR)		4.71 (5.02)	167	4.98 (NR)	-0.33 (-1.39, 0.72) ^{¶¶}	NR, 0.29
Williams, 2010 ³⁸⁰ Fair	Ũ	↓)	IG1		(10.3)		37.0 (NR)		(11.1)		38.8 (NR)		NS
	Caregiver	↓)	IG1	6	(10.3)		35.1 (NR)		(11.1)		38.7 (NR)		NS
	Caregiver	Dep (CES-D, 0-60, ↓)	IG1	3	18.7 (10.6)	50	12.9 (NR)		14.4 (9.6)	53	14.5 (NR)	NR	NS

Author, year Quality	Audience	· · · · · · · · · · · · · · · · · · ·	Int arm	Time , mo.	(SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	at FU	mean (SD)	from BL	Between group difference, p- value
Williams, 2010 ³⁸⁰	Caregiver	Dep (CES-D, 0-60, ↓)	IG1	6		48	11.8 (NR)	NR		51	15.4 (NR)	NR	NS
Fair	Caregiver	Perc Stress (Cohen PSS, 0-40, ⊥)	IG1	3	(10.6) 21.5 (6.7)	50	16.5 (NR)	NR	(9.6) 19.1 (7.2)	53	17.8 (NR)	NR	NS
	Caregiver		IG1	6		48	15.4 (NR)	NR		51	18.1 (NR)	NR	NS
Wilz, 2016 ^{*381} Fair	Caregiver	Dep (CES-D, 0-60, ↓)	IG1		16.89 (9.14)	102	15.12 (10.08)	NR			17.52 (9.96)		MD (95% CI)=- 0.99 (-4.05, 2.05), 0.815
	Caregiver	Dep (CES-D, 0-60, ↓)	IG1	-	16.89 (9.14)	98	14.56 (9.61)	NR	18.51 (8.79)		17.33 (11.37)		MD (95% Cl)=0.06 (- 5.09, 1.92), 0.624
Wilz, 2018* ³⁸² Good	Caregiver	Dep (CES-D, 0-60, ↓)	IG1		21.73 (9.66)	139	18.94 (9.61)	NR	23.27 (9.54)	134	20.92 (9.16)		MD=-0.228, 0.043
	Caregiver	Dep (CES-D, 0-60, ↓)	IG1		21.73 (9.66)	139	19.08 (10.12)	NR	23.27 (9.54)	134	20.10 (10.57)		MD=-0.175, 0.180
Wright, 2001 ³⁸³ Fair	Caregiver		IG1		(NR)	68	(NR)		(NR)		(NR)		NS
	Caregiver	Dep (CES-D, 0-60, ↓)	IG1		13.1 ^{##} (NR)	68	(NR)	NR	9.7 ^{##} (NR)	_	(NR)	NR	NS
	Caregiver	Dep (CES-D, 0-60, ↓)	IG1		13.1 ^{##} (NR)	68	10.6 ^{##} (NR)		9.7 ^{##} (NR)	25	8.3 ^{##} (NR)	NR	NR, 0.94
Care/Case Manag													
Bass, 2003 ³⁸⁴ Fair	Caregiver + patient		IG1		(0.40)		(0.39)		0.62 (0.45)	63	(0.47)		NR, ≤0.05
Callahan, 2006 ³⁸⁵ Fair	Caregiver + patient	Dep (PHQ-9, 0-27)	IG1	6	3.8 (5.1)	84	3.6 (5.0)	NR	4.4 (5.6)	69	4.3 (5.1)		Adj MD (95% CI)=-0.5 (-1.8, 0.9), 0.50
	Caregiver + patient	Dep (PHQ-9, 0-27)	IG1	12	3.8 (5.1)	84	3.1 (3.9)	NR	4.4 (5.6)	69	4.6 (5.6)		Adj MD (95% CI)=-0.9 (-2.2, 0.5), 0.21
Callahan, 2006 ³⁸⁵ Fair	Caregiver + patient	Dep (PHQ-9, 0-27)	IG1	17	3.8 (5.1)	84	3.1 (4.5)	NR	4.4 (5.6)	69	5.2 (5.3)	NR	Adj MD (95% CI)=-1.6 (-3.0, -0.2), 0.02
Fortinsky, 2009 ³⁹¹ Fair	Caregiver + patient		IG1		(NR)		. ,		(NR)		15.0 (NR)	NR	NR, 0.41
Jansen, 2011 ³⁹² Fair	Caregiver + patient	Dep (CES-D, 0-60, ↓)	IG1		10.6 (NR)	54	11.9 (NR)	NR	11.2 (NR)	45	9.7 (NR)	NR	NS

Author, year		Symptom (Instrument,		Time		IG n at	IG FU mean	IG mean change (SD) from		at	CG FU mean		Between group difference, p-
Quality	Audience		Int arm	, mo.		FU	(SD)	BL	(SD)	FU	(SD)	from BL	value
	Caregiver + patient	Dep (CES-D, 0-60, ↓)	IG1	12	10.6 (NR)	54	11.2 (NR)	NR	11.2 (NR)	45	11.2 (NR)	NR	F=1.80, 0.17
Lam, 2010 ³⁹³		Psych Health (GHQ-28,	101	4		57	NR	0.0 (-2.5,		42	NR	1.0 (-4.0,	NS
Fair	+ patient	0-84, ⊥)	101	4	(5.4)	57		0.0 (-2.3, 3.0)***	(6.6)	42		4.0)***	113
Lam, 2010 ³⁹³		Psych Health (GHQ-28,	IG1	12		53	NR	1.0 (-2.0,	14.2	39	NR		NS
Fair		0-84, ⊥)		12	(5.4)	55		5.5)***	(6.6)	00		3.0)***	
Meewsen, 2012 ³⁹⁵		Anx (STAI-State, 20-80,	IG1	6		80	NR	NR	36.5	78	NR		Adj MD (95%
Good	+ patient	↓)			(9.7)				(9.3)				CI)=3.55
		*)			(••••)				()				(1.29, 5.81),
													0.002
	Caregiver	Anx (STAI-State, 20-80,	IG1	12	34.9	78	NR	NR	36.5	75	NR	NR	Adj MD (95%
	+ patient	↓)			(9.7)				(9.3)				CI)=2.35
													(0.35, 4.36),
													0.02
			IG1			80	NR	NR	34.6	78	NR	NR	Adj MD (95%
	+ patient	↓)			(10.2)				(9.1)				CI)=2.14
													(0.24, 4.03),
			101			~ ~							0.03
	0	Dep (CES-D, 0-60, ↓)	IG1	6	9.3 (7.6)	80	NR	NR	9.8 (7.6)	78	NR		Adj MD (95%
	+ patient												CI)=0.05 (-
													2.04, 2.13), 0.96
	Caregiver	Dep (CES-D, 0-60, ↓)	IG1	12	9.3 (7.6)	78	NR	NR	9.8 (7.6)	75	NR	NR	0.90 Adj MD (95%
	+ patient	$Dep(OLO-D, 0-00, \downarrow)$		12	3.5 (1.0)	10			3.0 (1.0)	15			CI)=2.09
	pation												(0.15, 4.02),
													0.04
Samus, 2014* ³⁹⁷	Caregiver	Dep (GDS-15, 0-15, ↓)	IG1	18	2.85	106	2.93	NR	2.54	183	3.01	NR	MDC (95%
Fair	+ patient				(3.1) [‡]		(0.34)‡		(0.23) [‡]		(0.28) [‡]		Cl)=-0.38 (-
	-												1.0, 0.25), 0.43
Other Intervention													
Charlesworth,	Caregiver	Anx (HADS-A, 0-21, ↓)	IG1			104	6.35	NR		113		NR	LSM change
2008 ⁴⁰¹					(4.58)		(4.46)		(4.68)		(4.37)		(95% CI)=0.22
Fair													(-0.43, 0.97),
	Caregiver	Anx (HADS-A, 0-21, ↓)	IG1			96	6.55	NR	7.97	106	7.55	NR	LSM change
					(4.58)		(4.54)		(4.68)		(4.47)		(95% CI)=0.61
	<u> </u>		101							07	0.07		(-0.33, 1.55),
	Caregiver	Anx (HADS-A, 0-21, ↓)	IG1			93	6.55	NR		97	6.97	NR	LSM change
					(4.58)		(4.49)		(4.68)		(4.50)		(95% CI)=-0.04
													(-1.10, 1.03),

Author, year Quality	Audience		Int arm	Time , mo.	(SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	(SD)	at FU	mean (SD)	from BL	Between group difference, p- value
Charlesworth, 2008 ⁴⁰¹ Fair			IG1		6.73 (3.63)		(3.63)		6.96 (3.94)		5.84 (3.96)	NR	LSM change (95% Cl)=-0.48 (-1.23, 0.26), 0.20
		Dep (HADS-D, 0-21, ↓)	IG1		(3.63)		(4.00)		6.96 (3.94)		6.71 (4.18)	NR	LSM change (95% Cl)=0.47 (-0.50, 1.44), 0.34
	Caregiver		IG1	22	6.73 (3.63)	93	6.25 (4.12)		6.96 (3.94)		6.35 (4.59)	NR	LSM change (95% Cl)=-0.21 (-1.32, 0.90), 0.71
Connell, 2009 ⁴⁰²			IG1		9.4 (2.9)				7.9 (2.8)			NR	NS
Fair			IG1		9.4 (2.9)				7.9 (2.8)			NR	NS
		PSS, 0-4, ↓) ์	IG1	6	1.9 (0.5)		~ /	NR	1.8 (0.5)		()	NR	NR, <0.05
	C	PSS, 0-4, ↓) ์	IG1	12	1.9 (0.5)	69	· · · ·	NR	1.8 (0.5)	61		NR	NS
King, 2002 ⁴⁰⁵	Caregiver		IG1		6.4 (4.3)		6.3 (4.3)	NR	8.9 (4.5)	40		NR	NS
Fair	U		IG1		(6.5)		()	NR	(6.3)		()	NR	NS
	_	PSS, 0-56, ↓)	IG1		(8.3)		24.8 (8.1)		29.3 (6.8)		26.6 (8.5)	NR	NR
Logiudice, 1999 ⁴⁰⁷ Fair	+ patient	Psych Health (GHQ-30, 0-90, ↓)			6.8 (7.2)			. ,	8.3 (7.4)	_	NR	-0.14 (NR)	NR, 0.50
	+ patient	Psych Health (GHQ-30, 0-90, ↓)		12	6.8 (7.2)			. ,	8.3 (7.4)			2.23 (NR)	NR, 0.90
Prick, 2015 ^{*410} Fair	Caregiver + patient	Dep (ĈES-D, 0-60, ↓)	IG1	3	10.84 (6.85)	57	13.71 (8.18)		11.02 (8.57)	54	10.94 (8.42)	NR	logBeta (95% CI)=0.14 (- 0.04, 0.33), 0.13
	Caregiver + patient	Dep (CES-D, 0-60, ↓)	IG1	6	10.84 (6.85)	57	13.62 (7.18)		11.02 (8.57)	54	11.38 (8.56)		logBeta (95% Cl)=0.07 (- 0.10, 0.25), 0.41
Winter, 2006 ⁴¹³ Fair	Caregiver	Dep (CES-D, 0-60, ↓)	IG1	6	15.9 (11.1)	53	18.7 (7.19)		14.1 (10.8)	49	20.2 (7.20)	NR	NR, 0.121

* New study

[†] N (%) of participants scoring ≥15 on CES-D, indicating extremely high levels of depression symptoms

‡ Standard error

§ N (%) of participants scoring ≥8 on CES-D, indicating clinically significant depression symptoms
I Number (%) of participants scoring ≥8 on HADS-A (clinically significant anxiety)
¶ N (%) of participants scoring ≥16 on CES-D, indicating clinically significant depression symptoms
Odds of scoring ≥15 on CES-D, indicating extremely high levels of depression symptoms
** Number (%) of participants scoring ≥9 on HADS-A indicating clinically significant anxiety symptoms
† N (%) of participants scoring ≥9 on HADS-D, indicating clinically significant depression symptoms
‡ N (%) of participants scoring ≥11 on GDS, indicating clinically significant depression symptoms
§§ Odds of scoring ≥10 on BDI, indicating clinically significant depression symptoms
§§ Odds of scoring ≥10 on BDI, indicating clinically significant depression symptoms
II N (%) of participants scoring <11.35 on BDI, indicating absence of clinically significant depression symptoms
III N (%) of participants scoring <11.35 on BDI, indicating absence of clinically significant depression symptoms
III N (%) of participants scoring <11.35 on BDI, indicating absence of clinically significant depression symptoms
III N (%) of participants scoring <11.35 on BDI, indicating absence of clinically significant depression symptoms

Abbreviations: AD = Alzheimer's Disease; Adj MD = adjusted mean difference; Anx = anxiety; BDI = Beck Depression Inventory; BDI-II = Beck Depression Inventory – Second Edition; BL = baseline; BSI-A = Brief Symptom Inventory, Anxiety subscale; BSI-D = Brief Symptom Inventory, depression subscale; CES-D = Center for Epidemiologic Studies – Depression; CES-D-10 = 10-item Center for Epidemiologic Studies – Depression; CG = control group; CI = confidence interval; Cohen PSS = Cohen Perceived Stress Scale; D = dichotomized; Dep = depression; ES = effect size; FU = followup; GDS = Geriatric Depression Scale; GDS-15 = Geriatric Depression Scale-15 item; GHQ-12 = General Health Questionnaire-12 item; GHQ-28 = General Health Questionnaire-28 item; GHQ-30 = General Health Questionnaire-30 item; HADS-A = Hospital Anxiety and Depression Scale, Anxiety subscale; HADS-D = Hospital Anxiety and Depression Scale, Depression subscale; HADS-T = Hospital Anxiety and Depression Scale, Total score; HDRS = Hamilton Depression Rating Scale; HR = hazard ratio; HSQ-12 = Health Status Questionnaire, mental health domain; IG = intervention group; Int arm = intervention arm; IRR = incident rate ratio; LSM = least squares mean; MAACL = Multiple Affect Adjective Checklist; MADRS = Montgomery Asberg Depression Rating Scale; MCI = mild cognitive impairment; MD = mean difference; mo. = months; NA = not applicable; NAS = Negative Affect Scale; NR = not reported; NS = not statistically significant; OR = odds ratio; Perc Stress = perceived stress; PHQ-4 = Patient Health Questionnaire-4 items; PHQ-9 = Patient Health Questionnaire-9 items; RSS = Relative Stress Scale; SD = standard deviation; SE = standard error; STAI = State-Trait Anxiety Inventory; STPI = State-Trait Personality Inventory; TMAS = Taylor Manifest Anxiety Scale-Short form

Author, year	Audianaa	Instrument	luct a num	Time,	IG BL mean	IG n at		IG mean change (SD) from	CG BL mean	CG n		(SD) from	Between group difference, p-
Quality Psychoeducation I	Audience	(range) [†]	Int arm	mo.	(SD)	FU	(SD)	BL	(SD)	at FU	(SD)	BL	value
Barnes, 2018 ^{*327} Fair	Caregiver	ACQOL (0-120)	IG1	3	69.6 (NR)	27	73.9 (NR)	4.3 (NR)	69.4 (NR)		69.2 (NR)	-0.2 (NR)	NR, 0.138
Berwig, 2017* ³²⁹ Fair	0	SF-12 MCS (0- 100)	-	6	43.7 (11.1)	41	NR	2.398 (8.703)	49.0 (10.6)		NR	-2.528 (8.556)	ES=0.571, 0.012
	Caregiver	SF-12 MCS (0- 100)			43.7 (11.1)		NR	3.868 (10.662)	49.0 (10.6)		NR	(8.157)	ES=0.902, 0.001
	Caregiver	SF-12 PCS (0-100)		6	43.6 (10.7)		NR	2.600 (9.960)	44.1 (10.7)		NR	(7.711)	ES=0.443, 0.052
	0	SF-12 PCS (0-100)			43.6 (10.7)		NR	-0.053 (9.591)	44.1 (10.7)		NR	(6.699)	ES=0.030, 0.908
Duggleby, 2018 ^{*339} Fair	Caregiver	SF-12 MCS (0- 100)	IG1	3	NR	101	NR	NR	NR	98	NR	NR	LSM (95% CI)=- 0.23 (-3.25, 2.80), 0.88
	Caregiver	SF-12 MCS (0- 100)	IG1	6	NR	101	NR	NR	NR	98	NR	NR	Beta (95% CI)=0.68 (-0.76, 2.12), 0.35
	Caregiver	SF-12 PCS (0-100)	IG1	3	NR	101	NR	NR	NR	98	NR	NR	LSM (95% CI)=- 0.02 (-2.07, 2.01), 0.98
	Caregiver	SF-12 PCS (0-100)	IG1	6	NR	101	NR	NR	NR		NR	NR	NS
Fung, 2002* ³⁴¹ Fair	Caregiver	WHOQoL-BREF (28-140)	IG1	4	96.90 (14.11)	26	113.21 (9.98)	NR	103.75 (0.68)		88.19 (9.56)	NR	F statistic=23.145, 0.000
Gaugler, 2013* ³⁴⁶ Fair	Whole family	Cantril Ladder QoL (0-100)	IG1	4	74.63 (16.71)	54	82.29 (NR)	NR	76.77 (10.62)		81.49 (NR)	NR	NR
	Whole family	Cantril Ladder QoL (0-100)		8	74.63 (16.71)		80.56 (NR)	NR	76.77 (10.62)		81.12 (NR)	NR	NR
	Whole family	Cantril Ladder QoL (0-100)		12	74.63 (16.71)		80.14 (NR)	NR	76.77 (10.62)		80.60 (NR)	NR	NR
	Whole family	Cantril Ladder QoL (0-100)		18	74.63 (16.71)		81.07 (NR)	NR	76.77 (10.62)		79.62 (NR)	NR	NR
	Whole family	Cantril Ladder QoL (0-100)		24	74.63 (16.71)		82.63 (NR)	NR	76.77 (10.62)		78.41 (NR)	NR	NR
	Whole family	Cantril Ladder QoL (0-100)		30	74.63 (16.71)		83.46 (NR)	NR	76.77 (10.62)		77.01 (NR)	NR	NR
	Whole family	Cantril Ladder QoL (0-100)	IG1	36	74.63 (16.71)		82.19 (NR)	NR	76.77 (10.62)		75.53 (NR)	NR	Beta (SE)=-0.21 (1.59), NS

					IG BL		IG FU	IG mean change	CG BL		CG FU		Between group
Author, year Quality	Audience	Instrument (range) [†]	Int arm	Time, mo.	mean (SD)	IG n at FU	mean (SD)	(SD) from BL		CG n at FU		(SD) from BL	difference, p- value
Graff, 2006 ³⁵¹ Fair	Caregiver + patient	DQOL single item (1-5)	IG1	3	3.3 (0.9)	67	4.1 (0.6)	NR	3.4 (0.8)	65	3.4 (0.8)	NR	Adj MD (95% CI)=0.9 (0.6, 1.1), <0.0001
Judge, 2013* ³⁵⁵ Fair	Caregiver + patient	QOL-AD (0-18)	IG1	3	10.88 (2.73)	59	10.92 (3.04)	NR	10.92 (3.76)	59	10.69 (3.40)	NR	Beta=0.04,>0.05
Kurz, 2010 ³⁵⁷ Fair	Caregiver	SF-36 emotional well-being (0-100)	IG1	15	NR	127	NR	-5.3 (24.5)	NR	113		-7.8 (25.9)	NR, 0.33
	Caregiver	SF-36 role functioning, emotional (0-100)	IG1	15	NR	125	NR	5.3 (48.5)	NR	115	NR	-10.4 (51.2)	NR, 0.01
		SF-36 social functioning (0-100)	IG1	15	NR	127	NR	2.3 (31.3)	NR		NR	2.0 (33.5)	NR, 0.64
Laakkonen, 2016* ³⁵⁹	Caregiver + patient	SF-36 MCS (0- 100)	IG1	3	51.0 (9.1)	67	NR	-0.22 (NR)	47.6 (45.1)	67	NR	-0.25 (NR)	NR, 0.99
Fair	Caregiver + patient	SF-36 MCS (0- 100)	IG1	9	51.0 (9.1)	67	NR	-1.21 (NR)	(45.1)		NR	-0.42 (NR)	NR, 0.58
	Caregiver + patient	SF-36 PCS (0-100)	IG1	3	44.0 (9.8)	67	NR	1.0 (NR)	43.8 (10.5)	67	NR	-2.0 (NR)	Cohen's D=0.38,0.006
	Caregiver + patient	SF-36 PCS (0-100)	IG1	9	44.0 (9.8)	67	NR	-0.0 (NR)	43.8 (10.5)	67	NR	-1.7 (NR)	NR, 0.13
Martin-Carrasco, 2009 ³⁶⁴		SF-36 emotional well-being (0-100)	IG1	10	60.2 (9.5)	44	63.0 (9.2)	NR	60.8 (8.1)	38	60.9 (8.3)	NR	NR, 0.3197
Fair	Caregiver	SF-36 energy/vitality (0- 100)	IG1		47.4 (21.6)	44	53.8 (15.9)	NR	42.8 (16.1)	38	38.9 (17.9)	NR	NR, 0.0002
	Caregiver	SF-36 general health (0-100)	IG1		48.4 (18.5)	44	53.4 (18.0)	NR	44.6 (19.2)		40.1 (15.7)	NR	NR, 0.0011
	Caregiver	SF-36 pain (0-100)	IG1	10	63.0 (25.9)	44	74.0 (18.7)	NR	61.4 (26.2)		61.7 (26.9)	NR	NR, 0.0157
	Caregiver	SF-36 physical functioning (0-100)	IG1	10	74.3 (25.5)	44	80.1 (20.7)	NR	71.7 (21.4)	55	68.8 (25.6)	NR	NR, 0.0310
		SF-36 role functioning, emotional (0-100)	IG1		57.6 (45.7)	44	73.5 (41.0)	NR	63.2 (39.4)		47.4 (48.2)	NR	NR, 0.0160
	Caregiver	SF-36 role functioning, physical (0-100)	IG1		61.4 (44.6)	44	84.7 (34.6)	NR	53.9 (44.5)		56.8 (47.0)	NR	NR, 0.0074
	0	SF-36 social functioning (0-100)	IG1		63.4 (28.5)	44	71.0 (23.4)	NR	70.8 (27.0)		58.9 (27.7)	NR	NR, 0.0488

								IG mean				CG mean	
Author, year		Instrument		Time,	IG BL mean	IG n at	IG FU mean	change (SD) from	CG BL mean	CG n	CG FU mean	change (SD) from	Between group difference, p-
Quality	Audience	(range) [†]	Int arm		(SD)	FU	(SD)	BL	(SD)	at FU	(SD)	BL	value
Martin-Carrasco,	Caregiver	SF-12 emotional	IG1		60.5	115	NR	1.53 (23.8)	60.0	123		2.76	MDC (95% CI)=-
2014* ³⁶³ Fair		well-being (0-100)			(22.9)				(23.9)			(19.2)	1.23 (-7.22, 4.75), NS
		SF-12 energy/vitality (0- 100)	IG1		53.3 (28.6)		NR	2.04 (28.6)	(30.7)			-1.67 (29.5)	MDC (95% CI)=3.71 (-4.34, 11.76), NS
	Caregiver	SF-12 general health (0-100)	IG1		40.9 (21.5)	115	NR	-3.12 (19.3)	41.0 (21.3)	123	NR	1.89 (20.0)	MDC (95% CI)=- 5.01 (-10.48, 0.45), NS
	Caregiver	SF-12 pain (0-100)	IG1		68.4 (32.6)	115	NR	6.38 (25.7)	71.2 (32.0)	123		-0.47 (34.3)	MDC (95% CI)=6.85 (-1.58, 15.28), NS
Martin-Carrasco, 2014* ³⁶³ Fair	Caregiver	SF-12 physical functioning (0-100)	IG1	4	72.7 (33.3)	115	NR	-1.02 (30.0)	66.7 (35.2)	123	NR	0.0 (41.3)	MDC (95% CI)=- 1.02 (-11.10, 9.06),
	Caregiver	SF-12 role functioning, emotional (0-100)	IG1		77.3 (25.3)	115	NR	-3.06 (27.7)	78.4 (24.6)	123		1.19 (24.5)	MDC (95% CI)=- 4.25 (-11.48, 2.98), NS
	Caregiver	SF-12 role functioning, physical (0-100)	IG1		66.9 (27.0)	115	NR	3.09 (26.9)	72.3 (27.2)	123	NR	1.30 (26.7)	MDC (95% CI)=1.80 (-5.63, 9.22), NS
	Caregiver	SF-12 social functioning (0-100)	IG1		73.0 (28.2)	115	NR	-4.08 (31.6)	74.1 (28.0)	123		-3.30 (30.3)	MDC (95% CI)=- 0.78 (-9.33, 7.77), NS
Tremont, 2015 ^{*375} Fair	Caregiver	EQ-VAS (0-100)	IG1		80.08 (16.07)	133	79.87 (15.00)	NR	77.14 (17.61)	117	77.59 (15.69)	NR	NR, 0.748
Voigt-Radloff, 2011 ³⁷⁷	Caregiver + patient	(1-5)	IG1	6	3.1 (0.8)	51	3.0 (0.7)	NR	3.1 (0.7)	48	3.2 (0.8)	NR	MD (95% CI)=0.2 (-0.1, 0.5), NS
Fair	Caregiver + patient	DQOL single item (1-5)	IG1	12	3.1 (0.8)	51	2.8 (0.8)		. ,		3.0 (0.8)	NR	MD (95% CI)=0.2 (-0.1, 0.5), NS
	patient	SF-12 MCS (0- 100)	IG1	6	50.9 (9.1)	40	50.2 (9.1)	NR	49.8 (10.7)	38	50.1 (10.7)	NR	MD (95% CI)=0.0 (-4.5, 4.4), NS
	Caregiver +	SF-12 MCS (0- 100)	IG1	12	50.9 (9.1)	40	49.5 (11.9)	NR	49.8 (10.7)	38	47.7 (10.7)	NR	MD (95% CI)=- 1.7 (-6.7, 3.4), NS
		SF-12 PCS (0-100)	IG1	6	42.4	40	45.4	NR	43.5	38		NR	MD (95% CI)=-
	patient			-	(11.5)	-	(10.7)	-	(11.3)		(10.5)	-	0.4 (-5.2, 4.4), NS
		SF-12 PCS (0-100)	IG1		42.4	40	42.7 [´]	NR	43.5		41.6	NR	MD (95% CI)=-
	patient				(11.5)		(10.7)		(11.3)		(11.7)		1.0 (-6.1, 4.0), NS

								IG mean				CG mean	
					IG BL		IG FU	change	CG BL		CG FU	change	Between group
Author, year Quality	Audience	Instrument (range) [†]	Int arm	Time, mo.	mean (SD)	IG n at FU	mean (SD)	(SD) from BL	mean (SD)	CG n at FU		(SD) from BL	difference, p- value
Waldorff, 2012 ³⁷⁸		EQ-VAS (0-100)	IG1		79.3		81.6		81.4		80.3	-1.25	MDC (95%
Good	patient		_		(16.3)		(16.4)	- (/	(16.3)		(18.2)	(14.3)	CI)=2.61 (0.76, 4.46), 0.006
	Caregiver + patient	EQ-VAS (0-100)	IG1		79.3 (16.3)	128	79.5 (16.0)	0.02 (16.3)	81.4 (16.3)		· ,		MDC (95% Cl)=- 0.65 (-1.70, 0.39), 0.22
	Caregiver + patient	EQ-VAS (0-100)	IG1	36	79.3 (16.3)		80.3 (NR)	0.14 (NR)	81.4 (16.3)	167	79.5 (NR)	-2.71 (NR)	NR, 0.28
Wang, 2011* ³⁷⁹ Fair	Caregiver + patient	WHOQoL-BREF (28-144)	IG1	6	65.9 (13.0)	40	78.8 (19.0)	NR	67.0 (13.5)	40	(15.7)	NR	NR, <0.001
Wilz, 2018* ³⁸² Good	Ũ	WHOQoL-BREF (0-100)	IG1		50.18 (17.99)	139	55.58 (17.75)	NR	47.48 (17.99)		(18.37)	NR	MD=0.386, 0.006
	0	WHOQoL-BREF (0-100)	IG1	12	50.18 (17.99)	139	54.20 (19.55)	NR	47.48 (17.99)	134	53.35 (18.91)	NR	MD=0.057, 0.714
Care/Case Manage	ement Interve	entions											
Chien, 2011* ³⁸⁶ Good		WHOQoL-BREF (28-144)	IG1		64.9 (15.0)	44	75.1 (16.8)	NR	67.1 (15.5)		69.8 (16.7)	NR	NR
	Whole family	WHOQoL-BREF (28-144)	IG1	12	64.9 (15.0)	444	81.4 (16.0)	NR	67.1 (15.5)	44	(17.5)	NR	F statistic=6.7, <0.001
	Caregiver + patient	WHOQoL-BREF (28-144)	IG1	12	64.8 (13.0)	46	80.4 (15.0)	NR	67.1 (15.5)		65.2 (17.5)	NR	MD (SE)=15.2 (1.1), 0.01
	Caregiver + patient	WHOQoL-BREF (28-144)	IG1	18	(13.0)		82.7 (13.5)	NR	67.1 (15.5)	45	64.5 (13.1)	NR	MD (SE)=18.2 (1.2), 0.005
Jansen, 2011 ³⁹² Fair	Ũ	SF-36 MCS (0- 100)	IG1		(NR)		48.7 (NR)	NR	48.0 (NR)		(NR)	NR	NS
	Ũ	SF-36 MCS (0- 100)	IG1		51.0 (NR)	54	48.2 (NR)	NR	48.0 (NR)		(NR)	NR	F statistic=1.37, 0.26
	Caregiver	SF-36 PCS (0-100)	IG1	6	44.5 (NR)	54	45.5 (NR)	NR	48.0 (NR)	45	46.5 (NR)	NR	NS
	Caregiver	SF-36 PCS (0-100)	IG1	12	(NR)		46.0 (NR)	NR	48.0 (NR)		(NR)	NR	F statistic=1.06, 0.35
Lam, 2010 ³⁹³ Fair	Caregiver + patient	PWI-A (0-100)	IG1	4	(15.1)	57	NR	1.4 [‡] (NR)	61.2 (18.5)		NR	-4.3 [‡] (NR)	
	patient	PWI-A (0-100)	IG1		63.6 (15.1)		NR	2.9 [‡] (NR)	61.2 (18.5)			~ /	NS
Meewsen, 2012 ³⁹⁵ Good	Caregiver + patient	QOL-AD (13-52)	IG1	6	37.6 (3.6)	80	NR	NR	38.5 (4.7)	78	NR	NR	Adj MD (95% Cl)=-0.20 (-1.07, 0.66), 0.64

Author, year Quality	Audience	Instrument (range) [†]	Int arm	Time, mo.	(SD)	IG n at FU	(SD)	IG mean change (SD) from BL		CG n at FU	(SD)	(SD) from BL	Between group difference, p- value
	Caregiver + patient	QOL-AD (13-52)	IG1	12	37.6 (3.6)	78	NR	NR	38.5 (4.7)	75	NR	NR	Adj MD (95% Cl)=0.17 (-0.70, 1.04), 0.70
Samus, 2014 ^{*397} Fair		SF-12 MCS (0- 100)	IG1		48.89 (1.08) [§]	106	48.45 (1.22) [§]	NR	48.64 (0.82) [§]		47.54 (1.00) [§]	NR	MDĆ (95% Cl)=- 0.66 (-1.9, 3.2), 0.69
	Caregiver + patient	SF-12 PCS (0-100)	IG1		48.88 (1.11) [§]	106	49.31 (1.25) [§]	NR	48.11 (0.84) [§]		47.00 (1.02) [§]	NR	MDC (95% CI)=1.53 (-1.1, 4.2), 0.43
Vickrey, 2006 ³⁹⁹ Good		EQ-5D index value (assume 0-1)	IG1		0.83 (0.17)	205	0.83 (0.18)	NR	0.80 (0.22)		0.79 (0.22)	NR	Adj MD (95% CI)=0.02 (-0.01, 0.06), 0.19
	Caregiver	EQ-5D index value (assume 0-1)	IG1		0.83 (0.17)	166	0.81 (0.16)	NR	0.80 (0.22)		0.77 (0.23)	NR	Adj MD (95% CI)=0.02 (-0.01, 0.06), 0.13
Xiao, 2016* ⁴⁰⁰ Fair	0	SF-36 MCS (0- 100)			30.3 (5.3)		37.1 (8.2)		(10.9)		24.7 (10.1)	NR	NR
Xiao, 2016* ⁴⁰⁰ Fair	0	SF-36 MCS (0- 100)	IG1	12	30.3 (5.3)	31	38.7 (7.0)	NR	27.3 (10.9)		23.0 (8.6)	NR	F statistic=22.35, <0.001
	Caregiver	SF-36 PCS (0-100)	IG1		42.2 (7.2)	31	41.8 (7.6)	NR	44.9 (8.5)		41.8 (8.5)	NR	NR
	Caregiver	SF-36 PCS (0-100)	IG1	12	42.2 (7.2)	31	41.1 (7.7)	NR	44.9 (8.5)	30	41.6 (8.7)	NR	F statistic=2.68, 0.08
Other Intervention								•		1			
Charlesworth, 2008 ⁴⁰¹ Fair		EQ-VAS (0-100)			(16.8)		(17.0)	NR	(18.1)		72.9 (17.7)		LSM (95% CI)=- 2.06 (-5.51, 1.38), NR
	Caregiver	EQ-VAS (0-100)	IG1		74.0 (16.8)	96	73.8 (18.3)	NR	73.1 (18.1)		69.9 (18.1)	NR	LSM (95% CI)=- 2.33 (-6.88, 2.23), NR
	Caregiver	EQ-VAS (0-100)	IG1		74.0 (16.8)	93	72.5 (19.7)	NR	73.1 (18.1)		68.1 (18.2)	NR	LSM (95% CI)=- 3.03 (-8.42, 2.35), NR
Leach, 2015 ^{*406} Good		AQoL-8D Mental superdomain (0-1)	IG1		0.35 (0.21)	8	0.42 (0.22)	NR	0.30 (0.11)	9	0.29 (0.07)	NR	Adj MD (SD)=0.09 (0.14), 0.024
	U	AQoL-8D Mental superdomain (0-1)	IG1		0.35 (0.21)	8	0.37 (0.22)	NR	0.30 (0.11)	9	0.33 (0.10)	NR	Adj MD (SD)=0.004 (0.14), 0.359

Author, year Quality	Audience	Instrument (range) [†]	Int arm	Time, mo.	IG BL mean (SD)	IG n at FU	IG FU mean (SD)	IG mean change (SD) from BL	CG BL mean (SD)	CG n at FU	CG FU mean	CG mean change (SD) from BL	Between group
		AQoL-8D Physical superdomain (0-1)	IG1		0.66 (0.24)	-	0.77 (0.23)	NR	0.73 (0.17)	-	0.76 (0.14)		Adj MD (SD)=0.05 (0.27), 0.043
		AQoL-8D Physical superdomain (0-1)	IG1		0.66 (0.24)	-	0.74 (0.21)	NR	0.73 (0.17)	-	0.79 (0.14)		Adj MD (SD)=- 0.006 (0.22), 0.669
	0	AQoL-8D utility score (0-1)	IG1		0.65 (0.23)	-	0.74 (0.21)	NR	0.66 (0.14)	-	0.67 (0.10)		Adj MD (SD)=0.08 (0.19), 0.878
	0	AQoL-8D utility score (0-1)	IG1		0.65 (0.23)	-	0.70 (0.21)	NR	0.66 (0.14)		0.71 (0.12)		Adj MD (SD)=- 0.002 (0.17), 0.878

* New study

† Higher values indicate better outcomes for all instruments

[†] Median change

§ Standard error

Abbreviations: ACQOL = Adult Carers Quality of Life scale; Adj MD = adjusted mean difference; AQoL-8D = Assessment of Quality of Life 8-demension; BL = baseline; CG = control group; CI = confidence interval; DQOL = Dementia Quality of Life; EQ-5D = EuroQol 5-Dimensions; EQ-VAS = EuroQol Visual Analog Scale; FU = followup; IG = intervention group; Int arm = intervention arm; MD = mean difference; MDC = mean difference in change; mo. = months; NR = not reported; NS = not statistically significant; PWI-A = Personal Well-being Index-Adults; QOL = Quality of Life; QOL-AD = Quality of Life in Alzheimer's Disease; SD = standard deviation; SE = standard error; SF-12 = Short Form 12-item SF-36 Short Form 36-item; SF-36 MCS = Short Form 36-item, Mental Component Summary; SF-36 PCS = Short Form 36-item, Physical Component Summary; WHOQoL-BREF = World Health Organization Quality of Life Measure-Brief Version